Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кузько Андрей Евгеньевич Должность: Заведующий кафедрой

Дата подписания: 01.10.2024 22:43:16 Юго-Западный государственный университет

Уникальный программный ключ:

72581f52caba063db3331b3cc54ec107395c8caf

УТВЕРЖДАЮ:

Заведующий кафедрой нанотехнологий, микроэлектроники,

общей и прикладной физики

(наименование кафедры полностью)

____ А.Е. Кузько

(подпись)

«<u>31 » авизто</u> 20<u>24</u>г.

ОЦЕНОЧНЫЕ СРЕДСТВА

МИНОБРНАУКИ РОССИИ

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Актуальные проблемы современной нанотехнологии (наименование дисциплины)

28.04.01 Нанотехнологии и микросистемная техника (код и наименование ОПОП ВО)

1. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ УСТНОГО ОПРОСА

- 1. Подготовка специалистов по нанотехнологиям.
- 1. Проблема наноматериалов, нанотехнологий с позиций научных публикаций.
- 2. Состояние с подготовкой специалистов по нанотехнологиям за рубежом, примеры учебных курсов в институтах США. Подготовка специалистов в России.
- 3. Анализ учебных планов и программ.
- 4. Содержание подготовки по нанонаправлению: «Функциональные наноматериалы в авиационно-космических системах».
- 5. Наночастица, нанонаука, Нанотехнологии. Особые свойства нанореализуемых объектов.

2. Туннельный эффект и сканирующие микроскопы.

- 1. Двойственная природа элементарных частиц.
- 2. Туннельный эффект, вероятность туннелирования.
- 3. Сканирующий зондовый микроскоп его возможности. Атомно-силовой микроскоп (АСМ). Принцип действия, отличие и сходство с туннельным микроскопом, возможности атомно силового микроскопа. Средства сканирования поверхности. Разновидности АСМ. Зондовый датчик. Характер взаимодействия его с образцом, расчет энергии взаимодействия зонда и образца.

3. Материаловедение.

1. Наноразмерные частицы инертных газов, металлов, алмазоид, фрактальные кластеры, фуллерены.

4. Физические свойства и прикладные значения фуллеренов.

1. Фуллериты, нелинейные оптические свойства фуллеренов для полупроводниковой техники, в качестве фоторезистора, для расчета алмазных плёнок, сверхпроводимые фуллерены, источники тока.

5. Нанотрубки, разновидности.

1. Прочностные свойства, применение.

6. Самосборка. Ультрадисперсные и объёмные материалы.

- 1. Ассемблер как средство построения наносистем любого назначения.
- 2. Дизассемблеры.
- 3. Ультрадисперсные и объёмные материалы, их свойства.

7. Нанотехнологии в энергетике и машиностроении.

- 1. Нанотехнологии в качестве преобразователей солнечной энергии в электричество, в экологически чистых двигателях, органические катализаторы.
- 2. Конструктивные, инструментальные и трибологические наноструктурированные материалы, их характеристика и область применения.
- 3. Нанотехнологии в электронике, медицине, экологии. Основные направления нанотехнологий в электронике, медицине, экологии: искусственный интеллект, роботы, целевая доставка лекарств, диагностика, уничтожение отходов с помощью нанороботов.

Вопросов для устного опроса по теме «Физические свойства и прикладные значения фуллеренов»

- 1. Что такое фуллерены и какие у них физические свойства?
- 2. Какие методы синтеза фуллеренов существуют?
- 3. Какие прикладные значения имеют фуллерены в промышленности?
- 4. Какие уникальные свойства фуллеренов делают их перспективными материалами для создания новых технологий?
- 5. Какие свойства фуллеренов позволяют им использоваться в медицине?
- 6. В каких отраслях промышленности уже применяются фуллерены?
- 7. Какие проблемы могут возникнуть при использовании фуллеренов в технологиях?
- 8. Какие методы исследования применяются для изучения свойств и поведения фуллеренов?
- 9. Какие материалы могут быть усовершенствованы за счет добавления фуллеренов?
- 10. Какие перспективы развития использования фуллеренов можно ожидать

Вопросов для устного опроса по теме «Нанотехнологии в энергетике и машиностроении».

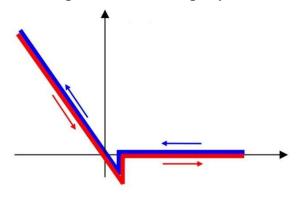
- 1. Какие преимущества предоставляют нанотехнологии в энергетике и машиностроении?
- 2. Какие конкретные области энергетики и машиностроения могут воспользоваться нанотехнологиями?
- 3. Какие недостатки или ограничения существуют при применении нанотехнологий в энергетике и машиностроении?
- 4. Какие конкретные материалы можно использовать в нанотехнологиях для улучшения производительности в энергетике и машиностроении?
- 5. Каким образом нанотехнологии помогают увеличить эффективность энергосберегающих систем?
- 6. Какие достижения на данный момент были сделаны в области применения нанотехнологий в энергетике и машиностроении?
- 7. Какие проблемы могут возникнуть при масштабировании нанотехнологий для промышленного применения?
- 8. Какие технологические процессы могут быть оптимизированы с помощью нанотехнологий в энергетике и машиностроении?
- 9. Какие новые методы исследования и разработки могут быть применены с использованием нанотехнологий?
- 10. Какие примеры успешного внедрения нанотехнологий в сферу энергетики и машиностроения вы можете привести?
- 11. Каким образом наночастицы могут улучшить характеристики материалов, используемых в производстве энергетического и машиностроительного оборудования?
- 12. Какие проблемы экологии могут быть решены с помощью нанотехнологий в энергетике и машиностроении?

- 13. Какие прогнозы развития нанотехнологий в энергетике и машиностроении можно сделать на ближайшие 10-20 лет?
- 14. Какое влияние могут оказать нанотехнологии на безопасность и долговечность энергетических и машиностроительных систем?
- 15. Какие технологические вызовы возникают при разработке наноматериалов для энергетики и машиностроения?
- 16. Какие критерии качества и безопасности должны соблюдаться при производстве и применении наноматериалов в энергетике и машиностроении?
- 17. Какие области энергетики и машиностроения наиболее перспективны для внедрения нанотехнологий?
- 18. Какие примеры проблем или осложнений возникли при использовании нанотехнологий в энергетике и машиностроении?
- 19. Какие стратегии и инвестиции могут способствовать развитию и распространению нанотехнологий в сфере энергетики и машиностроения?
- 20. Какие преимущества и недостатки имеют нанотехнологии по сравнению с традиционными?

Шкала оценивания: 5 балльная.

Критерии оценивания:

- **5 баллов** (или оценка **«отлично»**) выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **4 балла** (или оценка «**хорошо**») выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.
 - 3 балла (или оценка «удовлетворительно») выставляется


обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

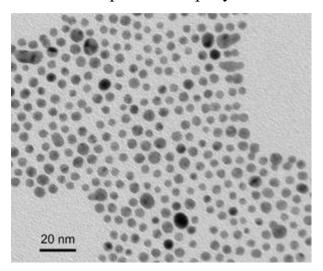
2 балла (или оценка «неудовлетворительно») выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1. В чем заключается гипотеза Луи де Бройля?
- 1) Свободное движение частицы массой m и скоростью v можно представить в виде монохроматической волны
- 2) Связанное движение частицы массой m и скоростью v можно представить в виде монохроматической волны
- 3) Покоящуюся частицу массой m можно представить в виде монохроматической волны
- 2. Какая зависимость представлена на рисунке?

- 1) Силы взаимодействия зонда с поверхностью от расстояния между ними
 - 2) Тока при туннелировании


- 3) Частоты колебаний балки кантилевера от расстояния до поверхности образца
- 3. Что такое движущая сила самосборки?
 - 1) Стремление системы к минимуму энергии
 - 2) Стремление системы к максимуму энергии
 - 3) Стремление системы к энергии Ферми
- 4. Какие существуют два метода формирования элементов интегральных микросхем?
 - 1) диффузия и ионная имплантация
 - 2) градиент концентрации и эпитаксия
 - 3) легирование кремния и самосборка

- 5. Что обычно происходит с температурой стеклования в тонких полимерных пленках?
- 1) В тонкой полимерной пленке температура стеклования понижается по сравнению с макроскопическим образцом
- 2) В тонкой полимерной пленке температура стеклования не меняется по сравнению с макроскопическим образцом
- 3) В тонкой полимерной пленке температура стеклования повышается по сравнению с макроскопическим образцом
- 4) Температура стеклования имеет максимум при толщине пленки, равной контурной длине цепи полимера
- 6. Где был изобретён сканирующий силовой микроскоп?
 - 1) В швейцарском филиале ІВМ
 - 2) В России, в физико-техническом институте им. Иоффе
 - 3) В США, ІВМ
 - 4) В германском филиале IBM
- 7. Какое свойство характерно для микроэмульсии?
 - 1) Микроэмульсии прозрачные жидкости
 - 2) Микроэмульсии имеют тёмно-серый цвет
 - 3) Микроэмульсии являются хорошими проводниками электричества
 - 4) Микроэмульсии непрозрачные жидкости
- 8. Что такое фуллерен?
 - 1) Семейство шарообразных полых молекул общей формулы Сп
 - 2) Железосодержащаянаноструктура, используемая в медицине
 - 3) Углеродная нанотрубка
 - 4) Плоский лист графита мономолекулярной толщины
- 9. Что такое квантовая точка?
- 1) Квантовая точка представляет собой нанообъект одного материала находящийся на матрице из другого материала
 - 2) Элементарная структура квантового излучения
 - 3) Наноразмерный разрыв в электромагнитном излучении

4) Квант, находящийся в электромагнитном поле
10. Что такое липосомы?
1) Замкнутые бислойные мембранные оболочки
2) Субклеточные частицы
3) Белковые молекулы, содержащие ферменты
4) Наноразмерные вирусы
11. По какой формуле может быть найдена длина волны де Бройля?
1) $\lambda = h/(mv)$
2) $\lambda = h/(mc)$
3) $\lambda = hv/m$
12. Что можно изменять, вводя в кластер атомы других элементов?
1) Физические и химические свойства
2) Только физические свойства
3) Только химические свойства
13. Какие существуют разновидности нанотрубок?
1) Однослойные, многослойные
2) Длинные, короткие
3)_Прямые, изогнутые
14. Что такое литография?
1) Методы микро и наногравировки материалов
2) Элемент машинного кода квантового компьютера
3) Бит нанопамяти
15. У какого типа излучения длина волны меньше 1 ангстрема?
1) Гамма-излучения
2) Ультрафиолетового
3) Рентгеновского
4) Радиоизлучения
16. Какой из данных методов НЕ является двухпроходным методом АСМ?
1) Контактная атомно-силовая микроскопия
2) Магнитно-силовая микроскопия

- 3) Электросиловая микроскопия
- 4) Метод Кельвина
- 17. Какая из наноструктур является термодинамически неустойчивой?
- 1) Наноструктуры, формирующиеся интенсивной пластической деформацией
 - 2) Микроэмульсия
 - 3) Мицеллы
 - 4) Углеродные нанотрубки
- 18. Что такое кантилевер?
 - 1) Зонд в сканирующем силовом микроскопе
 - 2) Компьютерный блок в силовом микроскопе
- 3) Компьютерная программа обработки данных сканирующего микроскопа
 - 4) Подложка для образцов в растровом микроскопе
- 19. Что такое нанотрубки?
- 1) Протяженные структуры, состоящие из свёрнутых гексагональных сеток с атомами углерода в узлах
 - 2) Семейство шарообразных полых молекул общей формулой Сп
 - 3) Протяженные структуры из углеродных переплетённых цепей
 - 4) Металлоорганические витые полимеры
- 20. Что такое магнитная жидкость?
 - 1) Взвесь ферромагнитных частиц в жидкости
 - 2) Расплавленный магнит
 - 3) Жидкость, подвергнутая магнитной обработке
 - 4) Жидкости, изменяющие удельный объем при намагничивании
- 21. Какой будет полная энергия электрона (остающаяся при туннелировании неизменной)если наблюдается туннельный эффект?
 - 1) меньше высоты барьера
 - 2) больше высоты барьера
 - 3) равна высоте барьера

22. Что изображено на рисунке?

- 1) Нанокластеры
- 2) Нанопористое вещество
- 3) Наночастицы
- 23. Какие области применения нанотрубок?
 - 1) Хранение водорода
 - 2) Хранение очищенной воды
 - 3) Хранение токсичных отходов
- 24. Что такое наноробот?
 - 1) Роботы с рамерамисопостовимыми с молекулой
 - 2) Роботы с рамерамисопостовимыми с электроном
 - 3) Роботы с микрокапсулами
- 25. Что обычно означает аббревиатура CBS применительно к сенсорным системам?
 - 1) Сенсоры, основанные на кантилеверах (Cantilever-basedsensors)
 - 2) Сенсоры, основанные на измерении тока (Current-basedsensors)
- 3) Сенсоры, использующие ферменты в качестве биоматериала, то же что CABS (Catalyticactivitybasedsensors)
- 4) Химически связанные распознающие системы, то же что CBDS (Chemicallybounddetectionsystems)
- 26. Почему рибосому называют молекулярным ассемблером?

- 1) Рибосомы строят белки, основываясь на инструкциях, хранящихся на нитках РНК
 - 2)Рибосомы имеют размер несколько десятков нанометров
- 3) Рибосомы могут сворачиваться в клубки, изменяя четвертичную структуру
- 4) Рибосомы умеют преобразовывать механическую энергию в энергию химических связей.
- 27. Что означает уравнение Гиббса-Томсона?
- 1) Взаимосвязь температуры плавления кристаллита и кривизны ограничивающей его поверхности
 - 2) Взаимосвязь поверхности объекта и его объема
 - 3) Взаимосвязь температуры плавления кристаллита и вязкости
- 4) Взаимосвязь изменения теплосодержания кристаллита и его состава 28. Как величина туннельного тока при работе туннельного микроскопа
- зависит от расстояния между острием иглы и исследуемым образцом?

 1) Экспоненциально возрастает с уменьшением расстояния
 - 2) Линейно возрастает с уменьшением расстояния
 - 3) Линейно уменьшается с уменьшением расстояния
 - 4) Экспоненциально уменьшается с уменьшением расстояния
- 29. Кто из известных исследователей не является лауреатом Нобелевской премии?
 - 1) Правильного ответа нет
 - 2) Ж.-М. Лен
 - 3) Ж.И Алферов
 - 4) Р. Фейнман
- 30. Какое название для нанопорошков и наноматериаловиспользовалось в СССР начиная с 50-х годов?
 - 1) Ультрадисперсные
 - 2) Высокодиспресные
 - 3) Нанодисперсные

- 4) Сверхдисперсные
- 31. Какой участок имеет туннельный диод на вольт-амперной характеристике
 - ? 1) отрицательного сопротивления
 - 2) отрицательного напряжения
 - 3) отрицательного тока
- 32. Что такое фуллерены?
- 1) Кластеры из более чем 40 атомов углерода, по форме представлящиешароподобные каркасные структуры
- 2) Кластеры из менее чем 20 атомов углерода, по форме представляющие шароподобные каркасные структуры
- 3) Шарообразные молекулы, содержащие разносортные атомы, размером более 100 нм
- 33. Какие существуют методы синтеза нанотрубок?
- 1) Лазерная абляция, дуговой разряд, химическое осаждение из газовой фазы
- 2) Лучевая эпитаксия, электронное наращивание, магнетронное напыление
- 3) Атомно-слоевое осаждение, окисление водорода, реактивная газовая струя
- 34. Какая область применения нанороботовнаиболее перспективная?
 - 1) Наномедицина
 - 2) Наноэлектроника
 - 3) Наноробототехника
- 35. Что такое 1 Дальтон (1Da)?
 - 1) Единица массы, равная 1/12 массы атома углерода С12
 - 2) Единица длины, равная 0,1 ангстрема
 - 3) Единица для измерения интенсивности синхротронного излучения
- 4) Единица силы, равная 1,57 пН, введенная для измерения взаимодействий между молекулами

- 36. Что получится, если поместить тонкий слой полупроводника с широкой запрещённой зоной между двумя полупроводниками с узкой запрещённой зоной?
 - 1) Квантовый барьер
 - 2) Квантовая точка
 - 3) Квантовая яма
 - 4) Квантовая игла
- 37. К каким видам деятельности готовятся выпускники, освоившие программу магистратуры направления подготовки 28.04.01 Нанотехнологии и микросистемная техника?
- 1) научно-исследовательская; проектно-конструкторская; проектно-технологическая; организационно-управленческая; научно-педагогическая
 - 2) только к профессиональной
- 3) коммуникационная; коммерческая, практическая, трудовая, проектная
- 4) стратегическая, конструктивно-руководящая, функциональная, инновационно-прикладная
- 38. По номенклатуре ИЮПАК фуллерен C_{70} обозначается символом (С70-I5h). Что означают цифры в квадратных скобках?
 - 1) Число атомов в кольцах
 - 2) Группу симметрии
 - 3) Литературные ссылки
 - 4) Диаметр фуллерена в нанометрах
- 39. Какое из высказываний соответствует определению нанотехнологии, данному в Национальной нанотехнологической инициативе США?
- 1) Сущность нанотехнологии в способности работать на молекулярном уровне, атом за атомом создавать большие структуры с фундаментально новой молекулярной организацией
 - 2) Нанотехнология это технология создания наноматериалов
 - 3) Нанотехнология это технология будущего

- 4) Суть нанотехнологии в создании наномеханизмов
- 40. Что означает термин "нано"?
 - 1) Нано (по-гречески nanos) означает карлик
 - 2) Нано (по-древнегермански nanor) означает гном
 - 3) Нано (по-итальянски nano) означает маленький человек
 - 4) Нано (по-испански nanes) означает мелкое животное
- 41. Что не является обязательным элементом сканирующего зондового микроскопа?
 - 1) видеомикроскоп
 - 2) кантилевер
 - 3) сканер
- 42. Что такое молетроника?
- 1)электроника, в которой в качестве элементов микроэлектронных схем используются отдельные органические молекулы или даже их фрагменты
- 2) электроника, в которой в качестве элементов микроэлектронных схем используются отдельные неорганические молекулы или даже их фрагменты
- 3) электроника, в которой в качестве элементов микроэлектронных схем используют несколько моль инертного газа в запаянной стеклянной трубке
- 43. Углеродные нанотрубки по прочности превосходят какой материал?
 - 1) Сталь
 - 2) Вольфрам
 - 3) Молибден
- 44. Что такое сверхрешетки?
- 1) Кристаллические структуры, в которых кроме периодического потенциала кристаллической решетки имеется другой периодический потен циал, период которого значительно превышает постоянную решетки, но соответствует наномасштабам

- 2) Кристаллические структуры, в которых кроме периодического потенциала кристаллической решетки имеется другой периодический потен циал, период которого соответствует постоянной решетки
- 3) Кристаллические структуры, в которых кроме периодического потенциала кристаллической решетки имеется другой периодический потен циал, период которого меньше постоянной решетки
- 45. Какой из приборов НЕ применяется для изучения молекулярных наночастии?
 - 1) Газовая хроматография
 - 2) Метод ЯМР
 - 3) Атомно-силовой микроскоп
 - 4) ванна Лэнгмюра
- 46. Как называется самая высокая энергетическая зона в энергетическом спектре полупроводников?
 - 1) Валентная зона
 - 2) Зона проводимости
 - 3) Запретная зона
 - 4) Квантовая зона
- 47. В каком микроскопе используется кантилевер?
 - 1) Сканирующий силовой микроскоп
 - 2) Сканирующий туннельный микроскоп
 - 3) Растровый микроскоп
 - 4) Просвечивающий электронный микроскоп
- 48. Как называются соединения фуллеренов, в которых присоединённые атомы, ионы или молекулы находятся снаружи углеродной оболочки?
 - 1) Экзоэдральные соединения
 - 2) Эндоэдральные соединения
 - 3) Супрадральные соединения
 - 4) Парадральные соединения
- 49. Что такое CVD?

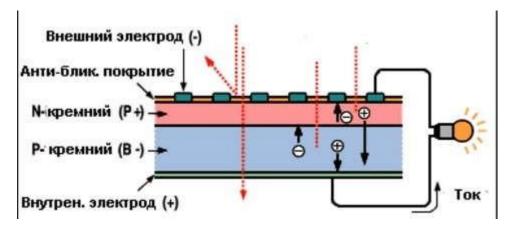
- 1) Испарение и осаждение в реакционной среде с получением новых соединений
 - 2) Испарение и осаждение в инертной среде
 - 3) Самораспространяющийся высокотемпературный синтез
 - 4) Электронный чип на основе квантовой точки
- 50. Почему квантовые точки называют искусственными атомами?
- 1) В квантовой точке движение ограничено в трёх направлениях и энергетический спектр полностью дискретный, как в атоме
 - 2) Квантовая точка, как и атом, имеет ядро
- 3) Квантовая точка может вступать в химические реакции подобно атомам
 - 4) Квантовая точка имеет размеры атома
- 51. Из чего состоит система регистрации в сканирующем зондовом микроскопе?
 - 1) Лазер, кантилевер,фотодиод
 - 2) Фотодиод, лазер, сканер
 - 3) Кантилевер, образец, сканер
- 52. Какие объекты называют кластерами?
- 1) Нанообъекты, состоящие из небольшого числа атомов или молекул. Кластеры имеют наноразмеры по трем направлениям.
 - 2) Нанообъекты, состоящие из небольшого числа атомов или молекул
 - 3) Нанообъекты, состоящие из большого числа атомов или молекул
- 53. В технологии Ленгмюра-Блоджет что можно отнестик самосборке?
 - 1) Формирование самособирающихся мономолекулярных слоев
 - 2) Формирование самособирающихсямультимолекулярных слоев
 - 3) Формирование самособирающихся квантовых точек
- 54. Что является главной задачей ассеблера?
 - 1) Соединение атомов и молекул в заданном порядке
 - 2) Соединение атомов и молекул в случайном порядке
 - 3) Соединение электронных s-орбиталей

- 55. Что НЕ является отличием дендримеров от сверхразветвленных полимеров?
- 1)Наличие в структуре звеньев, у которых прореагировали все функциональные группы
 - 2) Регулярность строения
 - 3) Монодисперсность
- 4) Невозможность изменять вязкость при изменении качества растворителя
- 56. Что такое везикулы?
 - 1) Замкнутые бислойные мембранные оболочки
 - 2) Субклеточные частицы
 - 3) Наноразмерные вирусы
 - 4) Белковые молекулы, содержащие ферменты
- 57. На чем основана работа сканирующего тунельного микроскопа?
- 1) Эффектетуннелирования электронов через тонкий диэлектрический промежуток между проводящей поверхностью образца и сверхострой иглой
 - 2) Дифракции рентгеновских лучей
 - 3) Просвечивании образца рентгеновскими лучами
- 4) Просвечивании образца пучком электронов при ускоряющем напряжении 200-400 кВ
- 58. Какиенаноструктуры обнаружены в шунгитовых породах?
 - 1) Фуллерены
 - 2) Однослойные нанотрубки
 - 3) Липосомы
 - 4) Магнитные жидкости
- 59. Как называлась речь Феймана о развитии нанотехнологий?
 - 1) Наднемногоместа "There is Plenty of Room at the Bottom"
 - 2) Машинысоздания "The enging of creation"
 - 3) Наноструктуры "Nanostructures"
 - 4) Наноустройства "Nanodevices"

- 60. Что является правильной последовательностью видов литографии в зависимости от уменьшения размера получаемых элементов интегральных схем (ИМС)?
 - 1) Оптическая > УФ-литография > Рентгеновская > Электронно-лучевая
 - 2) Электронно-лучевая > Рентгеновская > УФ-литография > Оптическая
 - 3) Рентгеновская > УФ-литография > Оптическая > Электронно-лучевая
- 4) УФ-литография > Оптическая > Электронно-лучевая > Рентгеновская 61. Какой сигнал служит обратной связью в сканирующем туннельном микроскопе?
 - 1) Сигнал проходящего тока
 - 2) Сигнал отклонения балки кантилевера
 - 3) Сигнал амплитуды колебания балки кантилевера
- 62. Что называют магическими числами?
- 1) Число атомов или молекул, при котором кластеры, состоящие из них, наиболее устойчивы
- 2) Число кластеров из атомов или молекул, при котором они наиболее устойчивы
- 3) Число атомов или молекул, при котором кластеры, состоящие из них, не устойчивы
- 63. Что такое наномедицина?
 - 1) Медицинское применение нанотехнологии
 - 2) Медицина без лекарств
 - 3) Специальный раздел педиатрии
- 64. Как зависит сила туннельного тока в СТМ от расстояния между зондом и образцом в простейшей модели?
 - 1) Экспоненциально
 - 2) Линейно
 - 3) Квадратично
 - 4) Не зависит

65. Какой метод не относится к основным методам получения углеродных
нанотрубок и нановолокон?
1) Биотехнологический
2) Дуговой
3) Лазерно-термический
4) Пиролитический
66. Какая величина не входит в уравнение Гиббса-Томсона?
1) кристаллита
2) Температура плавления
3) Свободная поверхностная энергия
4) Изменение теплосодержания
67. Что не может являться супрамолекулярным ансамблем?
1) правильного ответа нет
2) Везикула
3) Мицелла
4) Микроэмульсия
68. В каком году Фейнман выдвинул идею о развитии нанотехнологии?
1) 1959
2) 1653
3) 1876 4) 1985
69. В каких устройствах применятся магнитная жидкость?
1) Динамики
2) Кинескопы
3) Транзисторы
70. Что такое прекурсор?
1) Исходное вещество, которое становится необходимой, существенной
частью продукта

2) Аппарат для получения наночастиц


- 3) Любое исходное вещество в химической реакции получения наночастии
 - 4) Вещество-катализатор при получении наночастиц
- 71. Что используют для оценки силы взаимодействия зонда сканирующего зондового микроскопа с образцом?
 - 1) Потенциал Леннарда-Джонса
 - 2) Статискику Ферми-Диррака
 - 3) Уровень энергии Ферми
- 72. Что позволяет определить набор магических чисел?
- 1) Путь формирования структуры и свойств макроскопического тела, начиная от отдельных атомов и молекул
 - 2) Только число атомов или молекул в кластере
- 3) Путь формирования структуры и свойств макроскопического тела, начиная от отдельных кластеров
- 73. В технологии Ленгмюра-Блоджет процессы самосборки идут под действиемкаких сил?
 - 1) Ван-дер-Ваальса
 - 2) Гравитационных
 - 3) Электростатических
- 74. Что такое дизассеблер?
- 1) Наномашина, способная разбирать объект на атомы с записью его структуры на молекулярном уровне
 - 2) Наномашина, способная разбирать объект до нановолокон
- 3) Наномашина, способная собирать объект из атомы с записью его структуры на молекулярном уровне
- 75. Как можно описать образование супермолекулы в супрамолекулярной химии?
 - 1)Рецептор + субстрат(ы)
 - 2) Рецептор + рецептор
 - 3) Субстрат + субстрат(ы)

- 4) Рецептор + мономеры
- 76. Что такое молекулярный ассемблер?
- 1) Молекулярная машина, которая запрограммирована строить молекулярную структуру из более простых химических блоков
 - 2) Мельчайшая частица атома
 - 3) Субклеточная частица
 - 4)Коллоидный ансамбль ПАВ
- 77. Обращаются ли в нуль волновые функции на границе квантовой ямы?
 - Нет
 - 2) Да
 - 3) Вопрос поставлен некорректно
 - 4) Ответ зависит от ширины квантовой ямы
- 78. Как меняется вклад межфазной области в общие свойства объекта при уменьшении его размера?
- 1) При уменьшении размера объекта вклад межфазной области в общие свойства объекта увеличивается
- 2) При уменьшении размера объекта вклад межфазной области в общие свойства объекта уменьшается
- 3) При уменьшении размера объекта вклад межфазной области в общие свойства объекта проходит через максимум при 100 нм
- 4) При уменьшении размера объекта вклад межфазной области в общие свойства объекта проходит через минимум при 100 нм
- 79. Устройства смазки магнитных лент
- 1) Что означает относящийся к созданию нанообъектов термин "Topdown"?
 - 2) Диспергирование, уменьшение размера объекта
 - 3) Структурообразование, создание наноструктур из атомов и молекул
- 4) Создание наноструктурированного слоя на нижней поверхности объекта
 - 5) Создание наноструктурированного слоя осадительными методами

- 80. К какому виду деятельности (28.04.01) относится профессиональная компетенция: выпускник, освоивший программу магистратуры, должен обладать готовностью формулировать цели и задачи научных исследований в области нанотехнологии и микросистемной техники, обоснованно выбирать теоретические и экспериментальные методы и средства решения сформулированных задач?
 - 1) научно-исследовательская
 - 2) проектно-конструкторская
 - 3) проектно-технологическая
 - 4) организационно-управленческая
 - 5) научно-педагогическая
- 81. Что можно измерить при использовании магнитного зонда?
 - 1) Нормальную составляющую индукции магнитного поля
 - 2) Латеральную составляющую индукции магнитного поля
 - 3) Индукцию магнитного поля
- 82. В качестве чего нелинейные оптические свйоства фуллеренов позволяют их использовать?
 - 1) Оптических затворов
 - 2) Дифракционных решеток
 - 3) Нелинейных светоделителей
- 83. Что такое биодоступность лекарств?
- 1) Наличие молекул лекарств там, где они нужны внутри тела и там, где они действуют лучше всего
 - 2) Наличие лекарств со сниженной ценой
 - 3) Лекарства из натурального сырья
- 84. Что такое спинтроника?
- 1) направление наноэлектроники, в котором для представления и обработки информации наряду с зарядом используется спин электрон
- 2) направление макроэлектроники, в котором для представления и обработки информации используется значение силы тока

- 3) направление наноэлектроники, в котором для представления и обработки информации используется знак напряжения
- 85. Какими обязательными свойствами должен обладать кантилевер?
 - 1) Должен быть гибким
 - 2) Должен проводить электрический ток
 - 3) Должен быть выполнен из магнитного
 - 4) Должен быть выполнен из закалённой стали
- 86. Как называется задача, описывающая контакт кантилевера АСМ и образца с точки зрения теории упругости?
 - 1) Задача Герца
 - 2) Проблема Биннига
 - 3) Задача Гамакера
 - 4) Эта задача не имеет именного названия
- 87. Что получают, помещая тонкий слой полупроводника с узкой запрещённой зоной между двумя слоями материала с более широкой запрещённой зоной?
 - 1) Квантовую яму
 - 2) Квантовую точку
 - 3) Квантовый барьер
 - 4) Квантовую иглу
- 88. Чем известен Э. Дрекслер?
 - 1) Написал известную книгу "Машины создания"
 - 2) Основатель нанотехнологии
 - 3) Является президентом международного общества нанотехнологии
 - 4) Первооткрыватель углеродныхнанотрубок
- 89. К какому виду деятельности (направление подготовки 28.04.01) относится задача: разработка технических заданий на проектирование технологических процессов производства изделий нанотехнологии и микросистемной техники?
 - 1) проектно-технологическая деятельность

- 2) научно-исследовательская
- 3) проектно-конструкторская
- 4) организационно-управленческая
- 5) научно-педагогическая
- 90. Как изменится суммарная поверхность куба серебра объемом 1 мм³, если каждое его ребро разделить на 1000 частей
 - 1) увеличится в 1000 раз
 - 2) уменьшитсся в 1000 раз
 - 3) увеличится на 1000 мм²
 - 4) увеличится на 5996 мм²
- 91. Для каких методик кантилеверы обладают большей жесткостью?
 - 1) Бесконтактных колебательных методик
 - 2) Контактных квазистатичеких методик
 - 3) Электрических и магнитных методик
- 92. Чему соответствует схема на рисунке?

- 1) Солнечной батарее
- 2) Конденсатору с двойным диэлектрическим слоем
- 3) Биполярному транзистору
- 93. В чем заключается закон Мура?
- 1) плотность логических элементов микросхем удваивается каждые полтора года
- 2) плотность логических элементов микросхем удваивается каждые два года

- 3) плотность логических элементов микросхем удваивается каждые восемь лет
- 94. Что такое магнитосопротивление?
- 1) эффект изменения электропроводности материала при помещении его в магнитное поле
- 2) эффект изменения электропроводности материала при помещении его в электрическое поле
- 3) эффект изменения электропроводности материала при помещении его в гравитационное поле
- 95. Какой из микроскопов изобретён позже остальных?
 - 1) Сканирующий силовой микроскоп
 - 2) Сканирующий туннельный микроскоп
 - 3) Растровый микроскоп
 - 4)Просвечивающий электронный микроскоп
- 96. Как называется знаменитая книга Э. Дрекслера, посвящённая нанотехнологии?
 - 1) Машины создания
 - 2) Машины конструирования
 - 3) Машины нанотехнологии
 - 4) Машины технологии
- 97. Почему квантовые точки называют искусственными атомами?
- 1) В квантовой точке движение ограничено в трёх направлениях и энергетический спектр полностью дискретный, как в атоме
 - 2) Квантовая точка, как и атом, имеет ядро
- 3) Квантовая точка может вступать в химические реакции подобно атомам
 - 4) Квантовая точка имеет размеры атома
- 98. Что означает относящийся к созданию нанообъектов термин "Bottomup"?
 - 1) Структурообразование, создание наноструктур из атомов и молекул
 - 2) Создание наноструктурированного слоя на поверхности объекта

- 3) Диспергирование, уменьшение размера нанообъектов
- 4) Создание наноструктурированного слоя методом сублимациивещества
- 99. Что такое размерный эффект в технологии наноматериалов?
 - 1) Изменение свойств нанообъектов в зависимости от размераэлементов их структуры
 - 2) Изменение размера нанообъектов в зависимости от внешних условий
 - 3) Изменение свойств нанообъектов в зависимости от внешних условий
- 4) Изменение размера нанообъектов в зависимости от состава 100. Известно, что активность катализатора зависит от величины и свойств его поверхности. Что необходимо сделать, чтобы максимально увеличить скорость реакции?
 - 1) использовать катализатор в виде наночастиц
 - 2) использовать катализатор в виде микрочастиц
 - 3) грубодисперсного порошка
- 4)достаточно использовать катализатор в его естественном виде нетратя денег и времени на его подготовку

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 баллов (установлено положением П 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом:

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -2 балла, не выполнено -0 баллов.

2.3 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

1. Оксидные соты

Одним ИЗ наиболее перспективных мембранных материалов последнего времени является нанопористый анодный оксид алюминия (рис. 1). К его основным достоинствам, помимо всего прочего, можно отнести получения уникальную пористую простоту И структуру: прямые цилиндрические поры с гексагональным упорядочением, близким идеальному.

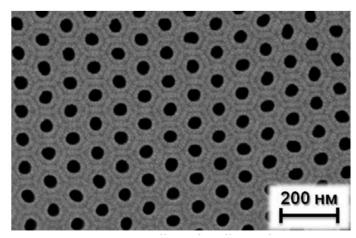


Рис. 1. Нанопористый анодный оксид алюминия

Для синтеза подобной оксидной плёнки толщиной 50 мкм и диаметром 1.2 см методом электрохимического окисления алюминиевой пластинки при 40 В достаточно пропустить заряд 113 Кл. Анализ раствора

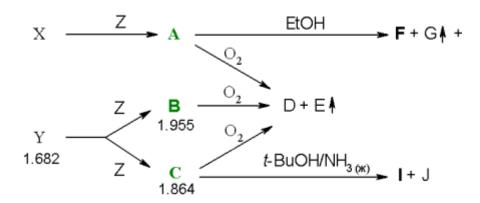
электролита (0.3 М водный раствор щавелевой кислоты, V = 250 мл) показал, что содержание катионов алюминия равно $1.1\cdot10^{-4}$ М, а масса полученного образца уменьшается на 3.3% после длительного прокаливания в инертной атмосфере при 1200 °C.

- 1. Напишите уравнения реакций, о которых идет речь в задаче.
- 2. Найдите плотность (в г/см³) получаемых оксидных плёнок (не подвергнутых термическому воздействию). Выход по току примите равным 95%. Считается, что при этом образуется аморфный оксид алюминия, плотность которого равна 3.61 г/см³.
- 3. Исходя из этих данных, оцените пористость синтезированных образцов. Под пористостью принято понимать отношение суммарного объёма пор к объёму образца.

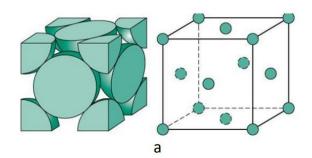
2. Новые материалы для литий-ионных аккумуляторов

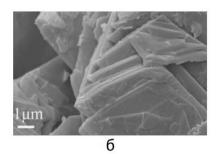
В качестве материалов для анода в литий-ионных аккумуляторах требуются вещества, обладающие высокой устойчивостью. Одно из них – вещество Х – соответствует этому требованию, но обладает низкой электрической и ионной проводимостью. Для получения сферических наночастиц вещества X, поверхность которых содержит атомы серебра, используют гидротермальный золь-гель синтез. Исходным веществом для Х служит бесцветная жидкость А, которая взаимодействует с водой с выделением органического вещества Б и белого осадка С, который при прокаливании образует устойчивый оксид Д, содержащий 40 % кислорода по массе. Из 4,25 г А можно получить 1,00 г Д. Известно, что вещество Б может быть получено в одну стадию из 1хлорбутана. Вещество А сначала вводят в реакцию с органическим веществом Е, содержащим 38,71% С, 9,68% Н и кислород. При кипячении А в избытке Е образуется продукт Л, причем из 1 г А можно получить 0,494 г Л. Взаимодействием А с раствором нитрата серебра в Е получены сферические частицы прекурсора, который при взаимодействии с раствором гидроксида лития в этаноле и последующем прокаливании на воздухе дает продукт X, имеющий при разных количествах введенного количества нитрата серебра на одинаковое количество остальных реагентов, следующий состав:

- (1) Li 5,95%; О 40,78%, Ag 2,29%, остальное неизвестный элемент
- (2) Li 5,81%; O 39,87%, Ag 4,49%, остальное неизвестный элемент
 - 1. Определите все неизвестные вещества.
 - 2. Напишите уравнения всех реакций.


3. Какую роль играет серебро при использовании X в качестве материала анода?

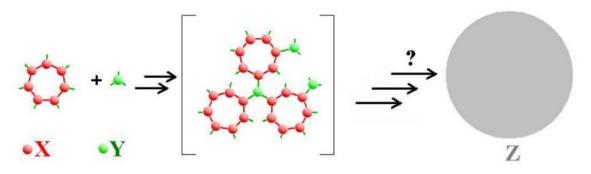
3. Магнитные наночастицы


Образец руды, содержащий металлы A и B, сожгли в токе воздуха. Образовавшийся твердый остаток растворили в соляной кислоте, а затем нейтрализовали раствором аммиака. При этом выпал бурый осадок A_1 , который отфильтровали. Через фильтрат пропускали ток углекислого газа до прекращения выпадения осадка B_1 . Осадок отфильтровали и прокалили до постоянной массы, образовалось вещество B_2 . Вещества A_1 и B_2 по отдельности растворили в соляной кислоте, при этом были получены растворы веществ A_2 и B_3 . К раствору A_2 прибавляли избыток щелочи до тех пор, пока выпавший осадок полностью не перешел в бесцветный раствор вещества A_3 . При добавлении к этому раствору раствора B_3 наблюдалось выпадение коричневого осадка, который при прокаливании превратился в черный порошок, состоящий из наночастиц вещества D.


- 1. Определите неизвестные вещества, если известно, что в наночастицах D содержится 46,47 % A и 26,97 % B по массе.
 - 2. Напишите уравнения всех описанных реакций.
 - 3. Какую руду (минерал) могли использовать?

4. Пустое место

Известно, что наночастицы N радиусом 0,501 нм в кристаллической структуре веществ Y, B и C образуют плотнейшую упаковку (рис. а). При этом в соединениях B и C атомы элемента Z стехиометрически заполняют пустоты между наночастицами N.

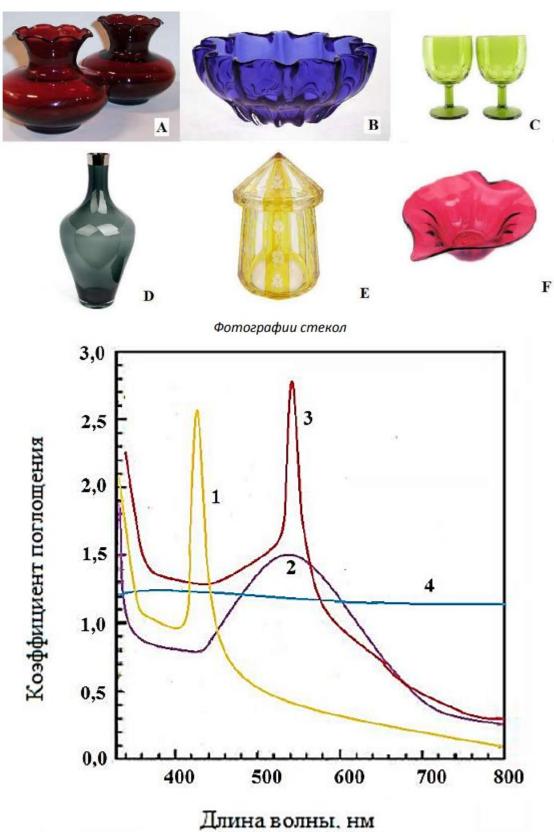


- 1. Рассмотрите элементарную ячейку Y (рис. а). Сколько наночастиц N приходится на одну такую ячейку? Соприкасающиеся наночастицы N образуют многогранники, в центрах которых находятся пустоты. Назовите эти многогранники. Сколько пустот, отвечающих каждому типу многогранников, приходится на элементарную ячейку? Рассчитайте все возможные* значения q для состава NZф.
- 2. Найдите значения q для веществ B и C и установите, какие при этом* пустоты заполняются элементом Z, а также определите молярную массу наночастицы N (ответы подтвердите расчетами). Расшифруйте формулы всех веществ на схеме превращений. К какому классу соединений относятся A, B, C? Приведите названия как для кристаллов X и Y, так и для нанообъектов, из которых они «составлены».
- 3. Что представляет собой вещество F (микрофотография приведена на рис. б) и каков механизм его образования, если его элементный состав идентичен X?

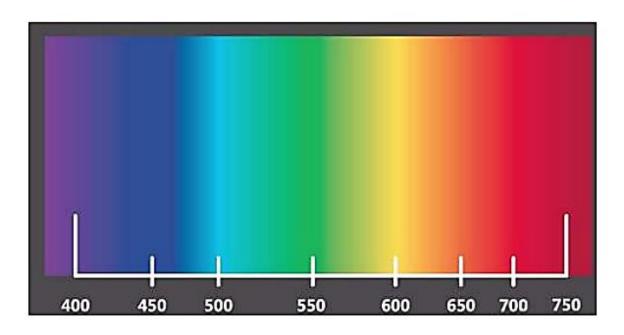
*заполнение элементом Z пустот в Y считать стехиометрическим: ни один тип пустот не может быть заполнен частично.

5. Моделирование и синтез каркасных наноструктур

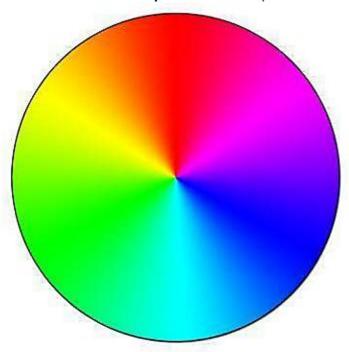
Юный физик захотел изготовить замкнутые каркасные наноструктуры Z методом самосборки. Для этого он решил комбинировать k-валентные k-угольники из фрагментов X с трехвалентным фрагментом Y, при этом они по отдельности не образуют связей сами с собой, но легко реагируют друг с другом, как на рисунке (приведен пример для k = 7):



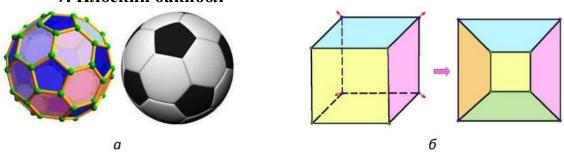
- 1. В каком мольном соотношении необходимо смешивать реагенты X_k и Y, чтобы они могли целиком прореагировать друг с другом с образованием Z? Используя теорему Эйлера для выпуклых многогранников, помогите физику найти все X_k , для которых возможно получение замкнутой каркасной наноструктуры Z. Опишите эти наноструктуры Z (сколько и каких вершин они содержат, в вершинах каких геометрических фигур расположены фрагменты Y, сколько и каких многоугольников содержат такие Z).
- 2. Укажите, как необходимо проводить реакцию синтеза Z: быстро сливать растворы вместе, или же медленно смешивать их по каплям; маленькие или большие концентрации реагентов при этом использовать. Поясните, что получится, если физик сделает все наоборот.
- 3. Каково может быть применение таких наноструктур Z? Какими свойствами они должны для этого обладать?
- 4. Допустим, трехвалентный фрагмент Y способен при нагревании образовывать связи сам с собой. Можно ли посоветовать физику использовать эту реакцию для сборки каркасных наноструктур, отвечающих таким же многогранникам, как и Z? Поясните.
- 5. Приведите пример химических структур, которые могут стоять за X_k и Y, если под буквами могут подразумеваться не только химические элементы, но и любые подходящие фрагменты, а связи X-X и X-Y могут быть представлены, в том числе, цепочками атомов. Объясните, за счет чего при этом будут связываться фрагменты. При решении считайте, что все каркасные наноструктуры Z содержат только два типа многоугольников и не содержат «свободных» связей.


6. Окраска стекол

Окраска стекол, содержащих наночастицы металлов, обусловлена поглощением света поверхностью наночастицы. Стекло приобретает окраску дополнительную к той, которая поглотилась. Дополнительные цвета расположены друг напротив друга в цветовом круге.

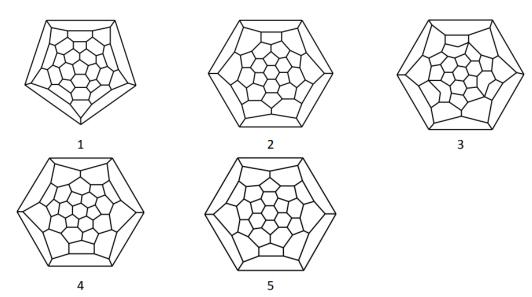

- 1. Используя эти сведения, выберите из предложенных шести фотографий стекол, три стекла, окрашенных наночастицами.
- 2. Соотнесите их со спектрами поглощения света стекол, приведенными на рисунке. Какому из стекол, приведенных на фотографии, соответствует оставшийся спектр?

Спектры поглощения стекол



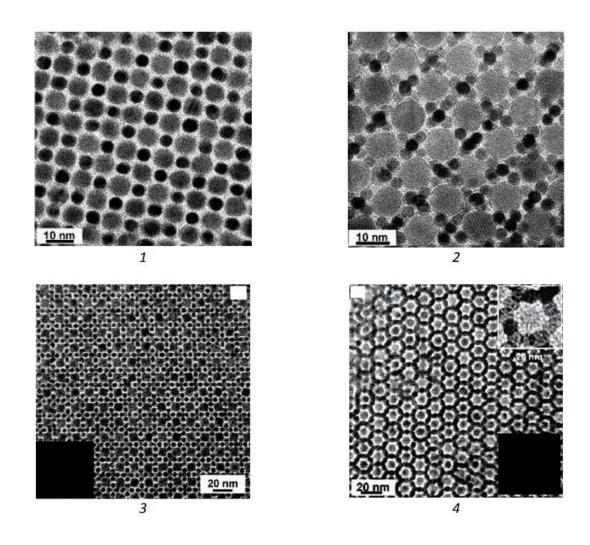
Спектр видимого цвета

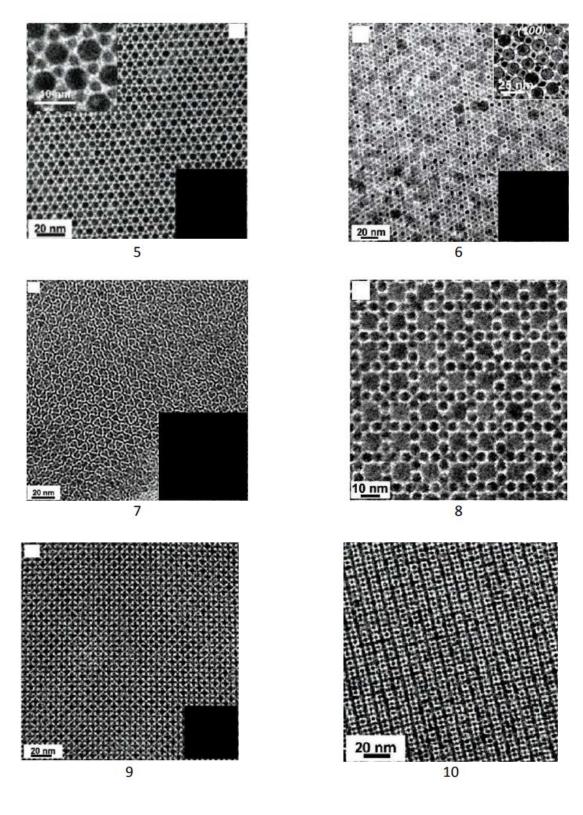
Цветовой круг


7. Плоский бакибол

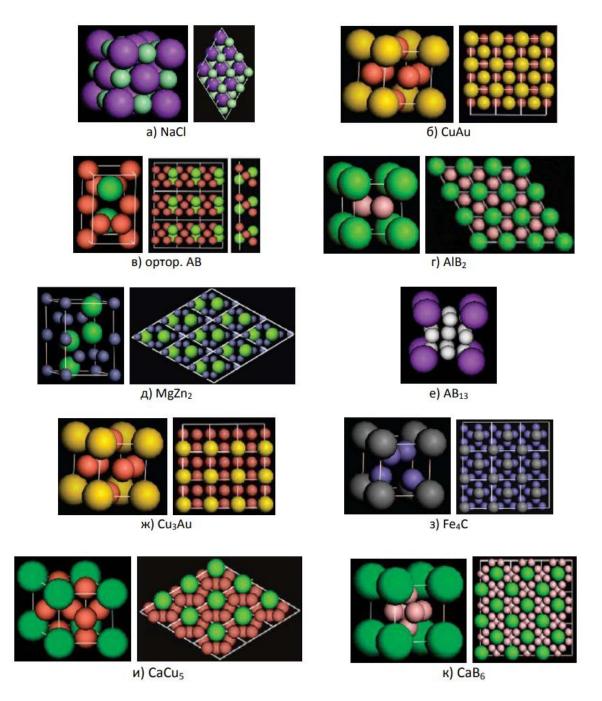
Фуллерены – это многогранники, собранные из пяти- и 34

шестиугольных граней, в вершинах которых находятся атомы углерода. У каждого атома углерода по три соседа. Самый известный фуллерен — это изображенный на рисунке бакибол (или молекула — футбольный мяч) из 60 атомов углерода. Чтобы удобно изобразить многогранник на плоскости, можно одновременно «потянуть» в разные стороны вершины одной из его граней (как показано на рисунке для куба): в какой-то момент мы сможем «расправить» на бумаге все его ребра и вершины — получим его плоскую проекцию. Ниже нарисованы пять плоских проекций неких многогранников.


- 1. Сколько атомов углерода (то есть вершин) они содержат?
- 2. Определите, какие из них это фуллерены.
- 3. Укажите номера проекций, которые получили из бакибола.
- 4. Сколько разных (отличающихся строением) фуллеренов здесь представлено?



8. Самосборка


Самосборка – процесс формирования высокоупорядоченных массивов наноструктур (например, сверхрешеток). Это – типичный метод получения наноматериалов «снизу-вверх». Если в системе присутствуют наночастицы размеров, TO В результате самосборки возможно образование сверхрешеток с расположением наночастиц, подобным расположению атомов в кристаллах. Ниже приведен ряд микрофотографий сверхрешеток, сделанных при помощи туннельного просвечивающего микроскопа, на которых мы можем видеть высокоупорядоченное взаимное расположение темных областей двух размеров – «теней» наночастиц, формирующих сверхрешетки. Сопоставьте каждой из микрофотографий трехмерную структуру упаковки атомов в кристаллах.

Микрофотографии:

Структуры:

9. Фуллерен с нечетным числом атомов

Известно, что фуллерен C_{28} неустойчив и обладает повышенной реакционной способностью, так как является радикалом с четырьмя неспаренными электронами. Однако добавление всего одного углеродного атома способно стабилизировать соединение настолько, что его можно применять как абразивный материал. Продукт наиболее полного гидрирования этого фуллерена содержит 6.494% водорода по массе.

- 1. Предложите структуру соединения С₂₉.
- 2. Запишите уравнение реакции полного гидрирования C_{29} .
- 3. Объясните, почему данное соединение не может присоединить большее число атомов водорода.

Указание. В расчетах используйте максимально точные атомные массы элементов.

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи – 6 баллов.

Балл, полученный обучающимся за решение компетентностноориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале шкале следующим образом:

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной	Оценка по 5-балльной шкале
шкале	
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания решения компетентностноориентированной задачи:

6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.

- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.