Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

минобрнауки РОССИИ

Дата подписания: 17.05.2024 11:43:51 Федеральное государственное бюджетное Уникальный программный ключ:

9ba7d3e34c012eba476ffd2d064фбразовательное унреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра инфраструктурных энергетических систем

УТВЕРЖДАЮ

Проректор по учебной работе

_ О.Г. Локтионова

(121) 12

2023 г.

ТЕРМОДИНАМИЧЕСКИЕ И ТЕПЛОМАССОООБМЕННЫЕ ПРОЦЕССЫ В ТЕПЛОЭНЕРГЕТИКЕ

Методические указания к практическим занятиям и самостоятельной работе для студентов направления подготовки 13.04.01 Теплоэнергетика и теплотехника, обучающихся на очной и заочной формах обучения УДК 536.2, 546.3, 536.7

Составитель: В.А. Жмакин

Рецензент

Доктор технических наук, профессор кафедры теплогазоводоснабжения В.С. Ежов

Термодинамические и тепломассоообменные процессы в теплоэнергетике: методические указания к практическим занятиям и для самостоятельной работы студентов очной и заочной форм обучения направления подготовки 13.04.01 Теплоэнергетика и теплотехника / Юго-Зап. гос. ун-т; сост.: В.А. Жмакин. — Курск, 2023. — 32 с.: ил. 7, табл. 14, прилож. 6. — Библиогр.: с. 26.

Приводятся задания к практическим занятиям и для самостоятельной работы по теплофизике и примеры решения задач, а также необходимый справочный материал в виде таблиц.

Методические указания предназначены для студентов направления подготовки 13.04.01 Теплоэнергетика и теплотехника очной и заочной форм обучения и могут быть использованы студентами как для аудиторных практических занятий, так и для самостоятельной работы.

Текст печатается в авторской редакции

Подписано в печать 21,12,2023. Формат 60х84 1/16. Усл. печ.л. 1,86. Уч. изд.л. 1,68. Тираж 100 экз. Заказ 1355. Бесплатно.

Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

Содержание

Общие методические рекомендации	4
Задача № 1 Уравнение состояния идеального газа	4
Задача № 2 Смесь идеальных газов	5
Задача № 3 Теплоемкость газов	8
Задача № 4 Термодинамический газовый процесс	9
Задача № 5 Теплообмен теплопроводностью	13
Задача №6 Лучистый теплообмен. Экранирование	16
Задача № 7 Конвективный теплообмен	19
Задача № 8 Теплопередача	23
Библиографический список	27
Приложения	28
Таблица П.1 - Физические константы некоторых газов	28
Таблица П.2 - Интерполяционные формулы для истинных	
и средних мольных теплоемкостей газов при P=Const	28
Таблица П.3 Степень черноты для различных материалов	29
Таблица П.4 - Физические свойства воздуха при давлении	
$p=1,013\cdot 10^5 \Pi a$	30
Таблица П.5 Физические свойства воды на линии насыщения	31
Таблица П.6 Физические свойства некоторых металлов	32

Методические указания к практическим заданиям и самостоятельной работе.

- 1. Работа должна выполняться самостоятельно, после проработки соответствующих теоретических разделов курса.
- 2. Перед решением задач необходимо разобрать условие задачи и по последней и предпоследней цифрам учебного шифра выбрать в таблицах свои исходные данные.
- 3. При выполнении расчетной работы расчеты необходимо оформить в следующем виде: расчетная формула формула с числовыми значениями всех входящих величин результат вычисления (результаты промежуточных расчетов по формуле не приводить!) единицы измерения рассчитываемой величины.

Задача № 1: Уравнение состояния идеального газа

Определить массовый расход газа (кг/с) при известном объемном расходе V м 3 /мин, температуре t $^{\rm o}$ C и манометрическом давлении $P_{\rm m}$ кПа. Барометрическое давление составляет B=98100 Па.

тиолици т.т теходиве диниве к рие тету										
Последняя Газ		Предпоследняя	t,	P_{M}						
	M^3/MUH	цифра шифра	$^{\circ}C$	кПа						
CO	0,4	0	80	40						
CO_2	0,5	1	65	42						
N_2	0,6	2	70	50						
Воздух	0,1	3	75	70						
O_2	0,5	4	85	45						
CO_2	0,4	5	80	50						
CH ₄	0,2	6	70	60						
Воздух	0,3	7	75	72						
O_2	0,4	8	65	80						
N_2	0,2	9	85	55						
	СОСО2N2ВоздухО2СО2СН4ВоздухО2	ГазV, м³/минСО0,4СО20,5N20,6Воздух0,1О20,5СО20,4СН40,2Воздух0,3О20,4	ГазV м³/минПредпоследняя цифра шифраСО0,40СО20,51N20,62Воздух0,13О20,54СО20,45СН40,26Воздух0,37О20,48	ГазV, м³/минПредпоследняя цифра шифраt, °CCO0,4080CO20,5165N20,6270Воздух0,1375O20,5485CO20,4580CH40,2670Воздух0,3775O20,4865						

Таблица 1.1- Исходные данные к расчету

Исходные данные: V= , M^3/M ин; $t= {}^{\circ}$, C; $P_M = {}^{\circ}$, $\kappa \Pi a$; газ -

Пример решения задачи.

Определить массовый расход газа O_2 (кг/с) при известном объемном расходе V=0.9 м³/мин, температуре t=90 °C и манометрическом давлении $P_{\rm M}=95$ кПа. Барометрическое давление составляет B=98100 Па.

Решение

1. Перевод единицы измерения объемного расхода газа из ${\rm m}^3/{\rm muh}$ в ${\rm m}^3/{\rm c}$:

$$V=V/60 V=0.9/60 = 0.015 \text{ m}^3/\text{c}.$$
 (1.1)

2. Абсолютное давление газа:

P=B+1000
$$P_M$$
= (1.2)
P=98100 + 1000·95= 193100 Πa

3. Массовый расход газа (из уравнения состояния идеального газа р V=G R T):

$$G=P\cdot V/(R\cdot T) \tag{1.3}$$

где P, Па – абсолютное давление газа; V, M^3/c – объемный расход газа; R – индивидуальная газовая постоянная, Дж/(кг K);

$$R=8314/\mu$$
 (1.3.1)

 μ - молекулярная масса газа, кг/кмоль (см. Прилож. табл. П.1); $R=8314/32,00=259,8~\mbox{Дж/(кг K)}$

Т – абсолютная температура газа, К:

$$T=t+273$$
 (1.3.2)
 $T = 90 + 273 = 363 \text{ K}$

Итого, массовый расход газа равен:

$$G = 193100 \cdot 0.015 / (259.8 \cdot 363) = 0.0307 \text{ kg/c}.$$

Задача № 2: Смесь идеальных газов

Смесь газов, для которой известен объемный состав: находится при давлении $P_{\text{см.}}$ и температуре $t_{\text{см.}}$. Определить молекулярную массу смеси и ее газовую постоянную, плотность и удельный объем смеси при заданных условиях и при нормальных условиях, а также парциальные давления компонентов смеси.

Таблица 2.1 - Исходные данные к расчету

Посл.	Р _{см.} ,	t _{cm.} ,	Предпосл.	Объемный состав				
цифра шифра	MM	°C	цифра шифра	смеси, %				
шифра	рт.ст.			N_2	O_2	CO_2	H_2O	
0	748	150	0	40	20	30	10	
1	750	250	1	50	25	13	12	
2	760	350	2	60	30	2	8	

Посл.	Р _{см.} ,	$t_{cm.}$	Предпосл.	Объемный состав					
цифра шифра	MM	°C	цифра шифра	смеси, %					
шифра	рт.ст.		шифра	N ₂	O_2	CO_2	H ₂ O		
3	740	450	3	70	25	1	4		
4	752	150	4	80	10	5	5		
5	758	250	5	85	11	3	1		
6	760	150	6	75	17	4	4		
7	768	100	7	65	23	4	8		
8	770	100	8	55	27	8	10		
9	768	200	9	45	22	18	15		

Исходные данные: r_{N2} = %: r_{C2} = %: r_{CO2} = %: r_{CO2} = % r_{H2O} = %; $t_{cm.}$ = °C; $P_{cm.}$ = мм рт.ст. .

Пример решения задачи.

Смесь газов, для которой известен объемный состав: $N_2 - 55\%$, $O_2 - 25\%$, $CO_2 - 15\%$, $H_2O - 5\%$ находится при давлении $P_{\text{см.}} = 730$ мм рт.ст. и температуре $t_{\text{см.}} = 115$ °C. Определить молекулярную массу смеси и ее газовую постоянную, плотность и удельный объем смеси при заданных условиях и при нормальных условиях, а также парциальные давления компонентов смеси.

Решение.

1. Перевод единицы измерения давления из мм рт. ст. в Па:

$$P_{cm} = P_{cm} p_{T.c_{T.}} \cdot 133,3, \Pi a$$
 (2.1)
 $P_{cm} = 730 \cdot 133,3 = 97309 \Pi a$

2. Кажущаяся молекулярная масса смеси, кг/кмоль:

$$\mu_{\text{cm.}} = (\mu_{\text{N2}} \cdot r_{\text{N2}}) + (\mu_{\text{O2}} \cdot r_{\text{O2}}) + (\mu_{\text{CO2}} \cdot r_{\text{CO2}}) + (\mu_{\text{H2O}} \cdot r_{\text{H2O}})$$
(2.2)

где μ_{N2} =28, μ_{O2} =32, μ_{CO2} =44, μ_{H2O} =18 — молекулярные массы азота, кислорода, углекислого газа и водяного пара, кг/кмоль; r_{N2} , r_{O2} , r_{CO2} , r_{H2O} — объемные доли компонентов смеси (в долях единицы).

$$\mu_{\text{см.}}$$
= (28·0,55)+(32·0,25)+(44·0,15)+(18·0,05) = 30,9 кг/кмоль.

3. Газовая постоянная смеси, Дж/(кг К):

$$R_{cM} = 8314/\mu_{cM}$$
 (2.3)

$$R_{cm}$$
=8314/30,9 = 269,1 Дж/(кг К)

4. Удельный объем смеси (из уравнения состояния $P_{cm} \cdot v_{cm} = R_{cm} T_{cm}$) и плотность смеси при заданных условиях:

$$v_{cm} = R_{cm} T_{cm}/P_{cm}, M^3/\kappa\Gamma$$
 (2.4.1)
 $\rho_{cm} = 1/v_{cm}, \kappa\Gamma/M^3,$ (2.4.2)

$$\rho_{\rm cm} = 1/v_{\rm cm}, \, \kappa \Gamma/M^3,$$
 (2.4.2)

где P_{cm} – давление смеси, Па;

 T_{cm} – абсолютная температура смеси, К:

$$T_{cm.} = t_{cm.} + 273$$
 (2.4.3)

Вычисляем:

$$T_{\text{cm}} = 115 + 273 = 388 \text{ K.}$$

 $v_{\text{cm}} = 269,1 \ 388/97309 = 1,073 \ \text{m}^3/\text{kg.}$
 $\rho_{\text{cm}} = 1/1,073 = 0,932 \ \text{kg/m}^3.$

5. Удельный объём смеси $v_{\text{см.0}}$ и плотность смеси $\rho_{\text{см.0}}$ при нормальных условиях:

$$V_{cm.0} = R_{cm} T_{cm.0} / P_{cm.0} , M^3 / K\Gamma$$
 (2.5.1)

$$\rho_{\text{cm},0} = 1/v_{\text{cm},0}$$
 , $\kappa \Gamma / M^3$, (2.5.2)

 $ho_{\text{см.0}} = 1/v_{\text{см.0}}$, $\kappa \Gamma/\text{M}^3$, (2.5.2) где $P_{\text{см.0}} = 1,013 \ 10^5$ Па и $T_{\text{см.0}} = 273$ К — давление смеси и ее абсолютная температура при нормальных условиях.

Вычисляем:

$$v_{cm.0} = R_{cm} T_{cm.0} / P_{cm.0} = 269,1.273 / (1,013.10^5) = 0,725 \text{ m}^3 / \text{kg};$$

 $\rho_{cm.0} = 1 / 0,725 = 1,379 \text{ kg/m}^3.$

6. Парциальные давления компонентов смеси:

$$P_{N2} = P_{cM} \cdot r_{N2}$$
 , Πa ; (2.6.1)

$$P_{O2} = P_{cm} r_{O2}$$
, Πa ; (2.6.2)

$$P_{CO2} = P_{cm} \cdot r_{CO2}$$
, Πa ; (2.6.3)

$$P_{H2O} = P_{CM} \cdot r_{H2O}$$
, Πa , (2.6.4)

где r_{N2} , r_{CO2} , r_{CO2} , r_{H2O} — объемные доли компонентов смеси (в долях единицы).

Вычисляем:

$$P_{N2}$$
=97309 ·0,55 = 53520 Π a;
 P_{O2} =97309 ·0,25 = 24327 Π a;
 P_{CO2} =97309 ·0,15= 14596 Π a;
 P_{H2O} =97309 ·0,05 = 4865 Π a.

7. Выполним проверку:

$$P_{cM} = \sum P_i = P_{N2} + P_{O2} + P_{CO2} + P_{H2O}$$
, Πa (2.7)
 $P_{cM} = 53520 + 24327 + 14596 + 4865 = 97309 \Pi a$.

Задача № 3: Теплоемкость газов

Определить средние массовые и объемные теплоемкости газа при условии P=Const и v=Const в интервале температур t_1 ÷ t_2 . Вычислить также удельную теплоту изохорного процесса для данного интервала температур, считая зависимость теплоемкости от температуры линейной.

Таблица 3.1 - Исходные данные к расчету

(по последней цифре шифра)

Шифр	0	1	2	3	4	5	6	7	8	9
Газ	O_2	N_2	CO_2	SO_2	H_2O	H_2	N_2	O_2	N_2	CO
t ₁ , °C	50	120	55	20	25	18	22	28	30	45
t ₂ , °C	250	350	300	450	400	150	180	220	280	150

Исходные данные: $t_1 = {}^{\circ}C; t_2 = {}^{\circ}C;$ газ.

Пример решения задачи.

Определить средние массовые и объемные теплоемкости газа CO_2 при условии P=Const и v=Const в интервале температур от $t_1 = 30$ °C до t_2 =320 °C. Вычислить также удельную теплоту изохорного процесса для данного интервала температур, считая зависимость теплоемкости от температуры линейной.

Решение

1. Средняя изобарная мольная теплоемкость газа, μC_{pm} , в интервале температур $t_1 \div t_2$ (выбираем формулу $\mu C_{pm} = 0$ по Прилож., табл. П.2 для заданного газа, среднюю):

$$\mu C_{pm} = , \kappa Дж/(K \cdot кмоль),$$
 (3.1)

где $t = t_1 + t_2$, °С - определяющая температура.

Вычисляем:

$$t = t_1 + t_2 = 30 + 320 = 350$$
 °C.

Выбираем эмпирическую формулу для газа CO_2 по табл. П.2: μC_{pm} =38,3955+0,0105838 t

Вычисляем средняя изобарная мольная теплоемкость газа: $\mu C_{pm} = 38,3955 + 0,0105838\ 350 = 42,099\ кДж/(К·кмоль).$

2. Средняя изохорная мольная теплоемкость газа в интервале температур $t_1 \div t_2$ (из уравнения Майера):

$$\mu C_{vm} = \mu C_{pm} - 8,314, кДж/(К \cdot кмоль),$$
 (3.2)

где 8,314 – универсальная газовая постоянная, кДж/(кмоль·К).

$$\mu C_{vm} = 42,099 - 8,314 = 33,786 \ кДж/(кмоль·К)$$

3. Средние массовые изобарная и изохорная теплоемкости газа в интервале температур $t_1 \div t_2$:

$$C_{pm} = \mu C_{pm}/\mu$$
 , кДж/(кг · K); (3.3.1)

$$C_{vm} = \mu C_{vm}/\mu$$
 , кДж/(кг · K); (3.3.2)

где μ – молекулярная масса газа, кг/кмоль, (см Прилож. ,табл. П.1).

$$\mu_{CO2} = 44,01 \text{ кг/кмоль};$$

$$C_{pm} = 42,099 / 44,01 = 0,957$$
 кДж/(кг·К);

$$C_{vm} = 33,786 / 44,01 = 0,768$$
 кДж/(кг·К).

4. Средние объемные изобарная и изохорная теплоемкости газа в интервале температур $t_1 \div t_2$:

$$C'_{pm} = \mu C_{pm}/V_{\mu}$$
 , кДж/(нм³ · K); (3.4.1)

$$C'_{vm} = \mu C_{vm}/V_{\mu}$$
 , кДж/(нм³ · K); (3.4.2)

где $V_{\mu}=22$,4 – объем одного кмоль газа при нормальных условиях, ${\rm M}^3/{\rm KMOJL}$.

$$C'_{pm} = 42,099 / 22,4 = 1,879 \ кДж/(кг·К);$$
 $C'_{pm} = 33,786 / 22,4 = 1,508 \ кДж/(кг·К).$

5. Удельная теплота изохорного процесса:

$$q = C_{vm} \cdot (t_2 - t_1) = , \kappa Дж/кг;$$
 (3.5)
 $q = 0,768 \cdot (320 - 30) = 222,72 \ кДж/кг.$

Задача № 4 Термодинамический газовый процесс

Газ объемом V_1 M^3 с начальным давлением P_1 и начальной температурой t_1 сжимается до изменения объема в ϵ раз (ϵ = v_1/v_2). Сжатие происходит политропное с показателем политропы n. Определить массу газа, конечные объем, давление и температуру газа, работу сжатия, количество отведенного тепла, изменения внутренней энергии, энтальпии и энтропии газа. (При расчете процесса принять теплоемкость газа не зависящей от температуры, т.е. C=const).

Изобразить процесс сжатия в P-v и T-s координатах и обозначить основные термодинамические процессы.

Последняя	Газ	V_1	P ₁ ,	Предпосл.	3	t_1 ,	n
цифра шифра		M^3	МΠа	цифра шифра		$^{\mathrm{o}}\mathrm{C}$	
0	CO_2	50	0,1	0	10	10	1,35
1	N_2	55	0,15	1	8	15	1,32
2	H_2	60	0,17	2	7	17	1,20
3	O_2	65	0,12	3	12	20	1,25
4	воздух	70	0,11	4	15	25	1,3
5	N ₂	45	0,14	5	17	30	1,22
6	H_2	40	0,18	6	10	5	1,18
7	воздух	30	0,2	7	13	15	1,28
8	CO	50	0,19	8	9	25	1,26
9	O_2	60	0,15	9	15	35	1,38

Таблица 4.1 - Исходные данные к расчету

Исходные данные: Газ - ; V_1 = , M^3 ; P_1 = , $M\Pi a$; ε = ; t_1 = , $^{\circ}C$; t_2 = .

Пример решения задачи.

Газ СО объемом $V_1 = 75 \text{ м}^3$ с начальным давлением $P_1 = 0.2$ МПа и начальной температурой $t_1 = 25$ °C сжимается до изменения объема в $\varepsilon = 11$ раз ($\varepsilon = v_1/v_2$). Сжатие происходит политропное с показателем политропы n = 1.27. Определить массу газа, конечные объем, давление и температуру газа, работу сжатия, количество отведенного тепла, изменения внутренней энергии, энтальпии и энтропии газа. (При расчете процесса принять теплоемкость газа не зависящей от температуры, т.е. C = const).

Решение

Изображаем процесс в Р-v и Т-s координатах, рис.4.1.

По условию задачи исследуемый процесс – процесс сжатия с показателем политропы в пределах от 1 до k (k=1,4), следовательно, в P-v координатах процесс расположен в области сжатия между изотермическим процессом (n=1) и адиабатным процессом (n=k), процесс 1-2. Отмечаем в виде площадей работу процесса (в P-v координатах) и теплоту процесса (в T-s координатах) с их знаками.

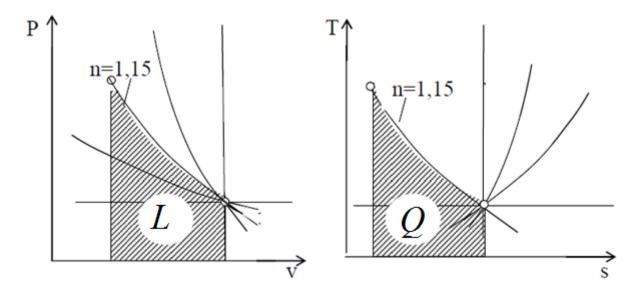


Рис.4.1. Политропический процесс сжатия в Р-v и Т-s координатах

Решение

1. Масса газа (из уравнения состояния):

$$\mathbf{m} = (\mathbf{P}_1 \cdot \mathbf{V}_1) / (\mathbf{R} \cdot \mathbf{T}_1) \qquad , \, \kappa \Gamma, \qquad (4.1)$$

где P_1 – давление в точке 1, Πa (1 М Πa =10⁶ Πa);

 V_1 – объем в первой точке, M^3 ;

R – индивидуальная газовая постоянная, Дж/кг·К:

$$R = 8314/\mu$$
 , Дж/(кг · K); (4.1.1)

 μ - молекулярная масса газа, кг/кмоль (см. Прилож. табл.П.1); T_1 – абсолютная температура в первой точке, К:

$$T_1 = 273 + t_1$$
 , K (4.1.2)

Вычисляем:

$$T_1 = 273 + 25 = 298 \text{ K};$$

 $\mu_{CO} = 28,01 \text{ кг/кмоль};$
 $R = 8314 / 28,01 = 296,8 \text{ Дж/(кг·K)};$
 $m = 0,2 \cdot 10^6 \cdot 75 / (296,8 \cdot 298) = 169,6 \text{ кг}.$

2.Определяем недостающие параметры состояния в т.т.1 и 2.

а) полный и удельный объемы газа в конечной точке (т.2)

$$V_2 = V_1/\epsilon$$
 , M^3 ; (4.2.1)

$$v_2 = V_2/m$$
 , $M^3/\kappa\Gamma$; (4.2.2)

б) удельный объем газа в начальной точке (т.1):

$$v_1 = V_1/m = , M^3/\kappa\Gamma;$$
 (4.2.3)

Вычисляем:

$$V_2 = 75/11 = 6,818 \text{ m}^3$$

$$v_2 = 6.818 / 169.6 = 0.040 \text{ m}^3/\text{k}\text{G};$$

 $v_1 = 75 / 169.6 = 0.442 \text{ m}^3/\text{k}\text{G};$

в) давление и температуру газа в конце сжатия определяем из формул соотношения между параметрами для политропического процесса:

$$P_2/P_1 = (v_1/v_2)^n;$$
 (4.2.4)

$$T_2/T_1 = (P_2/P_1)^{(n-1)/n};$$
 (4.2.5)

$$P_{2}/P_{1}=(v_{1}/v_{2})^{n}; (4.2.4)$$

$$T_{2}/T_{1}=(P_{2}/P_{1})^{(n-1)/n}; (4.2.5)$$

$$T_{2}/T_{1}=(v_{1}/v_{2})^{n-1}. (4.2.6)$$

Давление в конце сжатия:

$$P_2 = P_1 (v_1/v_2)^n = P_1 \cdot \varepsilon^n$$
, M\Pia; (4.2.7)

Температура в конце сжатия:

$$T_2=T_1 (v_1/v_2)^{n-1}=T_1 \cdot \varepsilon^{n-1}$$
 , K, (4.2.8)

$$t_2 = T_2 - 273, {}^{\circ}C$$
 (2.2.9)

где P_1 , T_1 - см. п.1; и n – см. условие задачи.

Вычисляем:

$$P_2 = 0.2 \cdot 11^{1.27} = 4.2$$
 MΠa;
 $T_2 = 298 \cdot 11^{(1.27-1)} = 569$ K;
 $t_2 = 569 - 273 = 296$ °C.

3. Определяем теплоемкость политропного процесса:

$$C=C_v(n-k)/(n-1)$$
, кДж/(кг·К). (4.3)

где n – показатель политропы (из условия задачи); k – показатель адиабаты ($k=C_p/C_v$), C_p и C_v – массовые теплоемкости газа.

По условию C=const, т.е. теплоемкость не зависит от температуры. В этом случае она зависит только от числа атомов в молекуле газа. Для двухатомных газов (N2, H2, O2, СО, воздух) значения мольных теплоемкостей µС_p=29,31 кДж/(кмоль К) и μC_{υ} ,=20,93 кДж/(кмоль К); для многоатомных газов (CO₂, H₂O, значения мольных теплоемкостей $\mu C_p = 37,68$ SO_2 , CH_4) $\kappa Дж/(кмоль K)$ и $\mu C_v = 29.31 \ кДж/(кмоль K)$.

Массовые изобарная и изохорная теплоемкости показатель адиабаты k равны:

$$C_p = \mu C_p / \mu$$
 , $\kappa Дж / (\kappa \Gamma \cdot K)$; (4.3.1)
 $C_v = \mu C_v / \mu$, $\kappa Дж / (\kappa \Gamma \cdot K)$, (4.3.2)

$$C_{\nu} = \mu C_{\nu} / \mu \quad , \kappa Дж / (\kappa \Gamma \cdot K), \tag{4.3.2}$$

$$k = C_p / C_v = \mu C_p / \mu C_v$$
 (4.3.3)

И окончательно теплоемкость политропного процесса:

$$C=C_v(n-\kappa)/(n-1)=$$
, кДж/(кг · К).

Вычисляем:

$$C_p = 29,31 / 28,01 = 1,046 кДж/ (кг·К);$$

$$C_v = 20.93 / 28.01 = 0.747 \text{ кДж/ (кг·К)};$$

$$k = 29,31/20,93 = 1,4;$$

$$C = 0.747 \cdot (1.27 - 1.4) / (1.27 - 1) = -0.360 \text{ кДж/ (кг·К)}.$$

4. Изменения внутренней энергии газа (ΔU), энтальпии (ΔH) и энтропии(ΔS):

$$\Delta U = m C_{\nu} (t_2 - t_1)$$
 , κДж; (4.4.1)

$$\Delta H = m C_p (t_2 - t_1)$$
 , кДж; (4.4.2)

$$\Delta S=m C \ell n(T_2/T_1)$$
 , κДж/K, (4.4.3)

где С – теплоемкость политропического процесса, см. п 3.

Вычисляем:

$$\Delta U = 169,6.0,747.(296-25) = 34333 кДж;$$

$$\Delta$$
H= 169,6·1,046·(296-25) = 48076 кДж;

 $\Delta S = 169,6 \cdot (-0,36) \cdot \ell n(569/298) = -39,49 \ кДж/К.$

5. Теплота процесса:

$$Q = m C (t_2-t_1)$$
 , кДж (4.5)
 $Q = 169,6 \cdot (-0,36) \cdot (296-25) = -16546 \text{ кДж}.$

6. Работа процесса:

L=m R
$$(T_1-T_2)/(n-1)$$
 , кДж (4.6)

$$L = 169,6.296,8.(298-569)/(1,27-1) = -50523714$$
 Дж =

= -50523.7 кДж

7. Проверка решения по первому закону термодинамики:

$$Q=\Delta U+L=$$
 , кДж (4.7)

(подставить результаты расчета из пунктов 4, 5, 6).

16546 кДж = 34333 кДж + (-50523,7 кДж) = -16190,7 кДж Следовательно, расчет верен.

Задача №5: Теплообмен теплопроводностью

Обмуровка печи состоит из слоев шамотного кирпича толщиной δ_1 , [λ_1 =1,14 Bt/(м·K)] и красного кирпича толщиной δ_3 , [λ_3 =0,76 Bt/(м·K)], между которыми расположена засыпка из изоляционного материала толщиной δ_2 =125 мм.

Определить тепловые потери через 1 м^2 поверхности стенки, если на внутренней стороне шамотного кирпича температура равна t_{w1} , а на наружной стороне красного кирпича t_{w2} . Какой толщины потребуется слой из красного кирпича δ_3^* , если отказаться от применения засыпки из изоляционного материала при тех же температурных условиях и неизменном тепловом потоке?

Данные, необходимые для решения задачи выбрать из табл.5.1

Вариант	δ_1 ,	$t_{ m w1}$	Вариант	δ_3 ,	$t_{ m w2}$,	Изоляцио	онный материал
П	MM		ПП	MM	_	Название	$\lambda_2 = f(t), B_T/(M \cdot K)$
0	80	1050	0	60	90	Совелит	$\lambda_2 = 0.0901 + 0.000087 \times t$
1	90	980	1	60	85	Новоасбозурит	$\lambda_2 = 0,144 + 0,00014 \times t$
2	80	1070	2	120	93	Диатомит молот.	$\lambda_2 = 0.091 + 0.00028 \times t$
3	100	950	3	60	97	Вермикулит	$\lambda_2 = 0.072 + 0.000362 \times t$
4	120	1030	4	125	86	Асбослюда	$\lambda_2 = 0,120 + 0,000148 \times t$
5	120	945	5	125	82	Асботермит	$\lambda_2 = 0.109 + 0.000145 \times t$
6	80	1020	6	125	94	Асбозонолит	$\lambda_2 = 0,143 + 0,00019 \times t$
7	90	990	7	60	78	Асбозурит	$\lambda_2 = 0.1622 + 0.000169 \times t$
8	80	1140	8	120	89	Диатомит молот	$\lambda_2 = 0,091 + 0,00028 \times t$
9	120	1135	9	60	91	Шлаковая вата	$\lambda_2 = 0.05 + 0.000145 \times t$

Таблица 5.1 – Исходные данные к расчету

Примечания:

- 1) $t=(t_{w1}+t_{w2})/2$;
- 2) Расчетное значение толщины красного кирпича округлить (в сторону увеличения) до величины, кратной 120 мм.

Пример решения задачи.

Вычислить плотность теплового потока q, проходящего через 3-х слойную плоскую стенку (рис. 5.1).

Первый слой выполнен из шамотного кирпича толщиной 400 мм; второй слой - диатомитовая засыпка толщиной 125 мм; третий слой - красный кирпич толщиной 120 мм.

Коэффициенты теплопроводности, соответственно: $\lambda_1 = 1,14~\mathrm{BT/(mK)};~\lambda_2 = 0,091 + 0,0003~t~\mathrm{BT/(mK)};~\lambda_3 = 0,76~\mathrm{BT/(mK)}.$

Температура на внутренней стороне шамотного кирпича составляет t_{w2} =980 °C, а на наружной стороне красного кирпича - t_{w2} =78 °C.

Как изменится толщина красного кирпича, если отказаться от засыпки из диатомита, при тех же тепловом потоке и температурных условиях?

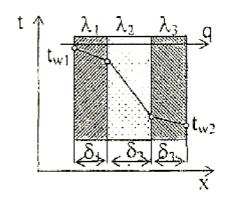


Рис. 5.1. Расчетная схема 3-х слойной плоской стенки

Решение:

1) Находим тепловой поток q, Bt/m^2 , через 3-х слойную плоскую стенку (рис.5.1) по формуле:

$$q = (t_{w1} - t_{w2}) / (\delta_1 / \lambda_1 + \delta_2 / \lambda_2 + \delta_3 / \lambda_3)$$
 (5.1)

где t_{w1} , t_{w2} - температуры поверхностей стенки, °С;

 δ_1 , δ_2 , δ_3 - толщины слоев, м;

 $(\delta_1/\lambda_1 + \delta_2/\lambda_2 + \delta_3/\lambda_3)$ - сумма термических сопротивлений слоев стенки, м 2 ·К/Вт.

Предварительно определяем коэффициент теплопроводности λ_2 , $Bt/(M\cdot K)$, диатомитовой засыпки по формуле согласно табл.1:

$$\lambda_2 = 0.091 + 0.0003 \cdot t$$
 (5.2)

где $t=0,5(t_{w1}+t_{w2})=0,5(980+78)=529$ °C - средняя температура слоя засыпки (приблизительно).

$$\lambda_2 = 0.091 + 0.0003 \cdot 529 = 0.25 \text{ BT/(M} \cdot \text{K}).$$

Подставляем полученное значение λ_2 в формулу (5.1) теплового потока и получаем:

$$q=(980 - 78)/(0.4/1.14+0.125/0.25+0.12/0.76)=894 \text{ BT/M}^2.$$

2) Если отказаться от слоя засыпки, то стенка станет 2-х слойной (см. рис.5.2). Обозначения на рисунке оставляем теми же, кроме новой толщины слоя красного кирпича δ_3 .

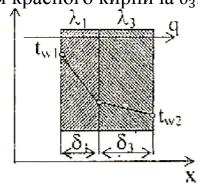


Рис. 5.2. Расчетная схема 2-х слойной плоской стенки

Тепловой поток через 2-х слойную стенку:

$$q = (t_{w1} - t_{w2})/(\delta_1/\lambda_1 + \delta_3 */\lambda_3), B_T/M^2.$$
 (5.3)

T.к. q и $(t_{w1}$ - $t_{w2})$ по условию задачи остались такими же, то термические сопротивления 3-х слойной и 2-х слойной стенок должны быть одинаковые, т.е.

$$(\delta_1/\lambda_1+\delta_2/\lambda_2+\delta_3/\lambda_3)=(\delta_1/\lambda_1+\delta_3*/\lambda_3),$$

Отсюда

$$\delta_3 *= \lambda_3 \left(\delta_2 / \lambda_2 + \delta_3 / \lambda_3 \right) \tag{5.4}$$

 δ_3 *=0,76(0,125/0,25+0,12/0,76)=0,502 м=502 мм.

Округляем эту величину до значения кратного 120 и получаем δ_3 *=600 мм.

Ответ: тепловой поток q=894 Bn/м 2 ; толщина красного кирпича при отказе от слоя засыпки увеличится до δ_3 *=600 мм вместо 120 мм.

Задача №6: Лучистый теплообмен. Экранирование

Определить удельный лучистый тепловой поток q между двумя параллельно расположенными плоскими стенками, имеющими температуры, t_{w1} и t_{w2} и степени черноты, ϵ_1 и ϵ_2 , если между ними нет экрана. Определить также удельный тепловой поток при наличии экрана, q^3 со степенью черноты, ϵ^3 (см. табл. $\Pi.3$).

Данные, необходимые для решения задачи, выбрать из табл.6.1.

Таблица 6.1 – Исходные данные к расчету

Вариант П	ϵ_1	ϵ_2	Материал экрана	Вариант ПП	t_{w1} , °C	t _{w2} , °C
0	0,5	0,6	Алюминий полиров	0	200	30
1	0,55	0,52	Латунь полированная	1	250	35
2	0,60	0,70	Хром полированный	2	300	25
3	0,52	0,72	Алюминий шероховат.	3	350	20
4	0,58	0,74	Латунь прокатная	4	400	40
5	0,58	0,74	Хром полированный	4	400	40
6	0,70	0,58	Медь полированная	6	500	50
7	0,65	0,62	Алюминий шероховат	7	550	55

Вариант П	ϵ_1	ϵ_2	Материал экрана	Вариант ПП	t_{w1} , °C	t _{w2} , °C
8	0,75	0,73	Латунь полированная	8	600	60
9	0,80	0,77	Сталь полированная	9	650	65

Пример решения задачи.

Сравнить лучистые тепловые потоки между двумя плоскими параллельными поверхностями, разделенными прозрачной средой (воздух), для двух случаев: 1) между поверхностями НЕТ экрана; 2) между поверхностями расположен ОДИН экран.

Температуры поверхностей: $t_{\rm w1}$ =200 °C и $t_{\rm w2}$ =30 °C; степени черноты поверхностей: ϵ_1 =0,65, ϵ_2 =0,7; материал экрана - латунь листовая прокатная.

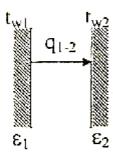


Рис. 6.1. Лучистый теплообмен между поверхностями без экрана

Решение:

1) Между поверхностями НЕТ экрана, рис. 6.1.

Определяем удельный тепловой поток q_{1-2} , BT/M^2 , между плоскими поверхностями по формуле:

$$q_{1-2} = \varepsilon_{np} C_o \left[\left(\frac{T_{w1}}{100} \right)^4 - \left(\frac{T_{w2}}{100} \right)^4 \right]$$
 (6.1)

где C_0 =5,67 $B\tau/(M^2\cdot K^4)$ - коэффициент лучеиспускания абсолютно черного тела;

 $\epsilon_{\text{пр}}$ - приведенная степень черноты поверхностей, участвующих в теплообмене.

Для 2-х параллельно расположенных поверхностей ϵ_{np} :

$$\varepsilon_{\rm np} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1} \tag{6.2}$$

$$\epsilon_{\text{np}} = \frac{1}{\frac{1}{0,65} + \frac{1}{0,7} - 1} = 0,51.$$

Подставляем полученное значение ϵ_{np} в формулу теплового потока (5) и получаем:

$$q_{1-2} = 0.51 \cdot 5.67 \cdot \left[\left(\frac{200 + 273}{100} \right)^4 - \left(\frac{30 + 273}{100} \right)^4 \right] = 1203 \text{ BT/m}^2.$$

2) Между поверхностями расположен ОДИН экран (рис.6.2):

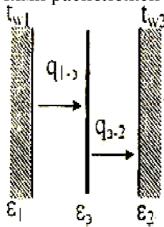


Рис.6.2. Лучистый теплообмен между поверхностями с одним экраном

При установившихся условиях:

$$q_{1-9} = q_{9-2} = q_{1-9-2} \equiv q_{1-2}^{9},$$

где q_{1-2} ³- тепловой поток между 1-ой и 2-ой поверхностями при наличии экрана.

Тепловой поток при наличии экрана q_{1-2} Вт/м²:

$$q_{1-2}^{3} = \varepsilon_{np}^{3} C_{o} \left[\left(\frac{T_{w1}}{100} \right)^{4} - \left(\frac{T_{w2}}{100} \right)^{4} \right]$$
 (6.3)

где $\varepsilon_{\pi p}$ - приведенная степень черноты поверхностей, участвующих в теплообмене, при наличии между ними экрана (одного или нескольких).

Если число плоских экранов n, приведенную степень черноты $\varepsilon_{\text{пр}}^{3}$ считают по формуле:

$$\varepsilon_{np}^{9} = \frac{1}{\frac{1}{\varepsilon_{1}} + \frac{1}{\varepsilon_{2}} + 2\sum_{i=1}^{n} \left(\frac{1}{\varepsilon_{i}^{9}}\right) - (n+1)}$$

$$(6.4)$$

В данной задаче один экран, т.е. n=1. Степень черноты экрана выбираем по табл. П 3, следовательно, для латуни листовой прокатной $\varepsilon^3=0,06$.

Подставляем в формулу $\epsilon_{np}^{\ \ 3}$ значения n=1 и ϵ^{3} =0,06 и получаем:

$$\varepsilon_{\text{np}}^{9} = \frac{1}{\frac{1}{0,65} + \frac{1}{0,7} + 2\frac{1}{0,06} - (1+1)} = 0,029.$$

Тепловой поток при наличии экрана

$$q_{1-2}^{9} = 0.029 \cdot 5.67 \cdot \left[\left(\frac{200 + 273}{100} \right)^{4} - \left(\frac{30 + 273}{100} \right)^{4} \right] = 68,44 \text{ BT/m}^{2}.$$

Ответ: без экрана между поверхностями тепловой поток $q_{1-2}=1203~{\rm BT/m}^2$; при наличии одного экрана между поверхностями тепловой поток составляет $q_{1-2}{}^3=68,44~{\rm BT/m}^2$, т.е. тепловой поток при установке экрана уменьшился в 1203/68,44=18 раз.

ЗАДАЧА №7. Конвективный теплообмен

Определить потери теплоты конвекцией и излучением (отдельно) за сутки горизонтально расположенного трубопровода диаметром d мм и длиной ℓ м, охлаждаемого свободным потоком воздуха, если температура поверхности трубопровода, $t_{\rm w}$ температура воздуха в помещении, $t_{\rm f}$ (степень черноты трубы ϵ см. табл. Π .4). Данные, необходимые для решения задачи, взять из табл.6.1.

Таблица 6.1 – Исходные данные к расчету

Вари ант П	d,	ℓ, M	Вариант ПП	t _w , °C	t _f , °C	Поверхность трубы
0	230	3	0	150	15	Жесть белая старая
1	220	5	1	140	20	Асбестовый картон
2	250	7	2	130	25	Лак белый

Вари ант П	d,	ℓ, M	Вариант ПП	t _w , °C	t _f , °C	Поверхность трубы
3	240	9	3	120	35	Лак черный матовый
4	210	11	4	110	25	Железо оцинкованное
5	270	6	5	100	20	Масляная краска
6	340	4	6	190	15	Сталь шероховатая
7	320	12	7	180	10	Алюминиевая краска
8	360	8	8	170	5	Сталь окисленная
9	300	10	9	160	0	Чугун шероховатый

Пример решения задачи.

В цеховом помещении, где температура воздуха и стен t_t =20 °C, расположена труба наружным диаметром d=320 мм и длиной ℓ =10 м. Труба имеет температуру на поверхности t_w =140 °C и охлаждается за счет излучения и свободного движения воздуха. (Поверхность трубы - лак черный матовый). Определить общие тепловые потери трубой за сутки и раздельно конвекцией и излучением (см.рис. 6.1).

Решение:

(6.1)

Общие тепловые потери
$$Q_o$$
, B_T , трубы составляют: $Q_o = Q_K + Q_{\pi}$,

где $\,Q_{\mbox{\tiny K}}\,$ - тепловые потери за счет конвекции; $\,Q_{\mbox{\tiny Л}}\,$ - тепловые потери за счет излучения.

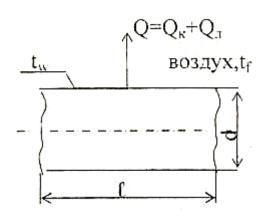


Рис. 6.1. Расчетная схема для определения сложной теплоотдачи конвекцией и излучением

Решение задачи состоит из двух частей.

А) Тепловые потери за счет свободного движения воздуха у горячей трубы

Конвективная составляющая общих тепловых потерь Q_{K} , B_{T} , определяется по уравнению Ньютона-Рихмана:

$$Q_{K} = \alpha(t_{w} - t_{t}) \cdot F, \qquad (6.2)$$

где α - коэффициент теплоотдачи при свободном движении воздуха, $B\tau/(M^2\cdot K)$;

$$F = \pi \cdot d \cdot \ell$$
 - поверхность трубы, м²: (6.3)

где d — внутренний диаметр трубы, м; ℓ - длина трубы, м; π =3,14 — число Пи.

 $F = \pi \cdot d \cdot \ell = 3,14 \cdot 0,32 \cdot 10 = 10,048 \text{ m}^2.$

Коэффициент теплоотдачи для горизонтальной трубы определяется по критериальному уравнению:

$$Nu_f = 0.5 \cdot (Pr_f \cdot Gr_f)^{0.25} \cdot (Pr_f / Pr_w)^{0.25},$$
 (6.4)

где $Nu_f = \alpha \cdot d/\lambda_f$ - критерий Нуссельта. (6.5)

 Pr_f - критерий Прандтля при температуре теплоносителя t_f ;

 Pr_w - критерий Прандтля при температуре стенки трубы t_w ;

 Gr_f – критерий Грасгофа при температуре теплоносителя t_f ;

Отношение Pr/Pr_w для газов равняется 1, т.е. $Pr_f/Pr_w=1$.

Для определения критериев Прандтля, Грасгофа и Нуссельта необходимо задать определяющую температуру, равной температуре окружающей среды $t_{\rm f}$; и определяющий размер, равный наружному диаметру трубы d.

1) Выбираем свойства воздуха при температуре t_f =20 °C по таблице теплофизических свойств воздуха (табл. П. 4):

 λ =0,0259 Вт/(м·К) - коэффициент теплопроводности воздуха;

 ν =15,06·10⁻⁶ м²/с - коэффициент кинематической вязкости воздуха;

 Pr_f =0,703 - критерий Прандтля для воздуха.

2) Критерий Грасгофа определяем по формуле:

$$Gr = g \cdot d^3 \cdot \beta \cdot (t_w - t_f) / v^2, \tag{6.6}$$

где β =1/(273+t_f), 1/K - коэффициент объемного расширения воздуха; вычисляем β =1/(273+20)=0,0034 1/K;

 $g=9,81 \text{ м/c}^2$ -ускорение силы тяжести.

Считаем критерий Грасгофа:

$$Gr = 9.81 \cdot 0.32^3 \cdot 0.0034 \cdot (140-20) / (15.06 \cdot 10^{-6})^2 = 5.81 \cdot 10^8$$
.

4) Решаем критериальное уравнение (6.4):

$$Nu_f = 0.5 \cdot (Pr_f \cdot Gr_f)^{0.25} = 0.5(0.703 \cdot 5.81 \cdot 10^8)^{0.25} = 71.06$$
.

5) Коэффициент теплоотдачи α , $BT/(M^2 \cdot K)$, считаем формуле:

$$\alpha = Nu_f \cdot \lambda_f / d \tag{6.7}$$

 $\alpha = 71,06 \cdot 0,0259/0,32 = 5,75 \text{ BT/}(\text{m}^2 \cdot \text{K}).$

6) Тепловые потери за счет свободной конвекции воздуха считаем по формуле (6.2):

$$Q_K = \alpha (t_w - t_f) F = 5,75(140 - 20) \cdot 10,048 = 6933 B_T$$

Это потери тепла в секунду ($B_T = Дж/c$).

За сутки потери тепла составят:

 $Q_{K}^{\text{сут}} = Q_{K} \cdot 3600 \cdot 24 \cdot 10^{-3} = 6933 \cdot 3600 \cdot 24 \cdot 10^{-3} = 599000 \text{ кДж.}$

(Множитель 10-3 означает перевод размерности Дж в кДж.)

Б) Тепловые потери за счет излучения определяем по формуле:

$$Q_{\pi} = \varepsilon_{\text{np}} C_{\text{o}} \left[\left(\frac{T_{\text{w}}}{100} \right)^4 - \left(\frac{T_{\text{f}}}{100} \right)^4 \right] \cdot F, B_T, \tag{6.8}$$

где ϵ_{np} - приведенная степень черноты.

условии, что поверхность трубы При много меньше поверхности стен в цехе, получаем:

$$\varepsilon_{np} = \varepsilon_{w}.$$
 (6.9)

По таблице П.3 выбираем для поверхности (лак черный матовый) $\varepsilon_{\rm w}$ =0,96.

Подставляем исходные данные в формулу (6.8):

$$Q_{_{\mathrm{II}}} = 0.96 \cdot 5.67 \left[\left(\frac{140 + 273}{100} \right)^{4} - \left(\frac{20 + 273}{100} \right)^{4} \right] \cdot 10.048 = 11881 \text{ BT}$$

За сутки потери тепла составят:
$$O_{\pi}^{\text{ сут}} = O_{\pi} \cdot 3600 \cdot 24 \cdot 10^{-3} = 11881 \cdot 3600 \cdot 24 \cdot 10^{-3} = 1027000 \ кДж.$$

Определяем общие теплопотери за сутки:

$$Q_o^{\text{ cyr}} = Q_\kappa^{\text{ cyr}} + Q_\pi^{\text{ cyr}} = 599000 + 1027000 = 1626000 \text{ кДж.}$$

Ответ: потери тепла горячей трубой за сутки составляют: общие 1626000 кДж, конвективным путем 599000 кДж, лучистым путем 1027000 кДж.

ЗАДАЧА №8. Теплопередача

По горизонтально расположенной стальной трубе [λ =20 Bt/(м·K)] со скоростью w, м/с течёт вода, имеющая температуру, t₁. Снаружи труба охлаждается окружающим воздухом, температура которого, t₂. Определить коэффициенты теплоотдачи α_1 и α_2 , соответственно, от воды к внутренней стенке трубы и от наружной стенки трубы к воздуху, а также коэффициент теплопередачи и тепловой поток q , отнесённый к 1 м длины трубы, если внутренний диаметр трубы равен d₁, внешний – d₂. Данные, необходимые для решения задачи, взять из табл. 4.

При определении α_1 и α_2 принять температуру поверхностей трубы t_w , равной $t_w = (t_1 + t_2)/2$.

Вариант	t ₁	W,	Вариант	t ₂ ,	d_1 ,	d ₂ ,мм
П	°C	м/с	ПП	°C	MM	
0	140	0,25	0	25	190	210
1	150	0,36	1	20	180	200
2	120	0,27	2	15	170	190
3	160	0,38	3	10	160	180
4	150	0,19	4	5	150	170
5	190	0,21	5	0	140	160
6	170	0,23	6	20	130	150
7	210	0,42	7	15	120	140
8	200	0,43	8	10	110	130
9	220	0,44	9	5	100	120

Таблица 7.1 – Исходные данные к расчету

Пример решения задачи 4.

По горизонтальной трубе внутренним диаметром d_1 =180 мм течет вода со скоростью w=0,4 м/с. Средняя температура воды t_1 =200 °C. Снаружи труба охлаждается воздухом, температура которого t_2 =20 °C. Труба стальная (сталь 20), наружный диаметр трубы d_2 =200мм (см. рис.7.1).

Определить:

- A) коэффициент теплоотдачи α_1 от воды к внутренней стенке трубы;
 - Б) коэффициент теплоотдачи α_2 от наружной поверхности

трубы к воздуху;

В) коэффициент теплопередачи K_l и тепловой поток q_l от воды к воздуху через стенку, отнесенной к 1 м длины трубы.

Задачу выполнить по формулам для цилиндрической стенки.

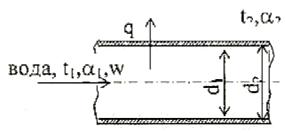


Рис. 7.1. Расчетная схема теплопередачи через цилиндрическую стенку

Решение:

А) Определение коэффициента теплоотдачи от воды к внутренней стенке трубы α_1 .

Внутри трубы вода движется с заданной скоростью, следовательно, тепловой поток от воды к трубе отдается вынужденной конвекцией.

1) Свойства воды при температуре t_1 =200 °C (выбираем по таблице физических свойств воды, табл. П 5):

 $\lambda_1 = 0,663 \; \mathrm{Bt/(m \cdot K)}$ - коэффициент теплопроводности воды; $v_1 = 0,158 \cdot 10^{-6} \; \mathrm{m^2/c}$ - коэффициент кинематической вязкости

 $Pr_1=0,93$ - критерий Прандтля при температуре воды $t_1=200$ °C;

 Pr_w =1,6 - критерий Прандтля для воды при температуре стенки трубы (температуру стенки трубы принимаем равной среднеарифметическому значению температур воды и воздуха):

$$t_w = 0.5(t_1 + t_2) = 0.5(200 + 20) = 110^{\circ} C.$$

2) Критерий Рейнольдса:

воды;

$$Re_1 = w \cdot d_1 / v_1$$

$$Re_1 = 0, 4 \cdot 0, 18 / (0, 158 \cdot 10^{-6}) = 455700.$$
(7.1)

3) Выбор критериального уравнения.

Вид критериального уравнения зависит от режима движения теплоносителя. При турбулентном режиме движения теплоносителя в трубе (Re>10000) критериальное уравнение имеет вид:

$$Nu_1 = 0.021 \cdot Re_1^{0.8} \cdot Pr_1^{0.43} \cdot (Pr_1/Pr_w)^{0.25}.$$
 (7.2)

При ламинарном режиме движения жидкости в трубе (Re≤ 2300) критериальное уравнение имеет вид:

$$Nu_1 = 0.15 \cdot Re_1^{0.33} \cdot Pr_1^{0.43} \cdot Gr^{0.1} \cdot (Pr_1/Pr_w)^{0.25}.$$
 (7.3)

При переходном режиме (2300≤Re<10000):

$$Nu_1 = 0.008 \text{ Re}_1^{0.8} \cdot Pr_1^{0.43} \left(Pr_1 / Pr_w \right)^{0.25}. \tag{7.4}$$

В данной задаче режим движения воды в трубе турбулентный, т.к. полученное значение Re>10000, поэтому используем формулу (7.2).

Подставляем исходные и 4) полученные данные В (7.2) для турбулентного уравнение критериальное режима

5) Коэффициент теплоотдачи определяем по формуле:

$$\alpha_1 = Nu_1 \cdot \lambda_1 / d_1$$
 , $BT/(M^2 \cdot K)$. (7.5) $\alpha_1 = 596 \cdot 0,663 / 0,18 = 2200 BT/(M^2 \cdot K)$.

Б) Определение коэффициента теплоотдачи от наружной поверхности трубы к воздуху α_2 .

Снаружи труба омывается свободно движущимся воздухом. Следовательно, имеет место теплообмен при свободной конвекции.

Критериальное уравнение для горизонтальной трубы при свободном движении воздуха:

$$Nu_2 = 0.5(Pr \cdot Gr)_2^{0.25}$$
 (7.6)

6) Свойства воздуха при температуре t=20 °C (выбираем по таблице физических свойств воздуха, табл. П.4):

 $\lambda_2 = 0.0259 \; \mathrm{Bt/(m \cdot K)}$ - коэффициент теплопроводности воздуха; $v_2 = 1.5,06 \cdot 10^{-6} \text{ m}^2/\text{c}$ - коэффициент кинематической вязкости воздуха;

 $Pr_2=0,703$ - критерий Прандтля для воздуха.

7) Критерий Грасгофа определяем по формуле:

$$Gr_{2}=g \cdot d_{2}^{3} \cdot \beta \cdot (t_{w}-t_{2})/v_{2}^{2}$$

$$Gr_{2}=9,81 \cdot 0,2^{3} \cdot [1/(273+20)] \cdot (110-20)/(15,06 \cdot 10^{-6})^{2}=1,06 \cdot 10^{8}$$
(7.7)

8) Решаем критериального уравнения по формуле (7.6): $Nu_2=0,5\cdot(Pr\cdot Gr)_2^{0,25}=0,5\cdot(0,703\cdot 1,06\cdot 10^8)^{0,25}=46,46$

$$Nu_2 = 0.5 \cdot (Pr \cdot Gr)_2^{0.25} = 0.5 \cdot (0.703 \cdot 1.06 \cdot 10^8)^{0.25} = 46.46$$

9) Коэффициент теплоотдачи:

$$\alpha_2 = Nu_2 \cdot \lambda_2/d_2$$
 (7.8) $\alpha_2 = 46,46 \cdot 0,0259/0,2 = 6,0 \text{ BT/(m}^2 \text{K}).$

В) Определение коэффициента теплопередачи.

10) По условию задачи коэффициент теплопередачи и тепловой поток следует определять по формулам для криволинейных поверхностей, следовательно, линейный коэффициент теплопередачи будет равен:

$$K_{\ell} = \frac{1}{\frac{1}{(\alpha_1 \cdot d_1)} + \frac{1}{2\lambda} \cdot \ln\left(\frac{d_2}{d_1}\right) + \frac{1}{(\alpha_2 \cdot d_2)}},$$
(7.9)

где λ - коэффициент теплопроводности материала трубы (сталь 20) выбираем по табл. П.6, – λ =51 Bt/(м·К);

$$K_{\ell} = \frac{1}{\frac{1}{(2200 \cdot 0,18)} + \frac{1}{2 \cdot 51} \cdot \ln\left(\frac{0,2}{0,18}\right) + \frac{1}{(6,0 \cdot 0,2)}} = 1,20 \text{ BT/(M·K)}.$$

11) Линейный тепловой поток q_{ℓ} , B_T/M :

$$\mathbf{q}_l = \boldsymbol{\pi} \cdot \mathbf{K}_{\ell} \ (\mathbf{t}_1 - \mathbf{t}_2) \tag{7.10}$$

Подставляем известные данные в это уравнение и получаем $q_l = 3,14 \ 1,20 \cdot (200 - 20) = 678 \ BT/M.$

Ответ:

- коэффициенты теплоотдачи: от воды к внутренней поверхности трубы α_1 =2200 Bt/(м²·К); от наружной поверхности трубы к воздуху α_2 =6,00 Bt/(м²·К);
 - линейный коэффициент теплопередачи K_{ℓ} =1,20 Bt/(м·K);
 - линейный тепловой поток $q_l = 678 \text{ Bt/m}$.

Библиографический список

- 1. Амирханов, Д. Г. Техническая термодинамика: учебное пособие / Д. Г. Амирханов, Р. Д. Амирханов. Казань: Издательство КНИТУ, 2014. 264 с.
- 2. Мирам, Андрей Олегович. Техническая термодинамика. Тепломассообмен : учебник для студентов, обучающихся по направлению 270100 "Строительство" / А. О. Мирам, В. А. Павленко. Москва : ACB, 2017. 352 с.
- 3. Теплотехника [Текст] : учебник / под ред. А. П. Баскакова. 3-е изд., перераб. и доп. М. : БАСТЕТ, 2010. 328 с.
- 4. Теплотехника [Текст]: учебник / Под ред. В. Н. Луканина. 4-е изд., испр. М.: Высшая школа, 2003. 671 с.
- 5. Примеры и задачи по тепломассообмену [Текст] : [учебное пособие] / В. С. Логинов [и др.]. Изд. 2-е, испр. и доп. Санкт-Петербург : Лань , 2011. 256 с.
- 6. Селин В. В. Техническая термодинамика [Текст] : учебное пособие / В.В. Селин, В. М. Фокин. Волгоград: ВолгГАСУ, 2008. 132 с.
- 7. Техническая термодинамика и теплотехника [Текст] : учебное пособие / под ред. А. А. Захаровой. 2-е изд., испр. М. : Академия, 2008. 272 с.
- 8. Кудинов, Анатолий Александрович. Строительная теплофизика: учебное пособие для студентов, обуч. по направлению подготовки 08.03.01 "Строительство" / А. А. Кудинов. Москва: ИНФРА-М, 2019. 262 с.
- 9. Богословский, В. Н. Строительная теплофизика (теплофизические основы отопления, вентиляции и кондиционирования воздуха): учебник / В. Н. Богословский. 3-е изд. СПб. : АВОК Северо-Запад, 2006. 400 с. (Инженерные системы зданий).

ПРИЛОЖЕНИЯ

Таблица П.1 - Физические константы некоторых газов

Вещество	Фор-	Мол. масса,	Плотность	R,
	мула	μ , кг/кмоль	газа при	Дж/(кг
			н.у.,	К)
			ρ, кг/м³	
Воздух	-	28,96	1,29	287,0
Кислород	O_2	32,00	1,429	259,8
Азот	N_2	28,026	1,252	296,8
Водород	H_2	2,016	0,090	4124,0
Окись углерода	CO	28,01	1,250	296,8
Углекислый газ	CO_2	44,01	1,977	188,9
Сернистый газ	SO_2	64,06	2,926	129,8
Метан	CH ₄	16,032	0,717	518,8
Этилен	C_2H_4	28,052	1,251	296,6
Коксовый газ	-	11,50	0,515	721,0
Аммиак	NH ₃	17,032	0,771	488,3
Водяной пар	H ₂ O	18,016	0,804	461,0

Таблица П.2 - Интерполяционные формулы для истинных и средних мольных теплоемкостей газов при P=Const

Газ	Истинная теплоемкость	Средняя теплоемкость				
	μC_p , кДж/(кмоль К)	μC_{pm} , кДж/(кмоль К)				
	В пределах о	от 0 до 1000° ^C				
O_2	$\mu C_p = 29,5802 + 0,0069706 t$	μC _{pm} =29,2080+0,0040717 t				
N_2	$\mu C_p = 28,5372 + 0,0053905 t$	$\mu C_{pm} = 28,7340 + 0,0023488 t$				
CO	$\mu C_p = 28,7395 + 0,0058862 t$	μC _{pm} =28,8563+0,0026808 t				
SO_2	$\mu C_p = 42,8728 + 0,0132043 t$	μC _{pm} =40,4386+0,0099562 t				
Воздух	$\mu C_p = 28,7558 + 0,0057208 t$	$\mu C_{pm} = 28,8270 + 0,0027080 t$				
H ₂ O	$\mu C_p = 32,8367 + 0,0116611 t$	$\mu C_{pm} = 33,1494 + 0,0052749 \cdot t$				
	В пределах от 0 до 1500°C					
H_2	$\mu C_p = 28,3446 + 0,003519 t$	$\mu C_{pm} = 28,7210 + 0,0012008 t$				
CO_2	$\mu C_p = 41,3597 + 0.0144985 t$	$\mu C_{pm} = 38,3955 + 0,0105838 t$				

Таблица П.3 – Степень черноты различных металлов

Наименование материала	t,°C	3
Алюминиевая краска	-	0,50
Алюминий полированный	50÷500	0,04÷0,06
Алюминий с шероховатой поверхностью	20÷50	0,06÷0,07
Асбестовый картон	20	0,96
Жесть белая старая	20	0,28
Железо оцинкованное	30	0,23
Кирпич красный шероховатый	20	$0,88 \div 0,93$
Лак черный матовый	40÷100	$0,96 \div 0,98$
Лак белый	40÷100	$0,80 \div 0,95$
Латунь полированная	200	0,03
Латунь листовая прокатная	20	0,06
Масляная краска	_	0,94
Медь окисленная	500	0,88
Медь полированная	50÷1000	0,02
Снег	_	0,96
Сталь окисленная	_	0,80
Сталь полированная	_	0,54
Сталь с шероховатой поверхностью	50	0,56
Стекло	250÷1000	$0.87 \div 0.72$
Хром полированный	-	0,17
Чугун шероховатый	-	0,96
Эмаль белая	20	0,90

Таблица $\Pi.4$ – Физические свойства сухого воздуха при давлении $P=1,013\cdot 10^3~\Pi a$

t,	ρ ,	C _p ,	λ,	v·10 ⁶ ,	D
°Č	$\kappa\Gamma/M^3$	кДж/(кг·К)	$BT/(M \cdot K)$	m^2/c	Pr
-50	1,584	1,013	0,0204	9,23	0,728
-40	1,515	1,013	0,0212	10,04	0,728
-30	1,453	1,013	0,0220	10,80	0,723
-20	1,395	1,009	0,0228	11,79	0,716
-10	1,342	1,009	0,0236	12,43	0,712
0	1,293	1,005	0,0244	13,28	0,707
10	1,247	1,005	0,0251	14,16	0,705
20	1,205	1,005	0,0259	15,06	0,703
30	1,165	1,005	0,0267	16,00	0,701
40	1,128	1,005	0,0276	16,96	0,699
50	1,093	1,005	0,0283	17,95	0,698
60	1,060	1,005	0,0290	18,97	0,696
70	1,029	1,009	0,0296	20,02	0,694
80	1,000	1,009	0,0305	21,09	0,692
90	0,972	1,009	0,0313	22,10	0,690
100	0,946	1,009	0,0321	23,13	0,688
120	0,898 '	1,009	0,0334	25,45	0,686
140	0,854	0,013	0,0349	27,80	0,684
160	0,815	1,017	0,0364	30,09	0,682
180	0,779	1,022	0,0378	32,49	0,681
200	0,746	1,026	0,0393	34,85	0,680
250	0,674	1,038	0,0427	40,61	0,677
300	0,615	1,047	0,0460	48,33	0,674
350	0,566	1,059	0,0491	55,46	0,678
400	0,524	1,068	0,0521	63,09	0,678
500	0,456	1,093	0,0574	79,38	0,687
600	0,404	1,114	0,0622	96,89	0,699
700	0,362	1,135	0,0671	115,4	0,706
800	0,329	1,156	0,0718	134,8	0,713
900	0,301	1,172	0,0763	155,1	0,717
1000	0,277	1,185	0,0807	177,1	0,719
1100	0,257	1,197	0,0850	199,3	0,722
1200	0,239	1,210	0,0915	233,7	0,724

Таблица П.5 – Физические свойства воды на линии насыщения

t,	$P \cdot 10^{-5}$,	ρ ,	c _p ,	λ,	$v \cdot 10^6$,	$\beta \cdot 10^4$	D_
°C	Па	$\kappa\Gamma/M^3$	кДж/(кг·К)	$BT/(M \cdot K)$	m^2/c	K- ¹	РΓ
0	1,013	999,9	4,212	0,55	1,789	-0,63	13,67
10	1,013	999,7	4,191	0,57	1,306	0,70	9,52
20	1,013	998,2	4,183	0,60	1,006	1,82	7,02
30	1,013	995,7	4,174	0,62	0,805	3,21	5,42
40	1,013	992,2	4,174	0,64	0,659	3,87	4,31
50	1,013	988,1	4,174	0,65	0,556	4,49	3,54
60	1,013	983,2	4,179	0,66	0,478	5,11	2,98
70	1,013	977,8	4,187	0,67	0,415	5,70	2,55
80	1,013	971,8	4,195	0,67	0,365	6,32	2,21
90	1,013	965,3	4,208	0,68	0,326	6,95	1,95
100	1,013	958,4	4,220	0,68	0,295	7,52	1,75
110	1,43	951,0	4,233	0,69	0,272	8,08	1,60
120	1,98	943,1	4,250	0,69	0,252	8,64	1,47
130	2,70	934,8	4,266	0,69	0,233	9,19	1,36
140	3,61	926,1	4,287	0,69	0,217	9,72	1,16
150	4,76	917,0	4,313	0,68	0,203	10,3	1,17
160	6,18	907,4	4,346	0,68	0,191	10,7	1,10
170	7,92	897,3	4,380	0,68	0,181	11,3	1,05
180	10,03	886,9	4,417	0.67	0,173	11,9	1,00
190	12,55	876,0	4,459	0,67	0,165	12,6	0,96
200	15,55	863,0	4,505	0,66	0,158	13,3	0,9
210	19,08	852,8	4,555	0,66	0,153	14,1	0,9
220	23,20	840,3	4,614	0,65	0,148	14,8	0,89
230	27,98	827,3	4,681	0,64	0,145	15,9	0,88
240	33,48	813,6	4,756	0,63	0,141	16,8	0,87
250	39,78	799,0	4,844	0,62	0,137	18,1	0,86
260	46,94	784,0	4,949	0,61	0,135	19,7	0,87
270	55,05	767,9	5,070	0,59	0,133	21,6	0,88
280	64,19	750,7	5,230	0,57	0,131	23,7	0,90
290	74,45	732,3	5,485	0,56	0,129	26,2	0,93
300	85,92	712,5	5,736	0,54	0,128	29,2	0,97
320	112,90	667,1	6,574	0,51	0,128	38,2	1,11
340	146,08	610,1	8,165	0,46	0,127	53,4	1,39
350	165,37	574,4	9,504	0,43	0,126	66,8	1,60

Таблица П.6 – Физические свойства некоторых металлов

Наименование материала	ρ, κΓ/M ³	t, °C	λ, Βτ/(м·K)	С _р , кДж/(кг·К)
Алюминий	2700	0	209	0,896
Бронза	8800	20÷200	48,2	0,368
Латунь	8500	20 ÷ 200	109	0,392
Медь	8930	0	390	0,388
Нержав, сталь 1X18H10T	7860	20÷200	16,3	0,494
Серебро	10500	0	419	0,234
Сталь 20	7830	20÷200	51,0	0,494
Сталь 45	7830	20÷200	47,8	0,490
Титан	4540	0	15,1	0,531