Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Андронов Владимир Германович Должность: Заведующий кафедрой

Дата подписания: 17.09.2024 23:31:17 Юго—Западный государственный университет

Уникальный программный ключ:

a483efa659e7ad657516da1b78e295d4f08e5fd9

УТВЕРЖДАЮ

Заведующий кафедрой

космического приборостроения

и систем связи

В.Г. Андронов

(подпись)

«30» августа 2024 г

ОЦЕНОЧНЫЕ СРЕДСТВА

МИНОБРНАУКИ РОССИИ

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Моделирование систем и сетей телекоммуникаций (наименование дисциплины)

11.03.02 «Инфокоммуникационные технологии и системы связи» (код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ КОНТРОЛЬНОГО ОПРОСА

- 1. Дайте определения понятиям информация, сообщение, сигнал. Какие между ними связи и различия?
- 2. Приведите примеры сообщений разной физической природы и соответствующих им датчиков сигналов.
- 3. Каким образом сообщения, описываемые многомерными функциями, преобразуются в сигналы? Приведите примеры.
 - 4. Классифицируйте сигналы по особенностям их формы и спектра.
 - 5. По какому признаку различают НЧ и ВЧ сигналы?
- 6. По какому критерию различают аналоговые и цифровые сигналы и функциональные устройства (ФУ)?
 - 7. Укажите основные параметры сигналов.
 - 8. Нарисуйте структурные схемы систем связи для:
 - -передачи дискретных сообщений;
 - -передачи непрерывных сообщений;
 - -передачи непрерывных сообщения по цифровым каналам.
 - 9. Укажите назначение следующих ФУ систем связи:
 - -кодера источника и кодера канала;
 - -модулятора;
 - -демодулятора;
 - -декодера канала и декодера источника.
- 10. Что общего и различного в задачах, решаемых демодуляторами СПДС и СПНС?
 - 11. Какие системы связи Вам известны:
 - -по виду передаваемых сообщений;
 - -по диапазону используемых частот;
 - -по назначению;
 - -по режимам работы?
- 12. Дайте определение термину «канал связи». Какая классификация каналов связи Вам известна?
 - 13. Укажите основные параметры каналов связи.
 - 14. Сформулируйте условия согласования сигналов и каналов связи.
- 15. Какие блоки входят в состав обобщенной структурной схемы системы связи?
 - 16. Какие блоки входят в состав передатчика?
 - 17. Какие блоки входят в состав приемника?
 - 18. Укажите назначение основных блоков структурной схемы?
 - 19. Что понимают под «пространством сигналов»?
 - 20. Какие пространства называют метрическими?
- 21. Что такое «метрика» пространства и каким требованиям она должна удовлетворять?
 - 22. Какие пространства называют линейными?
 - 23. Сформулируйте аксиомы линейного пространства.

- 24. Каковы условия линейной независимости векторов?
- 25. Какие сигналы называются непрерывными?
- 26. Какие сигналы называются дискретными?
- 27. Сформулируйте теорему Котельникова.
- 28. Рассчитайте и постройте спектр дискретизированного сигнала.
- 29. Какие функции называются ортогональными?
- 30. Запишите ряд Фурье в общем виде.
- 31. Что такое спектр сигнала?
- 32. Запишите выражение для спектра периодического сигнала.
- 33. Рассчитайте амплитуды гармонических составляющих для периодической последовательности прямоугольных импульсов.
 - 34. Что такое ширина спектра сигнала?
 - 35. Чему равна ширина спектра последовательности импульсов?
 - 36. Запишите выражение для спектра непериодического сигнала.
 - 37. Рассчитайте и постройте спектр одиночного прямоугольного импульса.
- 38. Какие параметры сигнала влияют на ширину спектра и на частоту гармонических составляющих спектра?
 - 39. Какой процесс называется случайным?
- 40. Что такое функция плотности вероятности и функция распределения? Как они связаны?
 - 41. Запишите выражения для числовых характеристик случайного процесса.
 - 42. Какой процесс называется нормальным?
- 43. Постройте функцию плотности вероятности произвольного двоичного случайного процесса.
 - 44. Какой процесс называется узкополосным?
- 45. Запишите выражение для функции плотности вероятности процесса на выходе нелинейной цепи.
 - 46. Дайте определение функции корреляции случайного процесса.
- 47. Запишите выражение для функции корреляции стационарного, эргодического процесса с нулевым средним.
 - 48. Нарисуйте стандартный вид графика для функции корреляции.
- 49. Чему равно максимальное значение функции корреляции случайного процесса?
 - 50. Каков физический смысл функции корреляции?
 - 51. Как определить интервал корреляции случайного процесса?
 - 52. Что такое коэффициент корреляции случайного процесса?
- 53. Рассчитайте функцию корреляции случайного процесса, если известен его энергетический спектр.
- 54. Рассчитайте энергетический спектр процесса, если известна его корреляционная функция.
 - 55. Что такое белый шум?
- 56. Определите функцию корреляции случайного процесса на выходе полосового фильтра, если на входе фильтра действует белый шум.
 - 57. Что такое энергетический спектр случайного процесса?
 - 58. Как определить ширину энергетического спектра процесса?
 - 59. Как связаны ширина энергетического спектра процесса и интервал

корреляции?

- 60. Что такое АМ? Запишите аналитическое выражение АМ сигнала.
- 61. Какая форма ВАХ НЭ является наилучшей для получения АМ сигналов?
- 62. Что такое глубина модуляции?
- 63. Как измерить глубину модуляции по временной диаграмме и спектрограмме АМ сигнала?
- 64. Как связаны между собой ширина спектра модулирующего и модулированного сигнала при АМ?
 - 65. Как распределяется мощность между составляющими АМ сигнала?
 - 66. Какова роль нагрузки амплитудного модулятора?
 - 67. Что такое СМХ? Как по СМХ выбрать режим работы модулятора?
- 68. Как по СМХ определить максимальную девиацию амплитуды и максимальную глубину модуляции?
- 69. Какова характеристика детектирования диодного детектора при подаче слабых сигналов?
 - 70. Каковы условия линейного детектирования в схеме диодного детектора?
- 71. Изобразите схему диодного детектора. Поясните работу диодного детектора соответствующими временными диаграммами.
- 72. С каким углом отсечки работает диод в схеме диодного детектора? От чего зависит величина этого угла?
- 73. Меняется ли форма графика w(x) при прохождении любого случайного процесса через:
 - линейную инерционную цепь;
 - нелинейную безинерционную цепь?
 - 74. Как получить график w(x) на выходе нелинейной цепи?
- 75. Как рассчитать дисперсию и математическое ожидание на выходе нелинейной цепи?
- 76. Что происходит с плотностью вероятности случайного сигнала, проходящего через узкополосную линейную цепь?
 - 77. Что такое закон Рэлея?
- 78. Какому закону подчиняется распределение мгновенных значений огибающей смеси узкополосного нормального случайного процесса и гармонического сигнала?
 - 79. Как рассчитать дисперсию процесса на выходе линейной цепи?
- 80. Как рассчитать математическое ожидание процесса на выходе линейной цепи?
- 81. Изобразите функциональную схему цифровой системы связи для передачи аналоговых сигналов.
 - 82. Каково назначение АЦП?
 - 83. Какое отношение к работе АЦП имеет теорема В.А. Котельникова?
 - 84. Какое влияние на работу АЦП и ЦАП оказывает разрядность?
 - 85. Какой вид имеет статическая характеристика системы АЦП+ЦАП?
 - 86. Что такое шум квантования? Каково его происхождение?
- 87. Какую функцию выполняет ЦАП? 8. Какова роль ФНЧ на выходе ЦАП? Как выбрать его частоту среза?
 - 88. Является ли обратимым преобразование аналог-код- аналог? 10.

Линейно ли это преобразование?

- 89. Дайте определение ЧМ- сигнала.
- 90. Приведите пример записи тонального ЧМ- сигнала с параметрами:f0 = 100 МГц; Fмод= 10 КГц; $\Delta fmax = 50$ кГц.
- 91. Объясните принцип действия частотного модулятора. Какие Вам известны способы получения ЧМ- сигналов?
- 92. Дайте определение статической модуляционной характеристики и объясните её смысл.
 - 93. Что такое угловая модуляция?
 - 94. Как рассчитать спектр ЧМ- сигнала?
 - 95. Какое отношение имеют функции Бесселя к частотной модуляции?
- 96. Сколько спектральных линий надо учесть в практической ширине спектра ЧМ при $M_{\text{ЧМ}}$ = 4?
 - 97. Назовите известные Вам области применения ЧМ сигналов.
 - 98. Какие требования предъявляются к ЧМ и ЧД?
 - 99. Какие функции выполняют ЧМ и ЧД?
 - 100. Как работает частотный детектор?
 - 101. Где применяется частотная модуляция?
 - 102. Какое отношение имеет функция Бесселя к спектру ЧМ-сигнала?
- 103. Что такое оптимальный режим ЧД? Алгоритм оптимального демодулятора и его функциональная схема для АМн, ЧМн и ФМн.
 - 104. Рассчитайте и постройте спектр сигнала АИМ.
 - 105. Как восстановить непрерывный сигнал из сигнала АИМ?
- 106. Чем определяются погрешности дискретизации и восстановления сигналов?
 - 107. Какая электрическая цепь называется линейной?
 - 108. Какая электрическая цепь называется нелинейной?
 - 109. Какая электрическая цепь называется параметрической?
 - 110. Для каких цепей справедлив принцип суперпозиции?
 - 111. В каких цепях появляются новые частоты?
 - 112. Каким трем основным направлениям в теории информации отвечают информационные меры? Охарактеризуйте эти направления.
 - 113.. Какое сообщение содержит одну двоичную единицу информации?
 - 114. Дайте определение количества информации равной 1 биту.
 - 115. Как определяется количество информации в сообщении?
 - 116. Какие события называют равновероятными и неравновероятными?
 - 117. Что такое энтропия?
- 118. Как определяется энтропия дискретного источника с независимым выбором сообщений?
 - 119. Перечислите основные свойства энтропии.
 - 120. Что такое избыточность источника?
 - 121. Какие факторы увеличивают избыточность источника?
- 122. Что такое производительность дискретного источника, чему она равна? Можно ли увеличить производительность источника путём укрупнения алфавита?
 - 123. Что такое совместная энтропия двух источников?
 - 124. Что такое условная энтропия, её физический смысл?

- 125. Чему равна совместная энтропия двух независимых дискретных источников и двух полностью зависимых источников?
 - 126. Каковы разновидности энтропии непрерывной случайной величины?
 - 127. Что понимают под кодированием сообщения?
 - 128. Приведите примеры простейших кодовых сообщений.
 - 129. Какие коды называются равномерными?
 - 130. Что называется двоичным кодом?
 - 131. Как строится код Шеннона Фано?
 - 132. Сформулировать основную теорему о кодировании.
 - 133. Что называется декодированием сообщения?
 - 134. Что называется блочным кодированием?
- 135. Представьте пример реализации блочного кодирования при построении оптимального неравномерного кода.
 - 136. Назовите назначение и цели эффективного кодирования.
- 137. Поясните, за счет чего обеспечивается сжатие информации при применении эффективного кодирования.
- 138. Чем определяется минимальная длина кодовой комбинации при применении эффективного кодирования? Какие проблемы возникают при разделении неравномерных кодовых комбинаций?
 - 139. Объясните принцип построения кода Хаффмана.
 - 140. Какой код является самым выгодным?
- 141. За счет чего при эффективном кодировании уменьшается средняя длина кодовой комбинации?
- 142. До какого предела может уменьшиться длина кодовой комбинации при эффективном кодировании?
- 143. При каком распределении букв первичного алфавита оптимальный неравномерный код оказывается самым эффективным?
 - 144. Какие коды называются помехоустойчивыми?
 - 145. Что называется избыточностью?
 - 146. Как образуются корректирующие коды?
 - 147. Объясните методику построения кода Хэмминга.
 - 148. Назовите основные параметры кода Хэмминга?
- 149. Как определить общее число элементов кодовых комбинаций кодов Хэмминга?
- 150. Как определить число проверочных и информационных элементов кода Хэмминга? 27. Как выбираются номера проверочных позиций кода Хэмминга?
 - 151. По какому закону рассчитывают номера контрольных символов?
 - 152. Объясните, в чем заключается правило четности.
 - 153. Как происходит переход из двоичной системы счисления в десятичную?
 - 154. Объясните особенности кода Хэмминга.
 - 155. Дайте определение помехоустойчивости. Как она оценивается?
- 156. Какова помехоустойчивость сигналов с амплитудной и угловой модуляцией?
 - 157. Что называется пороговым эффектом при демодуляции?
- 158. Сформулируйте задачу оптимального приёма дискретных сообщений и дайте её геометрическую трактовку.

- 159. Что называют правилом решения (решающим устройством) демодулятора?
 - 160. Что такое идеальный (оптимальный) приёмник дискретных сообщений?
- 161. Что понимают под потенциальной помехоустойчивостью приёма дискретных сообщений?
 - 162. В чем суть теории потенциальной помехоустойчивости?
- 163. Какой смысл вкладывают в понятие критерия качества приёма дискретных сообщений? Перечислите известные Вам критерии.
- 164. В чем суть критерия идеального наблюдателя (критерия Котельникова)? Каковы его особенности?
- 165. Что представляет собой критерий максимального правдоподобия? Как он соотносится с критерием Котельникова?
- 166. Расскажите о критерии минимального среднего риска. В чем его обшность?
- 167. При каких условиях критерий минимального среднего риска совпадает с критериями Котельникова и максимального правдоподобия?
- 168. В чем сущность критерия Неймана Пирсона? В каких случаях целесообразно его использование?
- 169. Сформулируйте задачу синтеза оптимального когерентного демодулятора и выведите алгоритм его работы.
- 170. Нарисуйте схему оптимального когерентного демодулятора на корреляторах.
- 171. В чем проявляется упрощение алгоритма (схемы) оптимального когерентного демодулятора при выборе ансамбля сигналов с равными энергиями?
 - 172. Какие фильтры называют согласованными с сигналами?
- 173. Как импульсная характеристика СФ связана с сигналом, с которым фильтр согласован?
 - 174. Каковы передаточная функция, АЧХ и ФЧХ СФ?
 - 175. Какова форма отклика СФ на «свой» сигнал, его длительность?
 - 176. Чему равно ОСШ на выходе СФ?
- 177. В какой степени изменяется ОСШ при согласованной фильтрации аддитивной смеси сигнала с НБШ?
 - 178. Нарисуйте схему оптимального когерентного демодулятора на СФ.
- 179. Как количественно оценивают помехоустойчивость систем передачи дискретных сообщений (СПДС)?
- 180. Сформулируйте задачу расчёта потенциальной помехоустойчивости СПДС.
- 181. Напишите алгоритм оптимального когерентного демодулятора двоичной системы связи.
- 182. Нарисуйте схему оптимального когерентного демодулятора АМ-, ЧМ- и ФМ-сигналов.
- 183. Изложите методологию расчёта средней вероятности ошибочного приёма в двоичной системе связи.
 - 184. От чего зависит помехоустойчивость двоичной системы связи?
- 185. Приведите формулы расчёта средней вероятности ошибочного приёма АМ-, ЧМ- и ФМ-сигналов в двоичной СПДС.

- 186. В каком соотношении находятся энергии (мощности) сигналов с разными видами цифровой модуляции, обеспечивающие одинаковую помехоустойчивость? Дайте геометрическую трактовку этих соотношений.
 - 187. Перечислите проблемы практического использования ФМ в СПДС.
 - 188. Что такое «обратная работа» и по каким причинам она возникает?
 - 189. В чем сущность ОФМ? Как формируют сигналы с ОФМ?
 - 190. Как осуществляют оптимальный когерентный приём с ОФМ?
- 191. Как вычисляется средняя вероятность ошибочного приёма в системах с ОФМ?
- 192. Расположите системы с АМ, ЧМ, ФМ и ОФМ в порядке убывания помехоустойчивости при равных энергиях сигналов.
 - 193. Назовите группы мероприятий по защите от внешних помех.
- 194. Какие источники шумов определяют помехоустойчивость приёма оптических сигналов?
 - 195. В каких случаях используются многоканальные системы связи?
 - 196. Какие существуют принципы объединения и разделения каналов?
 - 197. Поясните принцип работы систем с ЧРК.
 - 198. Каковы причины переходных искажений в системах с ЧРК?
 - 199. Поясните принцип работы системы с ВРК.
 - 200. Как должна выбираться длительность цикла в системах с ВРК?
 - 201. В чем состоит сущность разделения сигналов по форме?
- 202. Какие способы объединения и разделения каналов нашли наибольшее распространение в системах связи?
- 203. В чем состоит основное различие между многоканальными системами и системами множественного доступа?
- 204. Какие существуют протоколы построения систем множественного доступа?
 - 205. Принципы многоканальной связи. Линейное разделение каналов.
- 206. Структура многоканальной системы связи при частотном разделении каналов.
- 207. Структура многоканальной системы связи при временном разделении каналов
- 208. Как определяется ширина частотного диапазона в системах с частотным разделением каналов?
- 209. Каково максимальное число каналов в системе с временным разделением каналов при помощи АИМ?
- 210. Каково максимальное число каналов в системе с временным разделением каналов при помощи ШИМ?

Шкала оценивания: 3-х балльная.

Критерии оценивания:

3 балла (или оценка «отлично») выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и

нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

2 балла(или оценка «хорошо») выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.

1 балл (или оценка «удовлетворительно») выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий идефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов (или оценка «неудовлетворительно») выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

1.2ВОПРОСЫ И ЗАДАНИЯ В ТЕСТОВОЙ ФОРМЕ

- 1. Установите соответствие входного и выходного сигналов непрерывного канала связи:
 - а) аналоговый аналоговый
 - б) аналоговый дискретный
 - в) дискретный аналоговый
- 2. Канал связи, для которого справедлив принцип суперпозиции и не происходит обогащение спектра отклика по сравнению со спектром воздействия, называется:
 - а) линейный
 - б) линейно-параметрический
 - в) нелинейный
 - г) нелинейно-параметрический
- 3. Канал связи, для которого справедлив принцип суперпозиции и происходит обогащение спектра отклика по сравнению со спектром воздействия, называется:
 - а) линейно-параметрический
 - б) линейный
 - в) нелинейный
 - г) нелинейно-параметрический
- 4. Канал связи, для которого не справедлив принцип суперпозиции и происходит обогащение спектра отклика по сравнению со спектром воздействия, называется:
 - а) нелинейный
 - б) линейно-параметрический
 - в) линейный
 - г) нелинейно-параметрический
- 5. Канал связи, в котором действует аддитивная помеха типа «белого шума» с нормальным законом распределения мгновенных значений, называется:
 - а) релеевский
 - б) райсовский
 - в) марковский
 - г) гауссовский
- 6. Укажите верную последовательность блоков на структурной схеме передатчика системы связи:
- а) источник сообщения, кодер, модулятор, генератор переносчика, выходное устройство
- б) источник сообщения, кодер, модулятор, генератор переносчика, демодулятор
- в) источник сообщения, декодер, модулятор, генератор переносчика, выходное устройство

- г) источник сообщения, кодер, демодулятор, генератор переносчика, выходное устройство
- д) источник сообщения, кодек, модулятор, генератор переносчика, выходное устройство
- 7. Укажите верную последовательность блоков на структурной схемеприемника системы связи:
 - а) входное устройство, демодулятор, декодер, получатель сообщения
 - б) выходное устройство, модулятор, декодер, получатель сообщения
 - в) входное устройство, демодулятор, кодер, получатель сообщения
 - г) входное устройство, демодулятор, кодек, получатель сообщения
 - д) входное устройство, модем, декодер, получатель сообщения
 - 8. Канал тональной частоты занимает спектр частот от ___ кГц до ___ кГц.
 - 9. Период цикла в первичном цифровом сигнале ИКМ-30 равен ____ мкс.
- 10. Как связаны скорость передачи символов в цифровых видах связи и ширина полосы сигнала?
 - а) чем выше скорость передачи символов, тем уже полоса сигнала
 - б) чем выше скорость передачи символов, тем шире полоса сигнала
 - в) полоса сигнала не зависит от скорости передачи символов
 - г) полоса сигнала зависит только от частоты, на которой ведётся передача
- 11. На вход канала связи, в котором действует шум с мощностью 10 (Вт), поступает сигнал с мощностью 100 (Вт). Отношение сигнал шум в канале равно ______дБ.
- 12. На вход канала связи, в котором действует шум с мощностью 1 (Вт), поступает сигнал с мощностью 1 (Вт). Отношение сигнал шум в канале равно _____дБ.
- 13. На вход канала связи, в котором действует шум с мощностью 0.1 (Вт), поступает сигнал с мощностью 100 (Вт). Отношение сигнал шум в канале равно _____дБ.
- 14. Укажите, по каким основным признакам не могут быть классифицированы каналы связи
 - а) диапазон частот канала
 - б) тип среды распространения
 - в) эргономические параметры оборудования
- г) вид передаваемых сообщений
 - 15. Какие параметры связывает формула Шеннона?
 - а) длительность импульса, ширину спектра
 - б) девиацию частоты, модулирующую частоту
 - в) пропускную способность, ширину канала, соотношение сигнал/шум

- г) базу сигнала, длительность сигнала, ширина спектра сигнала
- 16. Насколько сильно влияние импульсных помех небольшой мощности на различные каналы связи?
 - а) повлияют существенно на один узкополосный канал связи
- б) повлияют существенно на несколько, рядом расположенных, узкополосных каналов связи
 - в) влияние несущественно на узкополосные каналы связи
 - г) повлияют существенно на один широкополосный канал связи
 - 17. Увеличение скорости передачи в канале связи возможно при:
 - а) это достигается без ущерба для чего-либо
 - б) увеличении полосы пропускания канала
 - в) уменьшения мощности передатчика
 - г) увеличения соотношения сигнал/шум
 - 18. Модулятор и демодулятор образуют:
 - а) модем
 - б) кодер
 - в) декодер
 - г) кодек
 - д) источник сообщения
 - 19. Кодер и декодер образуют:
 - а) кодек
 - б) модулятор
 - в) демодулятор
 - г) модем
 - д) источник сообщения
 - 20. Операцию детектирования осуществляет:
 - а) детектор
 - б) модулятор
 - в) кодер
 - г) декодер
 - д)фильтр
- 21. На вход канала связи с коэффициентом передачи K(f)=1; 0 < f < F; поступает белый шум с постоянной спектральной плотностью мощности G_0 . Мощность шума на выходе канала связи определится как:
 - a) FG₀
 - $\mathfrak{G})G_0$
 - в) 2FG₀
 - г) 2**π**F
 - μ) $\pi G_0/F$

- 22. Селективные замирания сигнала вызываются изменением в канале связи:
- а) коэффициента передачи
- б) аддитивного шума
- в) чувствительности приемника
- 23. Установите соответствие между сигналами и их наименованиями, если известно, чтосвязь выхода и входа непрерывного канала связи определяется соотношением: $A(t) = B(t) \cdot V[t; C(t)] + D(t)$.

1.	A(t)	a)	отклик канала
2.	B(t)	б)	мультипликативная помеха
3.	V(t)	в)	полезная составляющая отклика
4.	C(t)	г)	входное воздействие
5.	D(t)	д)	аддитивная помеха

1.	2.	3.	4.	5.

24. Установите соответствие между типом линии связи и используемыми сигналами в них.

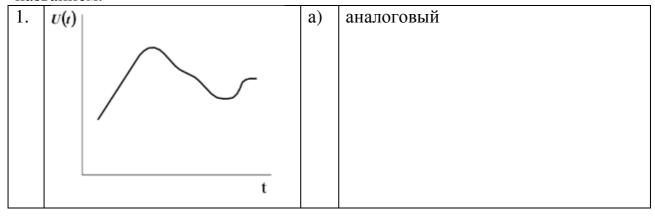
1.	Проводные линии	a)	Электромагнитные колебания высоких частот
2.	Радиолинии	б)	Переменные токи невысоких частот
3.	ВОЛС	B)	Световые волны с частотой 10 ¹⁴ Гц

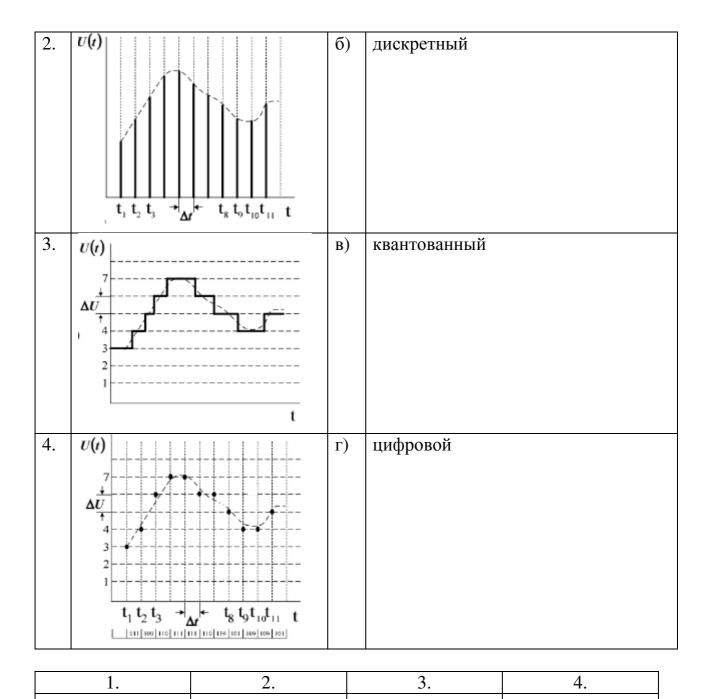
1.	2.	3.

25. Установите соответствие между элементом структурной схемы системы электрической связи и выполняемой им функцией.

	Riph leckon ebash ii bbillosii		TJ
1.	Модулятор	a)	осуществляет преобразование первичного сигнала $s(t)$ во вторичный сигнал $S(t)$, удобный для передачи в среде распространения в условиях действия помех.
2.	Источниксообщения	б)	формирует конкретное сообщение x(t)
3.	Преобразователь сообщения электрический сигнал	В В)	превращают сообщение x(t) в первичный сигнал s(t).
4.	Демодулятор	Г)	выделяет из принятого сигнала U(t)первичный электрический сигнал

		u(t)	
1.	2.	3.	4.


25. Установите соответствие между элементом структурной схемы системы электрической связи для передачи дискретных сообщений и выполняемой им


функцией.

1.	Кодер источника	a)	служит для преобразования сообщений в кодовые символы с целью уменьшения избыточности источника сообщения, т.е. обеспечении минимума среднего числа символов на одно сообщение и представления в удобной форме
2.	Кодер канала	б)	предназначен для введения избыточности, позволяющей обнаруживать и исправлять ошибки в канальном декодере, с целью повышения достоверности передачи.
3.	Декодер канала	в)	обеспечивает проверку избыточного (помехоустойчивого) кода и преобразование его в последовательность первичного электрического сигнала безызбыточного кода.
4.	Декодерис точника	г)	устройство для преобразования последовательности ПЭС безизбыточного кода в сообщение.

1.	2.	3.	4.

26. Установите соответствие между осциллограммой сигнала и его названием.

- 27. Задача по периодического сигнала сводится к нахождению
 - а) определению спектра
 - б) дискретизации

коэффициентов ряда Фурье

- в)нахождению интервала корреляции
- г) оцифровке
- 28. Динамический диапазон это...
- а) отношение наибольшей мгновенной мощности сигнала к той наименьшей мощности, которая необходима для обеспечения заданного качества передачи
- б) отношение наименьшей мгновенной мощности сигнала к той наибольшей мощности, которая необходима для обеспечения заданного качества передачи

- в) отношение наибольшей средней мощности сигнала к той пиковой мощности, которая необходима для обеспечения заданного качества передачи
- г) отношение наименьшей средней мощности сигнала к той средней мощности, которая необходима для обеспечения заданного качества передачи
 - 29. Каким выражением записывается теорема Шеннона?
 - a) $C=Wlog_2(1-S/N)$
 - 6)C=W/log₂(1-S/N)
 - $B)C=2Wlog_2(1+S/N)$
 - Γ)C=Wlog₂(1+S/N)
 - 30. Чем больше объём сигнала, тем...
- а) меньше информации можно вложить в этот объем и легче передать такой сигнал по каналу связи
- б) больше информации можно вложить в этот объем и труднее передать такой сигнал по каналу связи
- в) больше информации можно вложить в этот объем и легче передать такой сигнал по каналу связи
- г) меньше информации можно вложить в этот объем и труднее передать такой сигнал по каналу связи
- 31. Установите соответствие между величинами, входящими в формулу Шеннона: C=Wlog₂(1+S/N), и их наименованиями.

1.	С	a)	пропускная способность канала
2.	W	б)	ширина полосы пропускания
3.	S	в)	мощность сигнала
4.	N	г)	мощность шума
1.	2.	3.	4.

- 32. Наименование помехи, которая перемножается с сигналом:
- а) мультипликативная
- б) аддитивная
- в) комбинированная
- 33. Наименование помехи, которая суммируется с сигналом:
- а) аддитивная
- б) мультипликативная
- в) комбинированная

34. Вычислите, во сколько раз объем телевизионного сигнала превос	ходит
физический объем радиовещательного сигнала при одинаковой их длитель	ности.
Телевизионный сигнал обладает шириной частотного спектра Fтв 6,5 М	ІГц, а
радиовещательный сигнал Fpв- 12 кГц. Динамические диапазоны телевизион	ного и
радиовещательного сигналов следует считать одинаковыми.	
a) 530	
б) 520	
в) 540	
r) 525	

1.		Метрическое	пространство	сигналов	_	ЭТО	множество	сигналов,	для
котороі	го п	одходящим обр	разом определе	ено					

- 2. Евклидова норма вектора (3,3,3,3) равна _____.
- 3. Спектральная плотность мощности белого шума -
- а) равномерная
- б) периодическая
- в) непостоянная
- г) импульсная
- 4. К какому классу сигналов относят сигналы с базой значительно больше 1?
- а) случайные
- б) узкополосные
- в) широкополосные
- г) шумы с гауссовским распределением
- 5. Что характеризует временное представление сигнала?
- а) изменение значения амплитуды сигнала с течением времени
- б) изменение частоты временных отсчетов сигнала
- в) изменение значения мощности сигнала отчастоты
- 6. Что характеризует частотное представление сигнала?
- а) значение мгновенной частоты сигнала
- б) значения амплитуд различных частот, составляющих сигнал, взятых за интервал времени 1 с
- в) значения амплитуд различных частот, составляющих сигнал, взятых за интервал времени, полностью характеризующий данный сигнал (например, за период исследуемого сигнала)
- 7. Наличие каких частотных компонент возможно в произвольном по форме периодическом сигнале? Длительность периода равна Т.
 - a) T, 2T, 3T, ...
 - б) 1/Т, 2/Т, 3/Т, ...
 - B) $2\pi/T$, $4\pi/T$, $6\pi/T$...

- г) 1/T, 3/T, 5/T, ...
- 8. Какие гармоники содержатся в периодических прямоугольных импульсах (меандр) с длительностью периода равном Т?
 - a) T, 2T, 3T, ...
 - б) 1/Т, 2/Т, 3/Т, ...
 - B) $2\pi/T$, $4\pi/T$, $6\pi/T$...
 - г) 1/T, 3/T, 5/T, ...
- 9. Какие гармоники содержатся в периодических пилообразных импульсах с длительностью периода равном Т?
 - a) T, 2T, 3T, ...
 - б) 1/Т, 2/Т, 3/Т, ...
 - B) $2\pi/T$, $4\pi/T$, $6\pi/T$...
 - г) 1/T, 3/T, 5/T, ...
- 10. Рассматриваются два одинаковых по длительности импульса, но у одного характеристика фронта и спада существенно круче (1), чем у другого импульса (2) (с более пологими фронтом и спадом). У какого импульса ширина спектра шире в частотной области?
 - а) спектры одинаковые
 - б) 1
 - в) 2
 - 11. Как определяется детерминированный сигнал?
 - а) значение этого сигнала в любой момент времени определяется точно
- б) в любой момент времени этот сигнал представляет собой случайную величину, которая принимает конкретное значение с некоторой вероятностью
- в) в любой момент времени этот сигнал представляет собой не случайную величину, которая принимает конкретное значение с некоторой вероятностью
 - г) значение этого сигнала нельзя определить точно в любой момент времени
 - 12. Какими параметрами определяется гармонический сигнал?
 - а) амплитудой А и частотой ω
 - б) амплитудой А и начальной фазой ф
 - в) амплитудой А, частотой ω и начальной фазой φ
 - г) частотой ω и начальной фазой ϕ
 - 13. Сигнал, изменяющийся дискретно и по аргументу, и по значению,
 - а) цифровой
 - б) дискретно-аналоговый
 - в) аналого-дискретный
 - г) аналоговый
 - 14. Какие из приведенных сигналов ортогональны?
 - а) возрастающая и спадающая экспоненты

- б) синусоида и косинусоида
- в) коды Уолша
- г) синусоида и косинусоида различных некратных частот
- 15. Поясните физический смысл корреляционной функции.
- а) скорость нарастания амплитуды одного из рассматриваемых сигналов
- б) суммарная энергия двух сигналов
- в) взаимная энергия двух сигналов
- г) относительная энергия двух сигналов
 - 16. Случайные стационарные процессы, это случайные процессы, у которых:
- а) статистические характеристики, которых одинаковы во всех временных сечениях
- б) статистические характеристики, которых различны в зависимости от временных сечений
 - в) у которых, статистические характеристики стремятся к бесконечности
- г) статистические характеристики, которых не могут принимать нулевые значения
 - 17. Укажите параметры, которыми характеризуются сигналы
 - а) динамический диапазон
 - б) время доступа
 - в) длительность
 - г) ширина полосы пропускания
 - д) ширина спектра
 - е) энергия
- 18. Каждая спектральная составляющая (гармоника) в спектре периодического сигнала, при использовании в качестве базиса системы тригонометрических функций, представляет собой:
 - а) сложное колебание прямоугольной формы
 - б) гармоническое колебание
 - в) бигармоническое колебание
 - г) колебание с экспоненциальной огибающей
- 19. Сигнал, непрерывно изменяющийся и по аргументу, и по значению называется:
 - а) аналоговым
 - б) дискретно-аналоговым
 - в) аналого-дискретным
 - г) цифровым
 - 20. Теорема Винера-Хинчина имеет вид:

a)
$$R(\tau) = \int_{-\infty}^{\infty} W(\omega) \ell^{jw\tau} wd$$

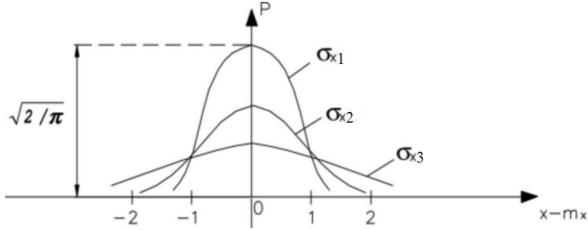
$$\delta) R(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} W(\omega) \ell^{jw\tau} wd$$

$$\mathbf{B}) R(\tau) = \frac{1}{2} \int_{-T/2}^{T/2} W(\omega) \ell^{jw\tau} w d$$

$$\Gamma) \ R(\tau) = \int_{-\infty}^{\infty} W(\omega) w d$$

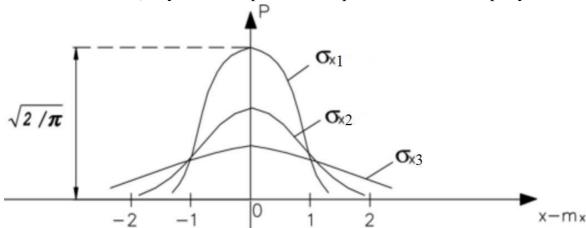
21. Дельта-функция или функция Дирака удовлетворяет соотношению:

a)
$$\int_{0}^{\infty} \delta(t) dt = 1$$


$$\mathfrak{S}(t) \int_{-\infty}^{\infty} \delta(t) dt = 0$$

$$\mathbf{B})\int_{-\infty}^{\infty}\delta(t)dt\neq0$$

$$\Gamma) \int_{-\infty}^{\infty} \delta(t) dt = \infty$$


- 22. Какие параметры изменяются во времени у узкополосных сигналов?
- а) частота и фаза
- б) амплитуда и частота
- в) амплитуда и фаза
- г) амплитуда частота и фаза

23. Чему равно математическое ожидание случайных процессов, представленных на рисунке?

- a) 0
- б) 1
- в) 2
- г) -1

24. Укажите, как соотносятся между собой средние квадратические отклонения σ_{x1} , σ_{x2} и σ_{x3} случайных процессов, представленных на рисунке?

- a) $\sigma_{x1} < \sigma_{x2} < \sigma_{x3}$
- σ) σ_{x1}>σ_{x2}>σ_{x3}
- B) $\sigma_{x1} = \sigma_{x2} = \sigma_{x3}$
- Γ) $\sigma_{x1} = \sigma_{x2} < \sigma_{x3}$

25. Нормальная функция плотности вероятности дана выражением:

a)
$$W(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m_1)^2}{2\sigma^2}\right)$$

б)
$$W(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m_1)}{2\sigma^2}\right)$$

B)
$$W(x) = \exp\left(-\frac{(x-m_1)}{2\sigma^2}\right)$$

$$\Gamma W(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - m_1)^3}{2\sigma^2}\right)$$

26. Одномерная функция распределения вероятности характеризует вероятность того, что случайный процесс принимает значения:

- a) $x < x_0$
- δ) $x=x_0$
- $\mathbf{B}) \mathbf{x} > \mathbf{x}_0$
- L) X<∞</p>
- д) х>∞

27. Корреляционная функция характеризует:

- а) степень статистической связи двух значений случайного процесса
- б) среднее значение процесса
- в) амплитуду процесса
- г) мощность процесса

28. Энергетический спектр случайного процесса – это:

а) зависимость энергии составляющих процесса от частоты

- б) зависимость энергии составляющих процесса от времени
- в) зависимость фазы составляющих процесса от частоты
- г) зависимость амплитуды составляющих процесса от частоты
- 29. Корреляционная функция и энергетический спектр случайного процесса связаны преобразованием:
 - а) Винера-Хинчина
 - б) Фурье
 - в) Лопиталя
 - г) Тейлора
- 30. Ширина энергетического спектра и интервал корреляции случайного процесса:
 - а) обратно пропорциональны друг другу
 - б) прямо пропорциональны друг другу
 - в) независимы
 - г) всегда равны
- 31. Интервал корреляции уменьшился в 4 раза. Следовательно, ширина энергетического спектра этого процесса:
 - а) увеличилась в 4 раза
 - б) уменьшилась в 4 раза
 - в) увеличилась в 16 раз
 - г) уменьшилась в 16 раз
- 32. На входе линейной цепи действует нормальный случайный процесс. Процесс на выходе этой цепи:
 - а) нормальный
 - б) не нормальный
 - в) детерминированный
 - г) равен 0
- 33. Какими параметрами однозначно характеризуется сигнал с нормальным распределением?
 - а) интегралом вероятности
 - б) функцией распределения
 - в) дисперсией и матожиданием
 - г) мошностью
 - д) мощностью и постоянной составляющей
 - 34. Дисперсия случайного процесса это:
 - а) средняя мощность переменной составляющей случайного процесса
 - б) постоянная составляющая случайного процесса
 - в) переменная составляющая случайного процесса
 - г) мощность постоянной составляющей случайного процесса
 - 35. Математическим ожиданием случайной величины называют:

а) максимальное значение случайной величины б) минимальное значение случайной величины в) среднее значение случайной величины г) среднеквадратическое значение случайной величины
36. Разброс случайной величины относительно её среднего значения
теризует
а) математическое ожидание
б) дисперсия
в) среднеквадратическое отклонение г) функция корреляции
37. Укажите пределы изменения коэффициента корреляции а) от -1 до 1 б) от 0 до 1 в) от 1 до 2 г) от -1 до 0
38. Какими параметрами однозначно описывается «белый шум»?
а) интегралом вероятности
б) функцией распределения
в) дисперсией и матожиданием
г) мощностью д) мощностью и постоянной составляющей
39. «Белый» шум имеет: а) равномерный спектр в полосе частот от 0 до бесконечности б) спектр в полосе частот от 20 Гц до 20 кГц в) спектр в полосе частот от 0 до 100 ГГц г) спектр в полосе частот от 10 до 100 МГц
40. Для оценки степени связи между двумя различными сигналами S1(t) и S2(t)
ъзуется:
а) спектральная плотность произведения сигналов $S1(t)$ и $S2(t)$ б) взаимно-корреляционная функция $B_{S1S2}(\tau)$

- испо
 - в) интеграл Дюамеля
 - г) ковариационная функция
 - 41. Шумы и помехи в канале связи представляют собой ____ процессы.
 - а) случайные
 - б) полезные
 - в) детерминированные;
 - г) регулярные
 - 42. Сигналы, значения которых можно предсказать с вероятностью 1:
 - а) детерминированные

б) квазидетерминированные
в) случайные
г) шумовые
43. Сигналы, значения которых нельзя предсказать точно:
а) стохастические
б) детерминированные
в) неслучайные
г) достоверные
44. Дисперсии складываются при сложении случайных процессов.
45. Эргодический случайный сигнал является случайным процессом.
46. Функция плотности вероятностей гауссовского сигнала а) $\exp(-x^2/2D)/\sqrt{2\pi D}$
$6) x \exp(-x^2/2D)/D$
B) $a \exp(-ax)$
Γ) $\lambda^k \exp(-\lambda)/k!$
47. Модуль спектральной плотности амплитуд сигнала: $S(f) = A$; $0 < f < 1\Gamma u$; .
Ширина спектра сигнала равна
48. Базисные функции ряда Котельникова имеют вид:
$a)\{\frac{\sin\omega_{\max}(t-kT)}{\omega_{\max}(t-kT)}\}$
$\mathfrak{S}\left\{\frac{\sin(n+1)(\pi t/T)}{(n+1)\sin(\pi t/T)}\right\}$
$\mathbf{B})\{e^{J(t-kT)}\}$
Γ) $\{t^k\}$
49. В аддитивном канале связи дисперсии сигнала и шума складываются, если
сигнал и шум случайные процессы
а)произвольные
б) равноправные
в)независимые
г) одинаковые
50. В аддитивном канале связи и сигнал и шум гауссовские случайные
процессы. Отклик канала связи является
а) райсовским
б) релеевским
в) гауссовским

г)марковским

51. В аддитивном канале связи и сигнал и шум независимые случайные процессы с дисперсиями 19 (B^2) и 6 (B^2). Дисперсия отклика канала связи равна _____ B^2

52. Установите соответствие среднего значения и дисперсии (справа) нормальной ФПВ (слева):

P	мальной ФПБ (слева).		
1.	$W(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-10)^2}{2}\right)$	a)	10, 1
2.	$W(x) = \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{(x-4)^2}{8}\right)$	б)	4, 4
3.	$W(x) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{(x+2)^2}{18}\right)$	в)	-2,9
4.	$W(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$	Г)	0,1

1.	2.	3.	4.

53. Установите соответствие среднего значения и дисперсии (справа) нормальной ФПВ (слева):

1.	$W(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(x-110)^2}{2}\right)$	a)	110,1
2.	$W(x) = \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{(x-14)^2}{8}\right)$	б)	14, 4
3.	$W(x) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{(x+22)^2}{18}\right)$	в)	-22,9
4.	$W(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right)$	г)	0,1

1.	2.	3.	4.

54. Установите соответствие мощности белого шума в полосе частот 628 рад/с (справа) спектральной плотности белого шума на единичном сопротивлении (слева):

1.	3 Вт/Гц	a)	300 Вт
2.	15 Вт/Гц	б)	1500 Вт

3.	0,11 Вт/Гц	в)	11 Вт

1.	2.	3.

55. Установите соответствие между изменением интервала корреляции и соответствующим ему изменением ширины энергетического спектра:

			<u>, 1</u>
1.	Интервал корреляции уменьшился	a)	ширина энергетического
	в 3 раза		спектра увеличилась в 3 раза
2.	Интервал корреляции уменьшился	б)	ширина энергетического
	в 2 раза		спектра увеличилась в 2 раза
3.	Интервал корреляции уменьшился	B)	ширина энергетического
	в 4 раза		спектра увеличилась в 4 раза
		L)	ширина энергетического
			спектра уменьшилась в 3 раза
		д)	ширина энергетического
			спектра уменьшилась в 2 раза
		e)	ширина энергетического
			спектра уменьшилась в 4 раза
		ж)	ширина энергетического
			спектра уменьшилась в 9 раз
		3)	ширина энергетического
			спектра уменьшилась в 16
			раза
		к)	ширина энергетического
			спектра увеличилась в 16 раза

1.	2.	3.

56. Нормальный случайный процесс, имеющий ФПВ вида $W(x) = \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{x^2}{8}\right);$ подвергается нелинейному преобразованию $y=x^2$. ФПВ процесса у имеет вид:

a)
$$W(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y}{8}\right)$$

$$6) W(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y^2}{8}\right)$$

B)
$$W(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y^3}{8}\right)$$

$$\Gamma) W(y) = \frac{1}{\sqrt{2\pi y}} \exp\left(-\frac{y}{2}\right)$$

57. Нормальный случайный процесс, имеющий ФПВ вида: $W(x) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{x^2}{2}\right);$ подвергается нелинейному преобразованию y=|x| . ФПВ процесса у имеет вид:

a)
$$W(y) = \frac{2}{\sqrt{2\pi}} \exp\left(-\frac{y^2}{2}\right); y > 0$$

$$6) W(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y^2}{8}\right)$$

B)
$$W(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y^3}{8}\right)$$

$$\Gamma(y) = \frac{1}{2\sqrt{2\pi y}} \exp\left(-\frac{y}{2}\right)$$

58. Нормальный случайный процесс, имеющий ФПВ вида: $W(x) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{x^2}{18}\right);$ подвергается преобразованию y=x +1 . ФПВ процесса у имеет вид:

a)
$$W(y) = \frac{1}{3\sqrt{2\pi}} \exp\left(-\frac{(y-1)^2}{18}\right)$$

$$6) W(y) = \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{y^2}{8}\right)$$

B)
$$W(y) = \frac{1}{2\sqrt{2\pi}} \exp\left(-\frac{y^3}{8}\right)$$

$$\Gamma) W(y) = \frac{1}{3\sqrt{2\pi y}} \exp\left(-\frac{y}{2}\right)$$

59. Установите соответствие между названием закона распределения и формулой для определения соответствующей ему плотности распределения вероятностей

1.	Нормальный	a)	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$
2.	Релея	б)	$\frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \ x \ge 0$
3.	Равномерный	в)	$\frac{1}{b-a}, a \le x \le b$
		г)	$\alpha\beta x^{\alpha-1}\exp(-\beta x^{\alpha}), x \ge 0$

1.	2.	3.

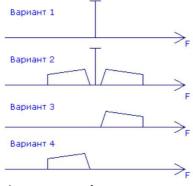
60. Установите соответствие между названием закона распределения и

формулой для определения соответствующих ему моментов

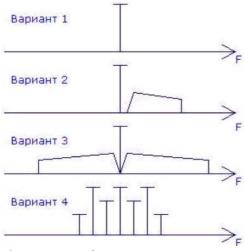
1.	Нормальный	a)	$m_1 = a, \mu_2 = \sigma^2,$
			$\mu_3 = 0, \mu_4 = 3\sigma^4$
2.	Релея	б)	$m_1 = \sigma \sqrt{\pi/2}$, $m_2 = 2\sigma^2$,
			$\mu_2 = \frac{4-\pi}{2}\sigma^2, \mu_3 \cong 0.63\sigma^3,$
			$\mu_4 \cong 2.7\sigma^4$
3.	Равномерный	в)	$m_1 = \frac{a+b}{2}, \ \mu_2 = \frac{(b-a)^2}{12},$
			$\mu_3 = 0, \ \mu_4 = \frac{1}{80} (b - a)^4$
		Г)	$m_1 = 1/\lambda, m_2 = 2/\lambda^2,$
			$\mu_2 = 1/\lambda^2, \mu_3 = 2/\lambda^3,$
			$\mu_4 = 9/\lambda^4$

1.	2.	3.

1. Аналитическое выражение для сигнала АМ следующее:


a)
$$u(t) = U_m[1 + M_a a(t)] \cos(\omega_0 t + \varphi_0)$$

δ)
$$u(t) = U_m \cos[\omega_0 t + k \int_0^t a(\tau) d\tau + \varphi_0]$$


$$B)u(t) = U_m \cos[\omega_0 t + k a(t) + \varphi_0]$$

$$\Gamma) u(t) = ka(t) \cos(\omega_0 t + \varphi_0)$$

- 2. Полоса частот, занимаемая спектром радиосигнала с амплитудной модуляцией, определяется:
 - а) коэффициентом модуляции М
 - б) амплитудой изменения огибающей модулированного сигнала
 - в) наивысшей частотой в спектре модулирующего сигнала
- 3. Для описания частотного коэффициента передачи линейной системы используют:
 - а) переходную характеристику системы
 - б) амплитудно-частотную характеристику системы
 - в) фазочастотную характеристику системы
- 4. Как графически изображается спектр сигнала при однополосной модуляции с нижней боковой полосой?

- а) вариант 1
- б) вариант 2
- в) вариант 3
- г) вариант 4
- **1.** Как графически изображается спектр сигнала при частотной (фазовой) модуляции?

- а) вариант 1
- б) вариант 2
- в) вариант 3
- г) вариант 4
- 6. Что характеризует коэффициент модуляции при амплитудной модуляции?
- а) коэффициент модуляции при амплитудной модуляции характеризует ширину амплитудной модуляции и соотношение между несущей частотой и ширинойспектра
- б) коэффициент модуляции при амплитудной модуляции характеризует способность передавать высокочастотные сигналы
- в) коэффициент модуляции при амплитудной модуляции характеризует глубину амплитудной модуляции и соотношение между уровнями несущей и боковых полос
- г) коэффициент модуляции при амплитудной модуляции характеризует способность передавать низкочастотные сигналы
- 7. Как связаны девиация частоты и индекс модуляции при частотной модуляции
- а) индекс модуляции при частотной модуляции определяется как разность между максимальной девиацией частоты (за один период модулирующего сигнала) и частотой модуляции
- б) индекс модуляции при частотной модуляции определяется как отношение частоты модуляции к максимальной девиации частоты (за один период модулирующего сигнала)
- в) индекс модуляции при частотной модуляции определяется как произведение максимальной девиации частоты (за один период модулирующего сигнала) на частоту модуляции
- г) индекс модуляции при частотной модуляции определяется как отношение максимальной девиации частоты (за один период модулирующего сигнала) к частоте модуляции
 - 8. Какие ниже приведенных видов модуляции являются линейными?
 - а) фазовая
 - б) частотная

- в) амплитудная
- г) однополосная
- 9. Выберите подходящие функции демодулятора в системах передачи сообщений
- а) анализ смеси сигнала с помехой на интервале длительности сигнала и принятие решения о переданном символе сообщения
 - б) преобразование ВЧ сигнала в НЧ сигнал, подобный модулирующему
- в) наиболее точное воспроизведение формы первичного (модулирующего) сигнала путем обработки принятого колебания
 - г) преобразование сигнала в сообщение
- 10. Рабочая точка на статической характеристике частотного детектора (СХД) выбирается:
 - а) в середине линейного участка СХД
 - б) в середине линейного участка ВАХ диода
 - в) в любой точке нелинейного участка СХД
 - г) на участке насыщения СХД
- 11. Назначение частотного детектора сформировать сигнал, соответствующий закону изменения:
 - а) частоты входного сигнала
 - б) амплитуды входного сигнала
 - в) фазы входного сигнала
 - г) производной входного сигнала
- 12. Формула ЧМ сигнала имеет вид: $u(t)=0.02\cos(3140t+0.3\sin 20t)$. Параметры этого сигнала ЧМ:
 - а) U_m =0.02 B; f_0 = 500 Γ ц; $M_{\text{\tiny H}}$ =0.3; Ω = 20 рад/с
 - б) $U_m = 0.02 \text{ B}$; $f_0 = 3140 \text{ Гц}$; $M_q = 0.3$; $\Omega = 20 \text{ рад/c}$
 - в) U_m =0.02 B; f_0 = 500 $\Gamma \rm {tt};$ $M_{\rm \tiny H}$ =0.3; Ω = 20 $\Gamma \rm {tt}$
 - г) U_m =0.3 B; f_0 = 500 Гц; $M_{\mbox{\tiny q}}$ =0.02; Ω = 20 рад/с
- 13. Максимальная и минимальная частоты при ЧМ равны, соответственно, 120 кГц и 140 кГц. Модулирующая частота равна 62800 рад/с. Ширина спектра ЧМ равна:
 - а) 40 кГц
 - б) 20 кГц
 - в) 50 кГц
 - г) 120 кГц
 - д) 140 кГц
- 14. Максимальная и минимальная частоты при ЧМ равны, соответственно, 16 кГц и 20 кГц. Модулирующая частота равна 3140 рад/с. Ширина спектра ЧМ равна:
 - а) 5 кГц
 - б) 20 кГц

- в) 500 Гц г) 16 кГц д) 4 кГц 15. Максимальная и минимальная частоты при ЧМ равны, соответственно, 10 кГц и 12 кГц. Модулирующая частота равна 6280 рад/с. Индекс ЧМ равен: a) 1
 - б) 2 B) 3
 - Γ) 2,2
- 16. Максимальная и минимальная частоты при ЧМ равны, соответственно, 10 кГц и 12 кГц. Девиация частоты равна:
 - а) 6280 рад/с
 - б) 1000 рад/с
 - в) 10 кГц
 - г) 12 кГц
 - 17. Напряжение, в соответствии с которым при ЧМ изменяется частота:
 - а) модулирующее
 - б) модулируемое
 - в) переносчик
 - г) несущая
- 18. Максимальная амплитуда АМ-сигнала U_{max} =3B, минимальная U_{min} =1 B. Глубина модуляции равна:
 - a) 0,5
 - б) 1
 - в) 3
 - Γ) 0,33
- 19. Укажите верную последовательность частот спектра амплитудномодулированного сигнала, заданного выражением $U(t)=10\cdot[1+\cos(628\cdot t)]\cdot\cos(31400\cdot t)$
 - а) 4.9 кГц; 5 кГц; 5.1 кГц
 - б) 100 Гц; 5000 Гц
 - в) 5 кГц; 0.1 кГц
 - г) 5000 Гц; 100 Гц; 5 кГц
- 20. Частота среза фильтра, выполняющего демодуляцию АИМ-сигнала составляет
 - а) 8 кГц
 - б) 3,4 кГц
 - в) 16 кГц
 - г) 4 кГц

- 21. Используется квадратурная фазовая манипуляция для передачи данных со скоростью 20 кбит/с. Какова ширина главного лепестка спектра?
 - а) 20 кГц
 - б) 10 кГц
 - в) 30 кГц
 - г) 40 кГц
 - 22. В виде суммы двух каких сигналов можно представить любой сигнал?
 - а) сверхвысокочастотных
 - б) ортогональных
 - в) амплитудно-модулированных
- 23. Что показывает индекс амплитудной модуляции, и на какие спектральные параметры он влияет?
 - а) мощность несущей; на уровень боковых полос
 - б) глубину модуляции; на ширину спектра
 - в) мощность несущей; на ширину спектра
 - г) глубину модуляции; на мощность, приходящуюся на боковые полосы
 - д) глубину модуляции; на уровень боковых полос
- 24. Речевое сообщение с полосой 300...3000 Гц передают с помощью амплитудной модуляции на частоте 11 МГц. Индекс модуляции равен 0.5. Какова занимаемая полоса в радиоэфире и минимально допустимая полоса пропускания полосового фильтра на выходе передатчика?
 - а) 11.006 МГц; 6 кГц
 - б) 5400 Гц; 6 кГц
 - в) 6000 Гц; 6000 Гц
 - г) 11006 кГц; 11005.4 кГц
- 25. Правило манипуляции при двоичной относительной фазовой модуляции: при передаче 1 фаза данной посылки отличается от фазы предыдущей посылки на 180° , а при передаче 0 фаза данной посылки:
 - а) равна фазе предыдущей посылки
 - б) отличается от фазы предыдущей посылки на 90°
 - в) отличается от фазы предыдущей посылки на -180°
 - Γ) отличается от фазы предыдущей посылки на -90 0
- 26. Что показывает индекс частотной модуляции, и на какие спектральные параметры он влияет?
 - а) мощность несущей; на уровень боковых полос
 - б) отношение девиации частоты к модулирующей частоте; на ширину спектра
 - в) отношение модулирующей частоты к девиации частоты; на ширину спектра
- г) отношение девиации частоты к модулирующей частоте; на уровень боковых полос

- 27. Речевое сообщение с полосой 300...3000 Гц передают с помощью частотной модуляции на частоте 11 МГц. Индекс модуляции равен 10. Какова занимаемая полоса в радиоэфире и минимально допустимая полоса пропускания полосового фильтра на выходе передатчика?
 - а) 30 кГц; 30 кГц
 - б) 27000 Гц; 30 кГц
 - в) 11027 кГц; 6000 Гц
 - г) 11006 кГц; 11005.4 кГц
 - д) 10 кГц; 10 кГц
- 28. Почему для радиосигналов с меняющейся огибающей применяется линейное усиление?
 - а) для устранения эффекта перемодуляции
 - б) для установления необходимого динамического диапазона
 - г) для сохранения информации во входном сигнале
 - д) для минимизации коэффициента гармоник на выходе
- 29. В каком режиме может работать усилитель мощности при усилении радиосигналов с постоянной огибающей?
 - а) в режиме насыщения
 - б) в линейном режиме
- 30. Каков существенный недостаток линейных усилителей мощности, по сравнению с нелинейными усилителями?
 - а) сложность изготовления
 - б) недостатков нет
 - в) малый кпд
 - г) применяются только для низкочастотных сигналов
- 31. Почему для радиосигналов с меняющейся огибающей нежелательно применять нелинейное усиление?
 - а) происходит температурная дестабилизация усилителя
 - б) данный тип усиления успешно применяется
 - в) появление комбинационных частот
 - г) расширение спектра на выходе
 - д) потеря информационной составляющей
 - 32. Какие сигналы обладают хорошими автокорреляционными свойствами?
 - а) гармонические
 - б) меандровые
 - в) сигналы Баркера
 - г) коды Уолша
 - д) ЛЧМ сигналы
 - е) хаотические
 - ж) шумовые с нормальным распределением

33. Каково достоинство сигналов с хорошими автокорреляционными
свойствами?
а) пригодность для нелинейного усиления
б) точность определения во времени
в) относительно короткие по длительности
34. Интервал дискретизации, если спектр сигнала ограничен частотой 500 Гц,
равен
35. Спектр сигнала, для которого интервал дискретизации равен 10мс,
ограничен частотой:
a) 50 Гц;
б) 100 Гц
в) 10мс;
г) 50 мс
д) 50 рад/с
36. В соответствии с теоремой Котельникова осуществляется
непрерывной функции.
а) дискретизация
б) квантование
в) усиление
г) ослабление
37. Для определения интервала дискретизации по теоремеКотельникова
должна быть задана спектра функции.
а) ширина
б) высота
в) длительность
г) полнота
38. Для восстановления непрерывной функции из отсчетов используется
ФНЧ.
а) идеальный
б) реальный
B) RC
г) хороший
39. Теорема Котельникова справедлива точно для сигнала:
а) с финитным спектром
б) с бесконечным спектром
в) с дискретным спектром
г) с неограниченным спектром
40. Частота дискретизации равна:
а) удвоенной ширине спектра сигнала

- б) ширине спектра сигнала
- в) половине ширины спектра сигнала
- г) интервалу дискретизации
- 41. Интервал дискретизации по теореме Котельникова для сигнала, спектр которого ограничен частотой F_m , равен:
 - $a)\frac{1}{2F_m}$
 - б) 1/F_m
 - $_{\rm B})\,F_{\rm m}$
 - $_{\Gamma})$ 2/ F_{m}
 - д) $2 F_m$
- 42. Интервал дискретизации, если спектр сигнала ограничен частотой 500 Гц, равен:
 - a) *1 мс*
 - б) 2 мс
 - в) 500 мс
 - г) 1000 Гц
 - д) 500 Гц
- 43. Интервал дискретизации по теореме Котельникова для сигнала, спектр которого ограничен частотой ω_m , равен:
 - a) $\frac{\pi}{\omega_m}$
 - б) $\frac{1}{\omega_m}$
 - $_{\mathrm{B}})\frac{\pi}{2\omega_{m}}$
 - Γ) $\frac{2\pi}{\omega_m}$
- 44. Интервал дискретизации, если спектр сигнала ограничен частотой 3140 рад/с равен:
 - a) 1 mc
 - б) 2 мс
 - в) 0.5мс
 - г) 1570 рад/с
- 45. Фамилия автора теоремы, в соответствии с которой осуществляется дискретизация функции по времени:
 - а) Котельников
 - б) Винер
 - в) Шеннон
 - г) Фурье

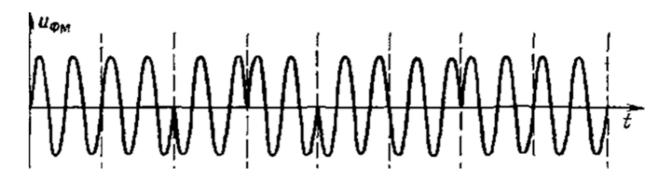
	д) Лаплас
	46. Интервал дискретизации, если частота дискретизации 100 Гц, равен: а) 10 мс б) 20 mc в) 100 mc
	г) 50 Гц д) 10 Гц
	47. Частота дискретизации, если интервал дискретизации 1мс, равна: а) 1000 Гц б) 500 Гц в) 250 Гц г) 125 Гц;
назыв	48. По теореме Котельникова отсчеты функции берутся с частотой, которую ают частотой а) дискретизации б) квантования в) усиления г) гармоники
	49. Что представлено на данном рисунке? $u(t) = u(0) = u(0) \cdot u(0) \cdot s_0 = u(2\Delta t) \cdot s_2 = u(3\Delta t) \cdot s_3$ а) графики ряда Фурье
	а) графики ряда Фурье б) графики ряда Котельникова в) графики функций Бесселя г) графики функций Берга
	50 oto povoje votavije vijevoje 6 milije i 6

- 50. _____ это замена истинных значений сигнала ближайшими разрешенными значениями.
- а) квантование
- б) кодирование
- в) фильтрация
- г) дискретизация

		- это	замена	квантованных	уровней	сигнала	кодовыми
	комбинациями.						
	а) кодирование						
	б) квантование						
	в) фильтрация						
	г) дискретизация						
	52. Уровни квант	ования	0, 1, 2,	3, Сигнал пр	инял знач	ение 2,64	I. Значение
сигна	ала на выходе квант	говател	я:				
	a) 3						
	б) 2						
	в) 2.6						
	г) 1						
	д) 2,7						
	53. Кодер превра	іщает в	квантова	нный уровень	в соответ	ствующе	е двоичное
число	о, т.е. в комбинаци	ю из 3-	х символ	юв. На входе ко	дера 5-ой	уровень.	На выходе
комб	инация:						
	a) 101						
	б) 111						
	в) 011						
	г) 110						
	д) 001						
	54. Количество у	ровней	квантов	вания равно 16.	Длина к	одовой к	омбинации
двои	чного сигнала ИКМ	-		•			
	a) 4	•					
	б) 2						
	в) 16						
	r) 3						
	д) 5						
	55. Помеха, возни а) шум квантовани		я в проце	ессе операции к	вантовани	я, называс	ется:
	б) белый шум						
	в) шум кодирован	ия					
	г) тепловой шум						
	56. Ряд Котельни	кова ис	·ΠΛΠΙ 2 <i>ΝΑ</i> 1	rea ппа п ന ലാലാ	рпециа пе	п nen tibua	лго сигнапа
S(t) p	виде:	KODA MC	пользуст	тол для предста	ылыни пс	прерывис	or chi italia
S(t) B	виде. a) ряда предста	ייו∧וסתקו	iero cyn	иму членов с	OCTOGIIIIAV	из па	оизведения
коэф	a) ряда предста фициента ряда c_n на		_	•		из пр	изьсдения

б) ряда представляющего сумму членов состоящих последовательности

отсчетов сигнала взятых через интервал времени $\Delta t = 1/2 f_m$, где f_m –наивысшая


частота в спектре сигнала, умноженного на функцию вида (sinx)/х

- в) ряда представляющего сумму членов состоящих последовательности примыкающих друг к другу прямоугольных импульсов
 - 57. В результате процесса дискретизации получается последовательность...
- а) гармонических колебаний, амплитуда которых соответствует значениям непрерывного сигнала
- б) прямоугольных импульсов, амплитуда которых соответствует значениям непрерывного сигнала
- в) прямоугольных импульсов, амплитуда которых соответствует значениям непрерывного сигнала в тактовые моменты времени
- г) трапецеидальных импульсов, амплитуда которых соответствует значениям непрерывного сигнала в тактовые моменты времени
- 58. В чем состоит преимущество фильтра низких частот Баттерворта перед другими фильтрами?
 - а) линейность фазово-частотной характеристики
 - б) набольшая прямоугольность АЧХ
- в) плоскость характеристики как в полосе пропускания, так и в полосе задерживания
 - г) относительная постоянность характеристики групповой задержки частот
- 59. При обработке сигналов приходится увеличивать или уменьшать частоту дискретизации сигналов. Что производит функция передискретизации?
 - а) повышает чистоту дискретизации в целое число раз
 - б) изменение частоты дискретизации в произвольное число раз
 - в) понижение частоты дискретизации в целое число раз
 - г) повышение частоты дискретизации в произвольное число раз
- 60. Импульсной характеристикой системы называется функция h(t) являющаяся откликом системы на входной сигнал в виде:
 - а) прямоугольного импульса с единичной амплитудой
 - б) дельта-функции Дирака
- в) единичного скачка ступенчатой функции единичной амплитуды (функции Хевисайда)
- 61. Какие условия Дирихле должен удовлетворять ряд Фурье что бы разложение существовало?
- а) не должно быть разрывов второго рода и число экстремумов должно быть конечным
- б) не должно быть разрывов второго рода, число разрывов первого рода должно быть конечным и число экстремумов должно быть конечным
- в) не должно быть разрывов второго рода и число разрывов первого рода должно быть конечным
- г) число разрывов первого рода должно быть конечным и число экстремумов должно быть конечным

- 62. Какая из представленных формул является формулой прямого преобразования Фурье?

 - a)S(ω)= $\int_{-\infty}^{\infty} s(t)e^{-j\omega t}dt$ б) S(ω)= $\int_{0}^{T} s(t)s(t-\tau)dt$
 - B) $S(\omega) = \frac{1}{T} \int_{0}^{T/2} s(t)e^{-j\omega t} dt$
 - Γ) $S(\omega) = \frac{1}{\pi} \int_{-\tau}^{\infty} \frac{s(t)}{t-\tau} dt$
 - 63. Преобразование сигналов АИМ-1 в АИМ-2 проводится с целью
 - а) обеспечения устойчивой работы аналого-цифровых преобразователей
 - б) уменьшения искажений при демодуляции АИМ-сигнала
 - в) упрощения разделения отдельных каналов на приеме
 - г) устранения переходных помех между каналами в АИМ-тракте
 - 64. Нелинейные искажения в АИМ-тракте возникают вследствие
 - а) ограничения канала по амплитуде
 - б) ограничения спектра полосы пропускания канала
 - в) временной задержки в канале
 - г) воздействия внешних помех
- 65. Используется минимальная частотная манипуляция для передачи данных со скоростью 50 кбит/с. Какова ширина главного лепестка спектра?
 - а) 25 кГц
 - б) 75 кГц
 - в) 100 кГц
 - г) 50 кГц
- 66. Используется обычная фазовая манипуляция для передачи данных со скоростью 7 кбит/с. Какова ширина главного лепестка спектра?
 - а) 21 кГц
 - б) 14 кГц
 - в) 7 кГц
 - г) 3.5 кГц
- 67. В чем состоит преимущество фильтра низких частот Бесселя перед другими фильтрами?
 - а) линейность фазово-частотной характеристики
 - б) набольшая прямоугольность АЧХ
- в) плоскость характеристики как в полосе пропускания, так и в полосе задерживания
 - г) относительная постоянность характеристики групповой задержки частот

- 68. Как сформировать компактный спектр при передаче цифровых данных?
- а) использовать полосовой фильтр на выходе передатчика
- б) применить блочное кодирование данных
- в) использовать предмодуляционную фильтрацию данных
- г) необходимо использовать линейное усиление
- 69. Для нормального воспроизведения музыки верхняя частота звучания выбрана 12 кГц. Данный сигнал подается на аналогово-цифровой преобразователь. Применяется восьмиуровневое кодирование. Какова скорость битового потока на выходе АЦП?
 - а) 12 кбит/с
 - б) 64 кбит/с
 - в) 96 кбит/с
 - г) 192 кбит/с
 - д) 1256 кбит/с
- 70. Найдите соответствие двоичный код, соответствующий реализации при ДОФМ

- a) 11011011
- б) 10110010
- в) 10111110
- г) 10111010
- д) 11010011
- 71. Модуляцией называется:
- а) изменение какого-либо из параметров высокочастотного (несущего) колебания в соответствие с передаваемым сообщением
 - 2) отклонение частоты или фазы
 - 3) изменение направления распространения радиосигнала
 - 72. Демодуляция это процесс...
- а) преобразования модулированного высокочастотного сигнала в низкочастотный модулирующий сигнал
- б) преобразования немодулированного высокочастотного сигнала в низкочастотный модулирующий сигнал
- в) преобразования модулированного высокочастотного сигнала в высокочастотный информационный сигнал

- г) преобразования модулированного низкочастотного сигнала в высокочастотный модулирующий сигнал
- д) преобразования модулирующего высокочастотного сигнала в низкочастотный модулированный сигнал
 - 73. Коэффициент детектирования представляет собой —:
- а) отношение амплитуды выходного низкочастотного напряжения к амплитуде огибающей входного модулированного сигнала
- б) отношение амплитуды входного низкочастотного напряжения к амплитуде выходного модулированного сигнала
- в) отношение частоты выходного низкочастотного напряжения к частоте входного модулированного сигнала
- г) отношение разности и суммы амплитуд выходного низкочастотного напряжения и входного модулированного сигнала
- д) отношение фаз выходного низкочастотного напряжения и входного модулированного сигнала
- 74. Диодный амплитудный детектор называется квадратичным, если амплитуда входного сигнала:
 - а) достаточно мала (слабый сигнал)
 - б) достаточно велика (сильный сигнал)
 - в) равна 1 В
 - г) равна 1 мВ
- 75. Диодный амплитудный детектор называется линейным, если амплитуда входного сигнала:
 - а) достаточно велика (сильный сигнал)
 - б) достаточно мала (слабый сигнал)
 - в) равна 1 В
 - г) равна 1 мВ
- 76. Назначение амплитудного детектора сформировать сигнал, соответствующий закону изменения ... входного сигнала
 - а) амплитуды
 - б) частоты
 - в) фазы
 - г) относительной фазы
 - д) производной
 - 77. Диодный амплитудный детектор содержит:
 - а) нелинейный элемент (диод) и линейную цепь (ФНЧ)
 - б) нелинейный элемент (диод)
 - в) линейную цепь (ФНЧ)
 - г) нелинейный элемент (диод) и линейную цепь (резонансный контур)
 - 78. Назначение нелинейного элемента амплитудного детектора:

- а) создать модулирующую частоту в спектре выходного тока
- б) отфильтровать модулирующую частоту в спектре выходного тока
- в) усилить входной сигнал
- г) создать несущую частоту в спектре выходного тока
- 79. Назначение ФНЧ в амплитудном детекторе:
- а) выделить из тока диода модулирующую частоту
- б) создать модулирующую частоту в спектре тока диода
- в) усилить входной сигнал
- г) создать несущую частоту в спектре выходного тока
- 80. Диодный амплитудный детектор называется квадратичным, если рабочий участок ВАХ аппроксимируется выражением:
 - a) $i=a_0 + a_1 u + a_2 u^2$
 - б) $i=a_2 u^2$
 - B) $i=a_1u+a_2u^2$
 - Γ) $i=a_0 + a_1 u$
- 81. Постоянная времени цепочки RC амплитудного детектора выбирается из условия:
 - a) $1/w_0 << RC << 1/\Omega$
 - б) RC= $1/w_0$
 - B) RC= $1/\Omega$
 - Γ) $1/\Omega$ << RC<< $1/w_0$
 - 82. Частотный детектор на расстроенных контурах содержит:
- а) два резонансных контура, симметрично расстроенных относительно средней частоты ЧМ сигнала, и два амплитудных детектора
- б) два резонансных контура, симметрично расстроенных относительно средней частоты ЧМ сигнала и генератор
 - в) два амплитудных детектора и контур
 - 83. Назначение ФНЧ в частотном детекторе:
 - а) выделить из тока диода модулирующую частоту
 - б) создать модулирующую частоту в спектре тока диода
 - в) усилить входной сигнал
 - г) создать несущую частоту в спектре выходного тока
- 84. Статическая характеристика детектирования частотного детектора это зависимость:
 - а) постоянной составляющей выходного тока от частоты входного сигнала
 - б) постоянной составляющей выходного тока от амплитуды входного сигнала
 - в) постоянной составляющей выходного тока от фазы входного сигнала
 - 85. Сигнал на выходе частотного детектора в отсутствии помех и искажений:
 - а) пропорционален модулирующему сигналу

- б) обратно пропорционален модулирующему сигналу
- в) не зависит от модулирующего сигнала
- г) пропорционален амплитуде ЧМ сигнала

86. Установите соответствие между значениями модулирующей частоты и шириной спектра АМ-сигнала:

	mion energe in in incia.		
1.	100 Гц	a)	200 Гц
2.	200 Гц	б)	400 Гц
3.	1000 Гц	B)	3000 Гц
4.	15 Гц	г)	2000 Гц
		д)	30 Гц
		e)	45 Гц
		ж)	100 Гц

1.	2.	3.	4.

87. Установите соответствие между модулирующей и несущей частотами и частотами составляющих спектра АМ-сигнала

140	ide To Taiwin Coe Taibiinioiiinix Chekipa 7 MVI Chi mana				
1.	50 Гц, 1000 Гц	a)	950 Гц, 1000 Гц, 1050 Гц		
2.	200 Гц, 5000 Гц	б)	4800 Гц, 5000 Гц, 5200 Гц		
3.	628 рад/с, 6280 рад/с	в)	900 Гц, 1000 Гц, 1100 Гц		
		г)	950 Гц, 1050 Гц, 1100 Гц		
		д)	4850 Гц, 5200 Гц, 5400 Гц		
		e)	960 Гц, 1000 Гц, 1060 Гц		

1.	2.	3.

87. Установите соответствие между амплитудами несущей, глубиной модуляции и амплитудой боковых частотных составляющих АМ-сигнала

1.	1 B, 1	a)	0,5 B
2.	8 B, 0.5	б)	2 B
3.	4 B, 0.8	в)	1,6 B
4.	6 B, 0.4	Г)	1,2 B
		д)	1,4 B
		e)	12 B

1. 2. 3. 4.

88. Установите соответствие между элементами амплитудного модулятора и их назначением

1.	транзистор	a)	сформировать новые частоты w_0 - Ω , w_0 + Ω ;
2.	резонансный контур	б)	выделить частоты w_0 - Ω , w_0 , w_0 + Ω
		B)	сформировать новые частоты w_0 , Ω
		L)	выделить несущую

1.	2.

- 89. Резонансный контур в амплитудном модуляторе должен быть настроен на:
- а) несущую частоту
- б) напряжение смещения
- в) несущая и модулирующее
- г) модулирующее напряжение
- 90. Полоса пропускания резонансного контура на выходе амплитудного модулятора должна быть равна:
 - а) удвоенной ширине спектра модулирующего сигнала
 - б) модулирующей частоте
 - в) ширине спектра модулирующего сигнала
 - г) несущей частоте
- 91. На выходе амплитудного модулятора амплитуда верхней боковой оказалась больше амплитуды нижней боковой частоты. Это означает, что резонансный контур на выходе модулятора настроен на частоту:
 - а) больше несущей частоты
 - б) равную частоте модуляции
 - в) меньше несущей частоты
 - г) равную несущей частоте
- 92. Статическая модуляционная характеристика амплитудного модулятора это зависимость амплитуды первой гармоники выходного тока от напряжения смещения при:
 - а) амплитуде несущей U_m =const и модулирующем сигнале V_m =0
 - б) амплитуде несущей U_m =const
 - в) модулирующем сигнале V_m =0
 - г) амплитуде несущей $U_{\text{m}} = 0$
- 93. Укажите верную последовательность частот в спектре АМ-сигнала: $U(t)=[1+\cos(628*t)]*\cos(3140*t)$
 - а) 400 Гц; 500 Гц; 600 Гц
 - б) 500 Гц; 500 Гц; 600 Гц

- в) 100 Гц; 500 Гц; 600 Гц
- г) 100 Гц; 500 Гц; 0.5 кГц
- 94. Укажите верную последовательность частот в спектре АМ-сигнала: U(t)=2*[1+Cos(314*t)]*Cos(6280*t)
 - а) 950 Гц; 1000 Гц; 1050 Гц
 - б) 50 Гц; 1000 Гц
 - в) 1 кГц; 50 Гц; 100 Гц
 - г) 50 Гц; 1000 Гц; 1050 Гц
- 95. Укажите верную последовательность частот в спектре АМ-сигнала: U(t)=10*[1+Cos(628*t)]*Cos(31400*t)
 - а) 4.9 кГц; 5 кГц; 5.1 кГц
 - б) 100 Гц; 5000 Гц
 - в) 5 кГц; 0.1 кГц
 - г) 5000 Гц; 100 Гц; 5 кГц
- 96. Укажите верную последовательность частот в спектре АМ-сигнала: U(t)=6*[1+0.5*Cos(6280*t)]*Cos(62800*t)
 - а) 9 кГц; 10 кГц; 11 кГц
 - б) 1 кГц; 10000 Гц
 - в) 6280 кГц; 62800 кГц
 - г) 6280 рад/с; 62800 рад/с
 - 97. Аналитическое выражение ЧМ сигнала при гармонической модуляции:
 - a) $u(t)=U_mcos(w_0t +M_usin\Omega t)$
 - σ) $u(t)=U_m cos w_0 t$
 - B) $u(t)=U_m\cos(1+M_u\cos\Omega t)$
 - Γ) $u(t)=U_m(1+M_y\cos\Omega t)\cos w_0 t$
 - 98. Соотношение между несущей w_0 и модулирующей Ω частотами при ЧМ:
 - a) $w_0 >> \Omega$
 - δ) $w_0 = Ω$
 - B) $w_0 << \Omega$
 - Γ) $W_0 = 0.5\Omega$
 - 99. Девиация частоты при ЧМ это:
 - а) максимальное отклонение несущей от среднего значения
 - б) частота несущей
 - в) максимальная частота несущей
 - г) минимальная частота несущей
 - 100. Индекс модуляции при ЧМ это:
 - а) отношение девиации частоты к частоте модуляции
 - б) частота несущей
 - в) максимальная частота несущей

г) минимальная частота несущей

101. Установите соответствие между максимальной и минимальной частотами при ЧМ и значением девиации частоты

1			
1.	2 кГц; 1 кГц	a)	3140 рад/с
2.	12 кГц; 8 кГц	б)	2 кГц
3.	112 кГц; 110 кГц	B)	6280 рад/с;
4.	62800 рад/с; 31400 рад/с	Г)	2.5 кГц
		д)	2.6 кГц
		e)	1 кГц

1.	2.	3.	4.

102. Ширина спектра сигнала ЧМ, в общем случае, равна:

- a) $2\Omega(M_{4} + 1)$
- б) $2(M_{\rm q} + 1)$
- B) 2Ω
- Γ) $2\Omega M_{\rm q}$
- д) 2M_ч

103. Максимальная и минимальная частоты при ЧМ равны, соответственно, 120 к Γ ц и 140 к Γ ц. Модулирующая частота равна 62800 рад/с. Ширина спектра ЧМ равна: _____ к Γ ц.

104. Максимальная и минимальная частоты при ЧМ равны, соответственно, 16 кГц и 20 кГц. Модулирующая частота равна 3140 рад/с. Ширина спектра ЧМ равна: ____ кГц.

105. Установите соответствие между значением девиации частоты, модулирующей частоты при ЧМ и значением ширины спектра

1.	1 кГц ; 1кГц	a)	4 кГц
2.	2 кГц ; 1 кГц	б)	6 кГц
3.	2 кГц; 2 кГц	в)	8 кГц

3.	2 кГц; 2 кГц	в)	8 кГц
		L)	2 кГц
		д)	5 кГц
		e)	10 кГц

1.	2.	3.

106. Установите соответствие между параметрами ЧМ сигнала и его формулой

1.	M_{u} =2, $w_0 = 628000$ рад/с; Ω = 62800	a)	$u(t)=6\cos(628000t + 2\sin 62800t)$
	рад/c, U _m =6 В		
2.	$M_{\rm u}$ =1, f_0 = 10 ⁵ Γ μ ; Ω = 62800 рад/с,	б)	$u(t)=2\cos(628000t + \sin 62800t)$
	$U_m = 2 B$		

3.	$M_{\text{ч}}=3, f_0=10^3 \Gamma \text{ц}; \ \Omega=628 \text{ рад/c}, \ U_{\text{m}}$	B)	$u(t)=5\cos(6280t + 3\sin 628t)$
	=5 B		
4.	$M_{\text{ч}}$ =5, $f_0 = 10^3 \Gamma \text{ц}$; $F = 100 \Gamma \text{ц}$, U_{m}	L)	$u(t)=3\cos(6280t + 5\sin 628t)$
	=3 B		
		д)	$u(t)=8\cos(1000t +0.1\sin 628t)$
		e)	$u(t)=9\cos(100t +0.9\sin 62.8t)$

1.	2.	3.	4.

107.Укажите верную последовательность параметров ЧМ-сигнала, описываемогоформулой: $u(t)=0.02\cos(3140t+0.3\sin 20t)$

- а) U_m =0.02 B; f_0 = 500 Γ ц; $M_{\mbox{\tiny u}}$ =0.3; Ω = 20 рад/с
- б) $U_m = 0.02 \text{ B}$; $f_0 = 3140 \text{ } \Gamma \text{ц}$; $M_{\text{ч}} = 0.3$; $\Omega = 20 \text{ рад/c}$
- в) $U_m = 0.02 \text{ B}$; $f_0 = 500 \text{ Гц}$; $M_q = 0.3$; $\Omega = 20 \text{ Гц}$
- г) U_m =0.3 B; f_0 = 500 Гц; M_q =0.02; Ω = 20 рад/с
- 108. Укажите верную последовательность параметров ЧМ-сигнала, описываемогоформулой: $u(t)=5\cos(6280t+3\sin628t)$
 - а) $U_m = 5 B$; $f_0 = 1 к \Gamma ц$; $M_q = 3$; $F = 100 \Gamma ц$
 - б) U_m =5 B; f_0 = 1000 рад/с; M_u =3; Ω =628 рад/с
 - в) $U_m = 5 B$; $f_0 = 1 к \Gamma \mu$; $M_y = 3$; $\Omega = 628 \Gamma \mu$
 - г) U_m =3 B; f_0 = 1 к Γ ц; $M_{\text{ч}}$ =5; Ω = 628 рад/с
 - 109. Частотный модулятор содержит:
- а) автогенератор и реактивный элемент, управляемый модулирующим сигналом
 - б) автогенератор
 - в) реактивный элемент, управляемый модулирующим сигналом
 - г) автогенератор и ФНЧ
 - д) резонансный контур
- 110. Статическая модуляционная характеристика частотного модулятора это зависимость:
 - а) частоты генерации генератора от напряжения смещения
 - б) частоты генерации генератора от частоты модуляции
 - в) амплитуды напряжения генератора от напряжения смещения
 - г) частоты генерации генератора от несущей частоты
 - 111. Назначение ФНЧ в частотном детекторе:
 - а) выделить из тока диода модулирующую частоту
 - б) создать модулирующую частоту в спектре тока диода
 - в) усилить входной сигнал
 - г) создать несущую частоту в спектре выходного тока

- 112. Статическая характеристика детектирования частотного детектора это зависимость:
 - а) постоянной составляющей выходного тока от частоты входного сигнала
 - б) постоянной составляющей выходного тока от амплитуды входного сигнала
 - в) постоянной составляющей выходного тока от фазы входного сигнала
- 113. Рабочая точка на статической характеристике частотного детектора выбирается:
 - а) в середине линейного участка СХД
 - б) в середине линейного участка ВАХ диода
 - в) в любой точке нелинейного участка СХД
 - г) на участке насыщения СХД
- 114. Уровни квантования $0, 1, 2, 3, 4, 5, \dots$ Отсчеты сигнала равны 8.2; 6.65; 0.13; 1.48. Укажите правильный порядок следования отсчетов на выходе квантователя
 - a) 8; 7; 0; 1
 - б) 8; 7; 1; 0
 - в) 8; 7; 0; 0
 - г) 8; 7; 1; 1
- 116. Уровни квантования 0, 1, 2, 3, 4, 5, Отсчеты сигнала равны 7.82; 0.65; 0.13; 1.148. Укажите правильный порядок следования отсчетов на выходе квантователя:
 - a) 8; 1; 0; 1
 - б) 8; 1; 0; 0
 - в) 8; 1; 1; 1
 - г) 8; 1; 1; 0
- 117. Установите соответствие между устройством и наименованием сигнала на его выходе

1.	Дискретизатор	a)	Дискретизированный сигнал
2.	Квантователь	б)	Квантованный сигнал
3.	Кодер	в)	Сигнал ИКМ
		Г)	Сигнал АИМ
		д)	Аналоговый сигнал
		e)	Сигнал КАМ

1.	2.	3.

- 118. Сигнал двоичной АМ при передаче 1 и 0 имеет вид:
- a) $u_1(t)=U_m cos \omega_0 t$; $u_0(t)=0$
- б) $u_1(t)=U_mcos\omega_1t$; $u_0(t)=U_mcos\omega_0t$
- в) $u_1(t)=U_mcos\omega_0t$; $u_0(t)=-U_mcos\omega_0t$

- 119. Сигнал двоичной ЧМ при передаче 1 и 0 имеет вид:
- a) $u_1(t)=U_m\cos\omega_0 t$; $u_0(t)=0$
- δ) $u_1(t)=U_mcosω_1t$; $u_0(t)=U_mcosω_0t$
- B) $u_1(t)=U_m\cos\omega_0t$; $u_0(t)=-U_m\cos\omega_0t$
- 120. Сигнал двоичной ФМ при передаче 1 и 0 имеет вид:
- a) $u_1(t) = U_m \cos \omega_0 t$; $u_0(t) = 0$
- δ) $u_1(t)=U_m\cos\omega_1t$; $u_0(t)=U_m\cos\omega_0t$
- B) $u_1(t)=U_m\cos\omega_0t$; $u_0(t)=-U_m\cos\omega_0t$
- 1. Кодер превращает квантованный уровень в соответствующее двоичное число, т.е. в комбинацию из 3-х символов. На входе кодера уровни: 4, 7, 3, 0. Укажите верную последовательность кодовых комбинаций на выходе:
 - a) 100; 111; 011; 000
 - б) 100; 111; 011; 001
 - в) 100; 101; 011; 000
 - г) 101; 110; 011; 001
- 2. Установите соответствие между длиной кодовой комбинации сигнала ИКМ и количеством уровней квантования

	<i>J</i> 1		
1.	256	a)	8
2.	16	б)	4
3.	128	в)	7
4.	64	Г)	6
		д)	5
		e)	9

1.	2.	3.	4.

- 3. Порядок следования операций при переходе от сигнала ИКМ к аналоговому сигналу:
 - а) декодирование и фильтрация (интерполяция)
 - б) декодированиеи дискретизация
 - в) декодированиеиквантование
- 4. Ширина спектра аналогового сигнала равна F. Длина двоичной кодовой комбинации п. Шаг квантования∆. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 2nF; $\Delta^2/12$
 - δ)2F; $\Delta^2/12$
 - в) 2nF; Δ^2
 - Γ) $2\Delta F$; $\Delta^2/4$
 - 5. Что дает кодирование источника сообщений?

- а) повышение помехоустойчивости сообщения при передаче
- б) устранение избыточности источника сообщений
- в) сокращение объема передаваемой информации
- 6. Что дает дополнительное кодирование данных перед передачей их в канал связи?
 - а) повышение помехоустойчивости сообщения при передаче
 - б) устранение избыточности сообщений
 - в) сокращение объема передаваемой информации
 - 7. Блочное кодирование это
 - а) распределение символов исходного блока в определенный ряд
 - б) инверсия символов исходного блока
 - в) дополнение определенной последовательности проверочными битами
 - г) передача информации отдельными блоками
- д) разгруппировка смежных символов и последовательности исходного блока в блок той же длины, что и исходный
 - 8. Перемежение это
 - а) распределение символов исходного блока в определенный ряд
 - б) инверсия символов исходного блока
 - в) дополнение определенной последовательности проверочными битами
 - г) передача информации отдельными блоками
- д) разгруппировка смежных символов последовательности исходного блока в блок той же длины, что и исходный
 - 9. Перемежение используется для:
 - а) того, чтобы запутать потенциального противника
 - б) защиты от помех типа «белый шум», искажающих отдельные символы
 - в) защиты от групповых ошибок
 - г) имитации шумового канала
- 10. Шаг квантования равен 1 мВ. Шум квантования равномерно распределен в диапазоне:
 - a) от $-0.5~{\rm MB}$ до $0.5~{\rm MB}$
 - б) от 1 мВ до 1 мВ
 - в) от 0 до $0.5\ {\rm MB}$
 - г) от 0 до 1 мB
- 11. Ширина спектра аналогового сигнала равна 2 кГц. Количество уровней квантования 128. Шаг квантования2 В. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 28 к Γ ц; 1/3 B^2
 - б) 128 к Γ ц; 0.75 B^2
 - в) 14 к Γ ц; 4/12 B^2
 - г) 4 к Γ ц; $1/6 \text{ B}^2$

- 12. Ширина спектра аналогового сигнала равна 3 кГц. Длина двоичной кодовой комбинации 7. Шаг квантования 6 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 42 к Γ ц; 3 м B^2
 - б) 42 к Γ ц; 36 м B^2
 - в) 21 к Γ ц; 3 м B^2
 - г) 6 кГц; 3 В²
- 13. Ширина спектра аналогового сигнала равна 4 кГц. Количество уровней квантования 64. Шаг квантования 4 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) $48 \text{ к}\Gamma \text{ц}; 4/3 \text{ м}\text{B}^2$
 - б) $8 \ \kappa \Gamma$ ц; $4/3 \ \mathrm{mB}^2$
 - в) $48 \text{ к}\Gamma \text{ц}; 4/12 \text{ м}\text{B}^2$
 - г) $8 \ \kappa \Gamma \mu; \ 4/3 \ \mathrm{mB}^2$
- 14. Ширина спектра аналогового сигнала равна 4 кГц. Количество уровней квантования 256. Шаг квантования 12 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 64 кГц; 12 мВ²
 - б) 128 кГц; 12 мВ²
 - в) 64 кГц; 144 мВ²
 - г) 128 к Γ ц; 1 м B^2
- 15. Ширина спектра аналогового сигнала равна 5 кГц. Количество уровней квантования 128. Шаг квантования 1,2 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 70 к Γ ц; 0,12 м B^2
 - б) 70 к Γ ц; 12 м B^2
 - в) $10 \ \kappa \Gamma$ ц; $0,12 \ \mathrm{mB}^2$
 - г) $10 \text{ к}\Gamma$ ц; $1,2 \text{ м}\text{B}^2$
- 16. Ширина спектра аналогового сигнала равна 10 кГц. Количество уровней квантования 32. Шаг квантования 0,12 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 100 к Γ ц; 0,0012 м B^2
 - б) $100 \text{ к}\Gamma$ ц; $0,12 \text{ м}\text{B}^2$
 - в) $20 \ \kappa \Gamma$ ц; $0,0012 \ \mathrm{mB}^2$
 - г) 20 кГц; 0.12 мВ
- 17. Ширина спектра аналогового сигнала равна 1 кГц. Количество уровней квантования 1024. Шаг квантования 12 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 20 к Γ ц; 12 м B^2
 - б) 20 кГц; 12 мВ
 - в) $2 \ \kappa \Gamma \mu$; $144 \ \text{мB}^2$

- г) 20 кГц; 12 мВ²
- 18. Интервал дискретизации равен 3 мс. Количество уровней квантования 8. Ширина спектра сигнала ИКМ равна:
 - а) 1 кГц
 - б) 3 кГц
 - в) 8 кГц
 - г) 6 кГц
 - **д)** 2 кГц
- 19. Интервал дискретизации равен 7 мкс. Количество уровней квантования 128. Ширина спектра сигнала ИКМ равна:
 - а) 1 МГц
 - б) 7 МГц
 - в) 128 кГц
 - г) 128 МГц
 - д) 14 кГц
- 20. Интервал дискретизации равен 6 мкс. Количество уровней квантования 64. Шаг квантования 12 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 1 $M\Gamma_{II}$; 12 MB^2
 - б) 1 МГц; 12 мВ
 - в) 1/6 МГц; 144 мВ² г) 6 МГц; 12 мВ²
- 21. Интервал дискретизации равен 5мс. Количество уровней квантования 32. Шаг квантования 6 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 1 кГц; 3 мВ²
 - б) 1 кГц; 3 мВ
 - в) $1/5 \text{ М}\Gamma$ ц; $3 \text{ м}\text{B}^2$
 - г) 1 М Γ ц; 6 м B^2
- 22. Интервал дискретизации равен 3мс. Количество уровней квантования 64. Шаг квантования 6 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 2 к Γ ц; 3 м B^2
 - б) 2 кГц; 3 мВ
 - в) $1/3 \text{ М}\Gamma$ ц; $3 \text{ м}\text{B}^2$
 - Γ) 2 МГц; 6 мB^2
- 23. Интервал дискретизации равен 4мс. Количество уровней квантования 256. Шаг квантования 6 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 2 кГц; 3 мВ²

- в) $1/3 \text{ M}\Gamma$ ц; $3 \text{ м}\text{B}^2$ г) 2 М Γ ц; 6 м B^2 24. Интервал дискретизации равен 2 мс. Количество уровней квантования 16. Шаг квантования 2 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно: а) 2 к Γ ц; 1/3 м B^2 б) 2 кГц; 1/3 мВ в) $1/2 \, \text{М} \Gamma \text{ц}; \, 2 \, \text{м} \text{B}^2$ Γ) 2 М Γ μ ; 4 м B^2 25. Интервал дискретизации равен 1 мкс. Количество уровней квантования 4. Шаг квантования 1 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно: а) 2 $M\Gamma$ ц; $1/12 \text{ мB}^2$ б) 2 МГц; 1/12 мВ в) 1 М Γ ц; 1/12 м B^2 г) 2 МГи: 1 мВ² 26. Интервал дискретизации равен 2 мкс. Количество уровней квантования 4. Шаг квантования 3 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно: а) 1 $M\Gamma_{II}$; 0.75 MB^2 б) 1 МГц; 0.75 мВ в) $1 \ \kappa \Gamma \mu; \ 0.75 \ \mathrm{mB}^2$ г) $0.5 \, \text{МГц}; \, 3 \, \text{мB}^2$ 27. Интервал дискретизации равен 8 мкс. Количество уровней квантования 16.
- 27. Интервал дискретизации равен 8 мкс. Количество уровней квантования 16. Шаг квантования 3 мВ. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - а) 0,5 $M\Gamma$ ц; 0,75 ${\rm MB}^2$
 - б) 0,5 МГц; 0,75 мВ
 - в) 0,5 к Γ ц; 0,75 м B^2
 - г) $0.5 \, \text{МГц}; \, 3 \, \text{мB}^2$

б) 2 кГц; 3 мВ

- 28. Двоичный источник выдает сообщения. Задана вероятность: p_1 =0,5. Энтропия источника равна: ____ бит/сообщение.
- 29. Четверичный источник выдает сообщения. Заданы вероятности: p_1 =0,5; p_2 =0,125; p_3 =0,25. Энтропия источника равна: _____ бит/сообщение.
- 30. Четверичный источник выдает сообщения. Заданы вероятности: p_1 =0,5; p_2 =0,125; p_3 =0,125. Энтропия источника равна:____ бит/сообщение.

- 31. Дискретный стационарный источник вырабатывает Мнеравновероятных независимых сообщений. Энтропия данного источника
 - a) $-\sum_{i=1}^{M} p_i \log p_i$;
 - $\delta \log M$
 - B) $\sum_{i=1}^{M} \log p_i / M$ $\Gamma) \sum_{i=1}^{M} p_i / M$
- 32. Источник выдает 4 сообщения с вероятностями: p(A1)=0.14, p(A2)=0.21, р(А3)=0.09, р(А4)=0.56. Укажите верную последовательность кодовых комбинаций префиксного кода
 - a) 1,00,011,010
 - б) 0,00,011,010
 - в) 1,00,011,110
 - г) 1,00,111,010
- 33. Источник выдает 4 сообщения с вероятностями: p(A1)=0.15, p(A2)=0.23, р(А3)=0.1, р(А4)=0.52. Укажите верную последовательность кодовых комбинаций префиксного кода
 - a) 1,00,011,010
 - б) 0,00,011,010
 - в) 1,00,011,110
 - г) 1,00,111,010
- 34. Источник выдает 4 сообщения с вероятностями: p(A1)=0.12, p(A2)=0.26, р(А3)=0.1, р(А4)=0.52. Укажите верную последовательность кодовых комбинаций префиксного кода
 - a) 1,01,001,000
 - б) 0,00,011,010
 - в) 1,00,011,110
 - г) 1,00,111,010
 - 35. С уменьшением корреляции между сообщениями избыточность источника:
 - а) уменьшается;
 - б) увеличивается
 - в) не меняется
 - г) растет
- 36. Источник выдает 4 сообщения с вероятностями: p(A1)=0.13, p(A2)=0.22, р(А3)=0.1, р(А4)=0.55. Укажите верную последовательность кодовых комбинаций префиксного кода
 - a) 1,00,011,010
 - б) 0,00,011,010
 - в) 1,00,011,110

- г) 1,00,111,010
- 37. Источник выдает 4 сообщения с вероятностями: p(A1)=0.13, p(A2)=0.26, p(A3)=0.1, p(A4)=0.51. Укажите верную последовательность кодовых комбинаций префиксного кода
 - a) 1,01,001,000
 - б) 0,00,011,010
 - в) 1,00,011,110
 - г) 1,00,111,010
- 38. Источник выдает 4 сообщения с вероятностями: p(A1)=0.14, p(A2)=0.21, p(A3)=0.09, p(A4)=0.56.Соответствующие вероятностям комбинации префиксного кода равны: 1,00,011,010. Средняя длина комбинации равна: _____.
- 39. При кодировании в канале с шумом для уменьшения ошибок декодирования расстояние между кодовыми словами следует:
 - а) увеличить
 - б) уменьшить
 - в) зафиксировать
 - г) выбрать случайно
 - 40. Пропускная способность канала с шумом это:
 - а) максимальная скорость передачи информации
 - б) минимальная скорость передачи информации
 - в) средняя скорость передачи информации
 - г) максимальная энтропия источника
- 41. Взаимная информация определяется через _____ безусловной и условной энтропий.
 - 42. Кодовое расстояние это количество позиций, в которых:
 - а) одна кодовая комбинация отличается от другой
 - б) совпадают кодовые комбинации
 - в) содержится 1
 - г) содержится 0
 - 43. Основание кода это:
 - а) количество различных символов, образующих кодовые комбинации б) количество единиц в комбинации
 - в) количество нулей в комбинации
 - г) количество символов в комбинации
 - 44. Длина кодовой комбинации это:
 - а) общее количество символов в кодовой комбинации
 - б) количество единиц в комбинации
 - в) количество нулей в комбинации

	45. Общее количество комбинаций при основании кода m и длине комбинации
п равн	10:
	a) m ⁿ
	δ) mn
	$\stackrel{\frown}{n}$ $\stackrel{\frown}{n}$

г) количество различных символов, образующих кодовые комбинации

46. Код содержит комбинации вида: 000, 101, 111, 001, и т.д. Основание кода и длина кодовой комбинации равны, соответственно:

a) 2, 3

г) m/n

б) 3, 2

в) 3, 3

 Γ) 2, 2

47. Установите соответствие между полосой пропускания канала F, отношением сигнал/шум P_c / $P_{\text{ш}}$ и пропускной способностью

1.	F=1 кГц и Р _с /Р _ш =7	a)	3000 бит/с
2.	F=1 кГц и Р _с /Р _ш =15	б)	4000 бит/с
3.	$F=2 к\Gammaц и P_c/P_m=3$	B)	3500 бит/с
4.	F=2 кГц и Р _с /Р _ш =31	L)	10000 бит/с
		д)	11000 бит/с
		e)	2000 бит/с

1.	2.	3.	4.

48. Установите соответствие между кодовыми комбинациями и их основанием кода и длиной

1.	-10, 01, 11, -1-1,	a)	3, 2
2.	001, 110, 010, 111,	б)	2, 3
3.	1, 0, -1, -2	в)	4, 1
		L)	1, 4
		д)	2, 2

1.	2.	3.

49. Код содержит комбинации	вида:	0000,	0101,	1111,	0001,	и т.д.	Общее	число
комбинаций равно:								

50. Код содержи	т комбинации	вида:	000,	101,	111,	001,	И	т.д.	Общее	число
комбинаций равно:	·									

		ге соответствие й кодовой комби		•	слом комбинаций	кода, его
1. 2, 2			a)	4		
2. 3, 4			б)	81		
3. 4, 2			B)	16		
4. 2, 5			L)	32		
			д)	64		
1.		2.		3.	4.]
54. У расстоянием	станови		межд	цу кодовыми	нациями 1101 и 011 комбинациями и	•
1. 0011 и (0	a)	2		
2. 100101 3. 0011 и 1		0	б)	3		
3. 0011 и 1 4. 001001		1	L)	0		
4. 001001	и 00100	1	<u> </u>	1		
			д) e	5		
1		2		2	1	7
1.		2.		3.	4.	-
кодовое расс 56. Е кодовое расс	стояние Разрешен стояние я блочн	этого кода равно нные кодовые к этого кода равно	о: омбин о:	 пации 111, 01 _ ·	1, 101, 110. Мин 1, 101, 000. Мин о информационных	имально

59. Проверочные символы корректирующего кода (5,3) образуются по

правилу: $a_4 = a_1 \oplus a_2$; $a_5 = a_1 \oplus a_2 \oplus a_3$. Информационная кодовая комбинация 111.

a) 0, 1

Символы a_4 и a_5 равны, соответственно:

равно: _____.

- б) 1, 0
- в) 1, 1
- Γ) 0, 0
- 60. Проверочные символы корректирующего кода (5,3) образуются по правилу: $a_4 = a_1 \oplus a_3$; $a_5 = a_1 \oplus a_2$. Информационная кодовая комбинация 101. Символы a_4 и a_5 равны, соответственно:
 - a) 0; 1
 - б) 1, 0
 - в) 1, 1
 - Γ) 0, 0
- 61. Проверочные символы корректирующего кода (5,3) образуются по правилу: $a_4=a_1\oplus a_2$; $a_5=a_1\oplus a_2\oplus a_3$. Установите соответствие между проверочными символами (справа) и информационной комбинацией (слева)

1.	000	a)	00
2.	010	б)	11
3.	101	в)	10
		L)	01
		д)	100
		e	001

1.	2.	3.

- 62. Блочный двоичный код (7,4) имеет минимальное кодовое расстояние равное 3. Этот код:
 - а) исправляет все одиночные ошибки
 - б) исправляет все двойные ошибки
 - в) обнаруживает одиночные ошибки
 - г) исправляет три ошибки
- 63. Блочный двоичный код (5,3) имеет минимальное кодовое расстояние равное 2. Этот код:
 - а) обнаруживает одиночные ошибки
 - б) исправляет двойные ошибки
 - в) исправляет одиночные ошибки
 - г) исправляет две ошибки
 - 64. Синдром это:
 - а) указатель позиции, в которой произошла ошибка
 - б) проверочные символы
 - в) информационные символы
 - г) неверно принятые символы

- 65. Синдром кода:
 а) не зависит от переданной комбинации
 б) зависит от переданной комбинации;
 в) зависит от номера переданной комбинации;
- 66. Синдром кода (7,3) образуется по правилу $c_1=a_1\oplus a_2\oplus a_3\oplus a_4, c_2=a_2\oplus a_3\oplus a_5,$ $c_3=a_1\oplus a_3\oplus a_6,$ $c_4=a_1\oplus a_2\oplus a_7.$ Принята комбинация 1111001. Синдром равен: a) 0001
 б) 1000
 в) 1001
 г) 1100
 д) 1010
- 67. Синдром кода (7,3) образуется по правилу $c_1 = a_1 \oplus a_2 \oplus a_3 \oplus a_4, c_2 = a_2 \oplus a_3 \oplus a_5,$ $c_3 = a_1 \oplus a_3 \oplus a_6, c_4 = a_1 \oplus a_2 \oplus a_7$. Принята комбинация 1111010. Синдром равен:
 - a) 0010
 - б) 1000
 - в) 1001
 - г) 1100
 - д) 1010
- 68. Синдром кода (7,3) образуется по правилу $c_1=a_1\oplus a_2\oplus a_3\oplus a_4, c_2=a_2\oplus a_3\oplus a_5,$ $c_3=a_1\oplus a_3\oplus a_6,$ $c_4=a_1\oplus a_2\oplus a_7.$ Принята комбинация 1000000. Синдром равен:
 - a) 1011
 - б) 1000
 - в) 1001
 - г) 1100
 - д) 1010
- 69. Синдромкода (7,3) образуется по правилу $c_1=a_1\oplus a_2\oplus a_3\oplus a_4, c_2=a_2\oplus a_3\oplus a_5,$ $c_3=a_1\oplus a_3\oplus a_6,$ $c_4=a_1\oplus a_2\oplus a_7.$ Принята комбинация 0100000. Синдром равен:
 - a) 1101
 - б) 1000
 - в) 1001
 - г) 1100
 - д) 1010
- 70. Синдром кода (7,3) образуется по правилу $c_1=a_1\oplus a_2\oplus a_3\oplus a_4, c_2=a_2\oplus a_3\oplus a_5, c_3=a_1\oplus a_3\oplus a_6, c_4=a_1\oplus a_2\oplus a_7.$ Принята комбинация 1111000. Синдром равен:
 - a) 0000
 - б) 1000
 - в) 0001
 - г) 0100
 - д) 1010

- 71. Кодовые комбинации циклического кода образуются путем: а) циклической перестановки символов б) случайной перестановки символов в) добавления символов г) отбрасывания символов 72. Двоичная кодовая комбинация, соответствующая полиному z^2+1 : a) 101 б) 110 B) 000 г) 001 73. Двоичная кодовая комбинация, соответствующая полиному z^3+z+1 : a) 1011 б) 1100 в) 0011 г) 1001 д) 1101 1. Задача оптимального фильтра при приеме состоит в: а) фильтрации мощных импульсных помех на входе приемника б) максимизации соотношения сигнал/шум на входе детектора в) фильтрации сетевых помех, попадающих через блок питания 2. Потенциальной помехоустойчивости соответствует: а) минимальная вероятность ошибки б) вероятность ошибки, равная 0 в) вероятность ошибки, равная 0,5 г) максимальная вероятность ошибки д) вероятность ошибки, равная 1 3. Оптимальный приемник – это приемник, реализующий: а) минимальную вероятность ошибки б) вероятность ошибки, равную 0
- в) вероятность ошибки, равную 0,5
- г) максимальную вероятность ошибки
- д) вероятность ошибки, равная 1
- 4. Оптимальный приемник это приемник, реализующий:
- а) потенциальную помехоустойчивость
- б) вероятность ошибки, равную 0
- в) вероятность ошибки, равную 0,5
- г) максимальную вероятность ошибки
- д) вероятность ошибки, равная 1

- 5. Оптимальный приемник вычислил условные вероятности передачи 1 и 0, если на входе приемника процесс z. Приемник принимает решение, что передавалась 1, если:
 - a) p(1/z) > p(0/z)
 - б) p(0/z) ≠ p(1/z)
 - B) p(1/z) < p(0/z)
 - Γ) p(0/z) > p(1/z)
 - д) p(1/z)/p(0/z) < 1
- 6. Оптимальный приемник вычислил условные вероятности передачи 1 и 0, если на входе приемника процесс z. Приемник принимает решение, что передавался 0, если:
 - a) p(1/z) < p(0/z)
 - б) p(0/z) = p(1/z)
 - B) p(1/z) > p(0/z)
 - Γ) p(0/z) < p(1/z)
 - $_{\rm J}) p(1/z)/p(0/z)>1$
- 7. Правило работы оптимального приемника двоичных сигналов $u_1(t)$ и $u_0(t)$ в белом шуме имеет вид:

a)
$$\int_{0}^{T} \left[z(t) - u_{1}(t) \right]^{2} dt < \int_{0}^{T} \left[z(t) - u_{0}(t) \right]^{2} dt$$

$$6) \int_{0}^{T} \left[z(t)u_{1}(t) \right]^{2} dt > \int_{0}^{T} \left[z(t)u_{0}(t) \right]^{2} dt$$

B)
$$\int_{0}^{T} [z(t) - u_1(t)] dt < \int_{0}^{T} [z(t) - u_0(t)] dt$$

$$\Gamma) \int_{0}^{T} \left[z(t) - u_{0}(t) \right]^{2} dt < \int_{0}^{T} \left[z(t) - u_{0}(t) \right]^{2} dt$$

- 8. Структурная схема оптимального приемника двоичных сигналов содержит два генератора опорных сигналов, два вычитающих устройства, два квадратора, решающее устройство и:
 - а) два интегратора
 - б) два перемножителя
 - в) два усилителя
 - г) интегратор
- 9. Структурная схема оптимального приемника двоичных сигналов содержит два вычитающих устройства, два генератора опорных сигналов, два интегратора, решающее устройство и:
 - а) два квадратора

- б) два перемножителя
- в) два усилителя
- г) интегратор
- 10. Структурная схема оптимального приемника двоичных сигналов содержит два вычитающих устройства, два квадратора, два интегратора, решающее устройство и:
 - а) два генератора опорных сигналов
 - б) два перемножителя
 - в) два усилителя
 - г) интегратор
 - 11. Условная вероятность p(1/0) это вероятность приема:
 - а) 1 при передаче 0
 - б) 0 при передаче 1
 - в) 1 при передаче 1
 - г) 0 при передаче 0
 - 12. Условная вероятность p(0/1) это вероятность приема:
 - а) 0 при передаче 1
 - б) 1 при передаче 0
 - в) 1 при передаче 1
 - г) 0 при передаче 0
- 13. Оптимальный корреляционный приемник сигналов ДЧМ и ДФМ в белом шуме принимает решение о передаче 1, если:

a)
$$\int_{0}^{T} z(t)u_{1}(t)dt > \int_{0}^{T} z(t)u_{0}(t)dt$$

$$\oint \int_{0}^{T} \left[z(t) - u_{1}(t) \right]^{2} dt > \int_{0}^{T} \left[z(t) - u_{0}(t) \right]^{2} dt$$

B)
$$\int_{0}^{T} z(t)u_{1}(t)dt < \int_{0}^{T} z(t)u_{0}(t)dt$$

a)
$$\int_{0}^{T} z(t)u_{1}(t)dt > \int_{0}^{T} z(t)u_{0}(t)dt$$
6)
$$\int_{0}^{T} [z(t) - u_{1}(t)]^{2} dt > \int_{0}^{T} [z(t) - u_{0}(t)]^{2} dt$$
B)
$$\int_{0}^{T} z(t)u_{1}(t)dt < \int_{0}^{T} z(t)u_{0}(t)dt$$

$$\Gamma) \int_{0}^{T} [z(t) - u_{0}(t)]^{2} dt \leq \int_{0}^{T} [z(t) - u_{0}(t)]^{2} dt$$

- 14. Средняя вероятность ошибки, если заданы условные и безусловные вероятности, равна:
 - a) $p=p(1)\cdot p(0/1)+p(0)\cdot p(1/0)$
 - б) $p=p(1)\cdot p(0/1)$
 - B) $p=p(0)\cdot p(1/0)$
 - Γ) p=p(0/1)+p(1/0)
- 15. Безусловная вероятность передачи 1 равна p(1)=0.8, условные вероятности приема 0 при передаче 1 и приема 1 при передаче 0 равны p(0/1)=0.3, p(1/0)=0.4. Средняя вероятность ошибки равна:

- a) 0,32
- б) 1
- в) 0,24
- Γ) 0,08
- д) 0,56
- 16. Безусловная вероятность передачи 1 равна p(1)=0.5, условные вероятности приема 0 при передаче 1 и приема 1 при передаче 0 равны p(0/1)=0.3, p(1/0)=0.4. Средняя вероятность ошибки равна:
 - a) 0.35
 - **б**) 1
 - B) 0,2
 - Γ) 0,7
 - д) 0
- 17. Потенциальная помехоустойчивость оптимального приемника двоичных сигналов зависит от:
- а) отношения энергии разности посылок к спектральной плотности энергии белого шума
 - б) энергии разности посылок
 - в) спектральной плотности энергии белого шума
- г) отношения разности посылок к спектральной плотности энергии белого шума
 - 18. Параметр h_0^2 , определяющий потенциальную помехоустойчивостьравен:
- а) отношению энергии посылки сигнала к спектральной плотности энергии белого шума
 - б) энергии разности посылок
 - в) спектральной плотности энергии белого шума
- г) отношению разности посылок к спектральной плотности энергии белого шума
- 19. Задан параметр h_0^2 . Вероятность ошибки при оптимальном приеме сигналов ДАМ равна:

a)
$$1 - F\left(\frac{h_0}{\sqrt{2}}\right)$$

б)
$$1 - F(h_0)$$

$$B) 1 - F\left(h_0\sqrt{2}\right)$$

$$\Gamma$$
) $1 - F(2h_0)$

20. Задан параметр ${h_0}^2$. Вероятность ошибки при оптимальном приеме сигналов ДФМ равна:

a)
$$1 - F\left(\frac{h_0}{\sqrt{2}}\right)$$

б)
$$1 - F(h_0)$$

B)
$$1 - F(h_0 \sqrt{2})$$

$$\Gamma$$
) $1 - F(2h_0)$

21. Задан параметр ${h_0}^2$. Вероятность ошибки при оптимальном приеме сигналов ДЧМ равна:

a)
$$1 - F\left(\frac{h_0}{\sqrt{2}}\right)$$

б)
$$1 - F(h_0)$$

B)
$$1 - F(h_0 \sqrt{2})$$

$$\Gamma$$
) $1 - F(2h_0)$

22. Заданная вероятность ошибки при оптимальном приеме сигналов ДФМ достигается, если параметр h_0^2 =25. Для получения такой же вероятности ошибки при использовании ДАМ параметр h_0^2 должен быть равен:

- a) 100
- б) 25
- в) 50
- г) 12,5
- д) 6,25

23. Заданная вероятность ошибки при оптимальном приеме сигналов ДФМ достигается, если параметр h_0^2 =15. Для получения такой же вероятности ошибки при использовании ДЧМ параметр h_0^2 должен быть равен:

- a) 30
- б) 15
- в) 60
- г) 7,5
- д) 3,75

24. Заданная вероятность ошибки при оптимальном приеме сигналов ДАМ достигается, если параметр $h_0^{\ 2}$ =20. Для получения такой же вероятности ошибки при использовании ДЧМ параметр $h_0^{\ 2}$ должен быть равен:

- a) 10
- б) 5
- в) 40
- г) 80
- д) 20

25. Средняя мощность передатчика с использованием ДЧМ равна Р. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДЧМ, мощность передатчика при использовании ДАМ равна:

a) 2P

- б) P
- в) P/2
- г) 4P
- д) Р/4
- 26. Средняя мощность передатчика с использованием ДФМ равна Р. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДФМ, мощность передатчика при использовании ДАМ равна:
 - a) 4P
 - б) Р
 - $\mathbf{B}) P/2$
 - г) 2P
 - д) Р/4
- 27. Средняя мощность передатчика с использованием ДАМ равна 16 Вт. При тех же условиях приема, для достижения вероятности ошибки такой же, как при ДАМ, мощность передатчика при использовании ДЧМ равна:
 - a) 8 B_T
 - б) 16 Вт
 - в) 4 Bт
 - г) 32 Вт
 - д) 2 Вт
 - 28. Неравенство, представленное ниже, соответствует ...

$$\frac{w(z/s_1)}{w(z/s_0)} \ge \frac{\Pi_{01} - \Pi_{00}}{\Pi_{10} - \Pi_{11}} \frac{p_0}{p_1}.$$

- а) Байесовскому критерию минимального риска
- б) критерию Котельникова (максимума апостериорной вероятности)
- в) критерию максимума правдоподобия
- 29. Оптимальный приемник двоичных сигналов на согласованных фильтрах, в общем случае, содержит _____ согласованных фильтра.
 - a) 2
 - **б**) 1
 - B) 4
 - **г)** 3
- 30. Установите соответствие между характеристиками сигнала и параметрами согласованного фильтра

1.	АЧХ согласованного фильтра	a)	амплитудный спектр сигнала
2.	Импульсная реакция фильтра	б)	зеркальное отображение сигнала
3.	ФЧХ согласованного фильтра	в)	ФЧХ сигнала с обратным знаком
		L)	фазовый спектр сигнала

		Д	I)			
		e	e)			
			•			
1.	2			3.		

- 31. На входе оптимальных приемников сигналов ДАМ, ДЧМ, ДФМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума одинаково. Укажите верную последовательность видов модуляции, расположенных в порядке убывания помехоустойчивости:
 - а) ДФМ, ДЧМ, ДАМ
 - б) ДАМ, ДЧМ, ДФМ
 - в) ДАМ, ДФМ, ДЧМ
 - г) ДФМ, ДАМ, ДЧМ
- 32. На входе оптимальных приемников сигналов ДАМ, ДЧМ, ДФМ на согласованных фильтрах отношение энергии посылки к спектральной плотности энергии белого шума одинаково. Укажите верную последовательность видов модуляции, расположенных в порядке возрастания помехоустойчивости:
 - а) ДФМ, ДЧМ, ДАМ
 - б) ДАМ, ДЧМ, ДФМ
 - в) ДАМ, ДФМ, ДЧМ
 - г) ДФМ, ДАМ, ДЧМ

33. Установите соответствие между видом модуляции и соответствующей ему формулой для определения вероятности ошибки при оптимальном приеме

<u>Ψ</u> •	формулон для определения вероятности ошноки при оптимальном приеме					
1.	ДАМ	a)	$1 - F\left(\frac{h_0}{\sqrt{2}}\right)$			
2.	ДФМ	б)	$1-F(h_0\sqrt{2})$			
3.	ДЧМ	B)	$1-F(h_0)$			
		г)	$1-F(2h_0)$			
		д)	$1 - F\left(\frac{h_0}{\sqrt{3}}\right)$			
		e)	$1 - F\left(h_0\sqrt{3}\right)$			

1.	2.	3.

33. Установите соответствие между видом модуляции и соответствующей ему формулой для определения вероятности ошибки при оптимальном приеме, если $\mathbf{h_0}^2$ =9

1.	ДАМ		a)	$1 - F\left(\frac{3}{\sqrt{2}}\right)$
2.	ДФМ		б)	$1-F(3\sqrt{2})$
3.	ДЧМ		в)	1-F(3)
			г)	$1-F(2h_0)$
			д)	$1 - F\left(\frac{h_0}{\sqrt{3}}\right)$
			e)	$1-F(h_0\sqrt{3})$
	1	2	1	2

1.	2.	3.

34. Установите соответствие между необходимой мощностью передатчика и видом модуляции при одинаковой помехоустойчивости

1.	ДАМ	a)	4 BT
2.	ДФМ	б)	2 BT
3.	ДЧМ	в)	1 Вт
		Г)	3 BT
		д)	0,5 BT
		e)	5 BT

1.	2.	3.

- 35. Укажите верную последовательность блоков некогерентного приемника двоичных сигналов ДАМ:
 - а) полосовой фильтр, амплитудный детектор, решающее устройство
 - б) полосовой фильтр, частотный детектор, решающее устройство
 - в) полосовой фильтр, амплитудный детектор, ФНЧ
 - г) модулятор, амплитудный детектор, решающее устройство
- 36. Укажите верную последовательность блоков некогерентного приемника двоичных сигналов ДЧМ:
- а) полосовой фильтр $\Pi\Phi 1$, полосовой фильтр $\Pi\Phi 0$, амплитудный детектор АД1, амплитудный детектор АД0, решающее устройство
 - б) полосовой фильтр, амплитудный детектор АД, решающее устройство
- в) полосовой фильтр ПФ1, полосовой фильтр ПФ0, амплитудный детектор АД1, амплитудный детектор АД0, ИФНЧ;
- г) полосовой фильтр ПФ1, полосовой фильтр ПФ0, ИФНЧ1, ИФНЧ0, решающее устройство

сигнало а) б) в) г)	7. Заданпарамет ов ДАМравна: 0,5exp(-0,25h ²) (exp(-0,5h ²) (exp(0,5h ²) (exp(-0,5h ²) (exp(-h ²) (exp(-0,5h)	p h ² .	Вероятность	ошибки	при	некогерентном	приеме
ДЧМра а) б) в) г)	8.Заданпараметр вна: 0 0,5exp(-0,5h ²) 0 exp(-0,5h ²) 0 0,5exp(0,5h ²) 0 0,5exp(-0,25h ²) 0 0,5exp(-0,5h)	h ² . Bepo	оятность оши	бки при не	екогер	ентном приеме с	игналов
ДОФМ ₂ а) б) в)	9.Заданпараметр равна: 0 0,5exp(-h ²) 0exp(-0,5h ²) 0 0,5exp(0,5h ²) 0 0,5exp(-0,25h ²) 0 0,5exp(-0,5h)	h ² . Bepo	оятность оши	бки при не	екогер	ентном приеме с	игналов
сигнало а) б) в) г)	0. Заданпараметров ДАМравна: 0 0,5exp(-1) 0exp(-0,5) 0 0,5exp(0,5) 0 0,5exp(-2) 0 0,5exp(-4)	$h^2 = 4$	I. Вероятност	ъ ошибки	и при	некогерентном	приеме
сигнало а) б) в)	1.Заданпараметр ов ДЧМравна: 0 0,5exp(-2) 0exp(-2) 0 0,5exp(2) 0 0,5exp(-1) 0 0,5exp(-0,5)	$h^2 = 4.$	Вероятності	ь ошибки	при	некогерентном	приеме
сигнало а) б) в)	2.Заданпараметр ов ДОФМравна: 0 0,5exp(-8) 0exp(-0,5) 0 0,5exp(4) 0 0,5exp(-4)	$h^2 = 8$.	Вероятности	ь ошибки	при	некогерентном	приеме

π	0^4	5ex	n(.	-2)
ДΙ	υ,.	JUL	Ыί.	- <i></i>

- 43.3аданпараметр h^2 =0. Вероятность ошибки при некогерентном приеме сигналов ДОФМ, ДЧМ, ДАМравна:
 - a) 0.5
 - б) 1
 - в) 0,25
 - Γ) 0,5exp(-1)

дехр(-0)

44. Установите соответствие между условиями верного и неверного приема сигналов ДОФМ

1.	Сигнал ДОФМ	a)	N-1)-я и N -я посылки будут приняты верно
	будет принят		
	верно		
2.	Сигнал ДОФМ	б)	(N-1)–я и N –я посылки будут приняты
	будет принят		неверно
	неверно		
		B)	(N-1)-я посылка будет принята верно, а N -я
			неверно
		L)	(N-1)-я посылка будет принята неверно, а N -я
			верно
		д)	(N-1)-я посылка будет принята неверно, а (N+1)
			–я верно

1.	1.	2.	2.

45. На входе	приемника действует	сигнал ДОФМ	самплитудой 1	$U_m=1B$	и шум с
дисперсией $0.1B^2$.	Отношение мощности	и сигнала к моц	цности шума ра	авно:	·

46. На входе приемника действует сигнал ДФМ самплитудой U_m =1000 мВ и шум с дисперсией 0.2 B^2 . Отношение мощности сигнала к мощности шума равно:

- 48. Явление «обратной работы» состоит в том, что у опорного напряжения, необходимого для приема сигнала ΦM , случайно изменяется фаза на _____ 0 .
 - 49. Укажите способы приёма сигнала ДОФМ:
 - а) прием сравнением фаз
 - б) прием сравнением полярностей
 - в) прием сравнением частот
 - г) прием сравнением амплитуд

^{47.} Сигнал и белый шум со спектральной плотностью G_0 =0.001 B^2 / Γ ц проходят через полосовой фильтр с полосой пропускания F=100 Γ ц. Амплитуда сигнала на выходе $\Pi\Phi$ равна 2 B. Отношение с/ш равно: ______.

50. Оптимальный приемник двоичных сигналов на согласованных фильтрах, общем случае, содержит согласованных фильтра.
51. Амплитуда сигнала ДАМ на входе оптимального приемника рави U_m =1мB, а спектральная плотность белого шума равна $10^{-10}~\mathrm{B}^2/\Gamma$ ц. Скорость работ 1000 бод. Параметр h_0^2 равен
52. Амплитуда сигнала ДАМ на входе оптимального приемника равна U_m - мВ, а спектральная плотность белого шума равна $10^{-10}~\mathrm{B}^2/\Gamma$ ц. Скорость работы $100^{-10}~\mathrm{B}^2$ равен
53. Амплитуда сигнала ДАМ на входе оптимального приемника равна U_m = мВ, а спектральная плотность белого шума равна $10^{-9}~\mathrm{B}^2/\Gamma$ ц. Скорость работы $100^{-9}~\mathrm{B}^2$ давен
1. Каналы в многоканальных системах связи разделяются за счет того, что онга) ортогональны б) противоположны в) коррелированы г) зависимы
2. Способы разделения каналов в многоканальных системах связи: а) частотное, временное, фазовое, кодовое (по форме) б) амплитудное, частотное, фазовое, по форме в) импульсно-кодовое, временное, фазовое, кодовое (по форме) г) частотное, временное, фазовое

- 3. При частотном разделении каналов отдельные каналы передаются:
- а) одновременно, но в разных полосах частот
- б) в одной и той же полосе частот, но в разные интервалы времени
- в) в одной и той же полосе частот, но с разными начальными фазами
- г) одновременно, в одной и той же полосе частот
- 4. При временном разделении каналов отдельные каналы передаются:
- а) в одной и той же полосе частот, но в разные интервалы времени
- б) одновременно, но в разных полосах частот
- в) в одной и той же полосе частот, но с разными начальными фазами
- г) в одной и той же полосе частот, одновременно
- 5. При фазовом разделении каналов отдельные каналы передаются:
- а) в одной и той же полосе частот, одновременно, но с разными начальными фазами
 - б) в одной и той же полосе частот, но в разные интервалы времени
 - в) одновременно, но в разных полосах частот

г) в одной и той же полосе частот, одновременно, но с разными амплитудами
6. Полоса частот одного канала в системе связи с частотным разделением 3.4 кГц. Защитные промежутки по частоте между каналами 0.6 кГц. Максимальное число каналов в полосе частот 101 кГц равно: а) 25 б) 24
в) 26 г) 29
7. Полоса частот одного канала в системе связи с частотным разделением 3.4 кГц. Защитные промежутки по частоте 0.6 кГц. Максимальное число каналов в полосе частот 201 кГц равно: а) 50 б) 49 в) 51
г) 59 8. Интервал дискретизации для сигнала в каждом канале при ВРК 2 мс. Длительность сигнальных импульсов в системе связи с временным разделением 0.1 мс, период следования 0.2 мс. Максимальное число каналов равно: а) 10

9. Интервал дискретизации для сигнала в каждом канале 4 мс. Длительность

10. Количество ортогональных несущих в системе связи с фазовым

11. В системе связи с фазовым разделением каналов первый канал передается

на несущей частоте $sinw_0t$. Второй канал передается на несущей:

сигнальных импульсов в системе связи с ВРК 0.2 мс, скважность 2. Максимальное

б) 20 в) 2 г) 21

число каналов равно:

разделением каналов равно:

a) 10б) 20в) 2г) 11

a) 2б) 1в) 4г) 10

a) cosw₀tδ) sinw₀t

B) $\sin(w_0 t + 180^0)$

- Γ) $\sin(w_0 t + 180^0)$
- 12. Каналы в многоканальной системе связи с частотным разделением каналов разделяются:
 - а) полосовыми фильтрами
 - б) коммутаторами
 - в) усилителями
 - г) ограничителями
- 13. Каналы в многоканальной системе связи с временным разделением каналов разделяются:
 - а) коммутаторами
 - б) полосовыми фильтрами
 - в) усилителями
 - г) согласованными фильтрами
- 14. Каналы в многоканальной системе связи с фазовым разделением каналов разделяются:
 - а) синхронными демодуляторами
 - б) коммутаторами
 - в) усилителями
 - г) полосовыми фильтрами
- 15. Каналы в многоканальной системе связи с разделением сигналов по форме разделяются:
 - а) согласованными фильтрами
 - б) коммутаторами
 - в) усилителями
 - г) полосовыми фильтрами
 - 16. Причины межканальных помех при ЧРК:
 - а) спектры сигналов бесконечны; ПФ не идеальны
 - б) коммутаторы не идеальны; полоса частот системы связи ограничена
- в) синхронные демодуляторы не идеальны; разность фаз несущих не равна точно 90^{0}
 - г) взаимно-корреляционные функции сигналов не равны 0
 - 17. Причины межканальных помех при ВРК:
 - а) коммутаторы не идеальны; полоса частот системы связи ограничена
 - б) спектры сигналов бесконечны; ПФ не идеальны
- в) синхронные демодуляторы не идеальны; разность фаз несущих не равна точно 90^{0}
 - г) взаимно-корреляционные функции сигналов не равны 0
 - 18. Причины межканальных помех при ФРК:

- а) синхронные демодуляторы не идеальны; разность фаз несущих не равна точно 90^{0}
 - б) спектры сигналов бесконечны; ПФ не идеальны
 - в) коммутаторы не идеальны; полоса частот системы связи ограничена
 - г) взаимно-корреляционные функции сигналов не равны 0
 - 19. Причины межканальных помех при КРК:
 - а) взаимно-корреляционные функции сигналов не равны 0
 - б) спектры сигналов бесконечны; ПФ не идеальны
 - в) коммутаторы не идеальны; полоса частот системы связи ограничена
- г) синхронные демодуляторы не идеальны; разность фаз несущих не равна точно 90⁰

20. Установите соответствие между видом разделения каналов И

используемыми для этого устройствами

1.	ЧРК	a)	полосовые фильтры		
2.	ВРК	б)	коммутаторы		
3.	ФРК	B)	синхронные демодуляторы		
4.	КРК	г)	согласованные фильтры		
		д)	аттенюаторы		

1.	2.	3.	4.

21. Установите соответствие разделения между видом каналов

используемыми для этого устройствами

11011	пенельзуемыми дли этого устронетьими					
1.	полосовые	a)	ЧРК			
	фильтры					
2.	коммутаторы	б)	ВРК			
3.	синхронные	B)	ФРК			
	демодуляторы					
4.	согласованные	L)	KPK			
	фильтры					

1.	2.	3.	4.

Шкала оценивания: 36- балльная.

Критерии оценивания:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено – 1 балл, не выполнено - 0 баллов.

Применяется следующая шкала перевода баллов в оценку по 5-балльной шкале:

- <u>36-30</u> баллов соответствуют оценке «отлично»;
- -<u>29</u>-<u>24</u> баллов оценке «хорошо»;
- 24-18 баллов оценке «удовлетворительно»;
- <u>17</u>баллов и менее оценке «неудовлетворительно».

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

1 Вопросы в закрытой форме.

- 1.1 Канал связи, для которого справедлив принцип суперпозиции и не происходит обогащение спектра отклика по сравнению со спектром воздействия, называется:
 - а) линейный
 - б) линейно-параметрический
 - в) нелинейный
 - г) нелинейно-параметрический
- 1.2Канал связи, в котором действует аддитивная помеха типа «белого шума» с нормальным законом распределения мгновенных значений, называется:
 - а) релеевский
 - б) райсовский
 - в) марковский
 - г) гауссовский
- 1.3 Как связаны скорость передачи символов в цифровых видах связи и ширина полосы сигнала?
 - а) чем выше скорость передачи символов, тем уже полоса сигнала
 - б) чем выше скорость передачи символов, тем шире полоса сигнала
 - в) полоса сигнала не зависит от скорости передачи символов
 - г) полоса сигнала зависит только от частоты, на которой ведётся передача
- 1.4 Укажите, по каким основным признакам не могут быть классифицированы каналы связи
 - а) диапазон частот канала
 - б) тип среды распространения
 - в) эргономические параметры оборудования
- г) вид передаваемых сообщений
 - 1.5 Какие параметры связывает формула Шеннона?
 - а) длительность импульса, ширину спектра

- б) девиацию частоты, модулирующую частоту
- в) пропускную способность, ширину канала, соотношение сигнал/шум
- г) базу сигнала, длительность сигнала, ширина спектра сигнала
- 1.6 Динамический диапазон это...
- а) отношение наибольшей мгновенной мощности сигнала к той наименьшей мощности, которая необходима для обеспечения заданного качества передачи
- б) отношение наименьшей мгновенной мощности сигнала к той наибольшей мощности, которая необходима для обеспечения заданного качества передачи
- в) отношение наибольшей средней мощности сигнала к той пиковой мощности, которая необходима для обеспечения заданного качества передачи
- г) отношение наименьшей средней мощности сигнала к той средней мощности, которая необходима для обеспечения заданного качества передачи

ности сигнала отчастоты

- 1.7 Что характеризует частотное представление сигнала?
- а) значение мгновенной частоты сигнала
- б) значения амплитуд различных частот, составляющих сигнал, взятых за интервал времени 1 с
- в) значения амплитуд различных частот, составляющих сигнал, взятых за интервал времени, полностью характеризующий данный сигнал (например, за период исследуемого сигнала)
- 1.8 Наличие каких частотных компонент возможно в произвольном по форме периодическом сигнале? Длительность периода равна Т.
 - a) T, 2T, 3T, ...
 - б) 1/T, 2/T, 3/T, ...
 - B) $2\pi/T$, $4\pi/T$, $6\pi/T$...
 - г) 1/T, 3/T, 5/T, ...
 - 1.9 Поясните физический смысл корреляционной функции.
 - а) скорость нарастания амплитуды одного из рассматриваемых сигналов
 - б) суммарная энергия двух сигналов
 - в) взаимная энергия двух сигналов
 - г) относительная энергия двух сигналов
 - 1.10 Случайные стационарные процессы, это случайные процессы, у которых:
- а) статистические характеристики, которых одинаковы во всех временных сечениях
- б) статистические характеристики, которых различны в зависимости от временных сечений
 - в) у которых, статистические характеристики стремятся к бесконечности
- г) статистические характеристики, которых не могут принимать нулевые значения
 - 1.11 Укажите параметры, которыми характеризуются сигналы

- а) динамический диапазон
- б) время доступа
- в) длительность
- г) ширина полосы пропускания
- д) ширина спектра
- е) энергия
 - 1.12 Нормальная функция плотности вероятности дана выражением:

a)
$$W(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m_1)^2}{2\sigma^2}\right)$$

б)
$$W(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-m_1)}{2\sigma^2}\right)$$


B)
$$W(x) = \exp\left(-\frac{(x-m_1)}{2\sigma^2}\right)$$

$$\Gamma W(x) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left(-\frac{(x - m_1)^3}{2\sigma^2}\right)$$

- 1.13. Одномерная функция распределения вероятности характеризует вероятность того, что случайный процесс принимает значения:
 - a) $x < x_0$
 - б) $x = x_0$
 - B) $x>x_0$
 - Γ) X<∞</p>
 - д) х>∞
- 1.14 Как связаны девиация частоты и индекс модуляции при частотной модуляции
- а) индекс модуляции при частотной модуляции определяется как разность между максимальной девиацией частоты (за один период модулирующего сигнала) и частотой модуляции
- б) индекс модуляции при частотной модуляции определяется как отношение частоты модуляции к максимальной девиации частоты (за один период модулирующего сигнала)
- в) индекс модуляции при частотной модуляции определяется как произведение максимальной девиации частоты (за один период модулирующего сигнала) на частоту модуляции
- г) индекс модуляции при частотной модуляции определяется как отношение максимальной девиации частоты (за один период модулирующего сигнала) к частоте модуляции
- 1.15 Максимальная и минимальная частоты при ЧМ равны, соответственно, 120 кГц и 140 кГц. Модулирующая частота равна 62800 рад/с. Ширина спектра ЧМ равна:
 - а) 40 кГц

- б) 20 кГц
- в) 50 кГц
- г) 120 кГц
- д) 140 кГц
- 1.16 Используется квадратурная фазовая манипуляция для передачи данных со скоростью 20 кбит/с. Какова ширина главного лепестка спектра?
 - а) 20 кГц
 - б) 10 кГц
 - в) 30 кГц
 - г) 40 кГц

1.17 Что представлено на данном рисунке?

- а) графики ряда Фурье
- б) графики ряда Котельникова
- в) графики функций Бесселя
- г) графики функций Берга
- 1.18 Импульсной характеристикой системы называется функция h(t) являющаяся откликом системы на входной сигнал в виде:
 - а) прямоугольного импульса с единичной амплитудой
 - б) дельта-функции Дирака
- в) единичного скачка ступенчатой функции единичной амплитуды (функции Хевисайда)
 - 1.19 Нелинейные искажения в АИМ-тракте возникают вследствие
 - а) ограничения канала по амплитуде
 - б) ограничения спектра полосы пропускания канала
 - в) временной задержки в канале
 - г) воздействия внешних помех
- 1.20 Используется минимальная частотная манипуляция для передачи данных со скоростью 50 кбит/с. Какова ширина главного лепестка спектра?
 - а) 25 кГц
 - б) 75 кГц
 - в) 100 кГц

- г) 50 кГц
- 1.21 Частотный детектор на расстроенных контурах содержит:
- а) два резонансных контура, симметрично расстроенных относительно средней частоты ЧМ сигнала, и два амплитудных детектора
- б) два резонансных контура, симметрично расстроенных относительно средней частоты ЧМ сигнала и генератор
 - в) два амплитудных детектора и контур
 - 1.22 Назначение ФНЧ в частотном детекторе:
 - а) выделить из тока диода модулирующую частоту
 - б) создать модулирующую частоту в спектре тока диода
 - в) усилить входной сигнал
 - г) создать несущую частоту в спектре выходного тока
- 1.23 Статическая характеристика детектирования частотного детектора это зависимость:
 - а) постоянной составляющей выходного тока от частоты входного сигнала
 - б) постоянной составляющей выходного тока от амплитуды входного сигнала
 - в) постоянной составляющей выходного тока от фазы входного сигнала
 - 1.24 Сигнал на выходе частотного детектора в отсутствии помех и искажений:
 - а) пропорционален модулирующему сигналу
 - б) обратно пропорционален модулирующему сигналу
 - в) не зависит от модулирующего сигнала
 - г) пропорционален амплитуде ЧМ сигнала
- 1.25 Ширина спектра аналогового сигнала равна F. Длина двоичной кодовой комбинации п. Шаг квантования∆. Ширина спектра сигнала ИКМ и дисперсия шума квантования равны, соответственно:
 - a) 2nF; $\Delta^2/12$ 6) 2F; $\Delta^2/12$
 - B) 2nF; Δ^2
 - Γ) $2\Delta F$; $\Delta^2/4$

2 Вопросы в открытой форме

- 2.1 Канал тональной частоты занимает спектр частот от ___ кГц до ___ кГц.
- 2.2 Период цикла в первичном цифровом сигнале ИКМ-30 равен ____ мкс.
- 2.3 На вход канала связи, в котором действует шум с мощностью 10 (Вт), поступает сигнал с мощностью 100 (Вт). Отношение сигнал шум в канале равно _____ дБ.

2.4 Метрическое пространство сигналов – это множество сигналов, для которого подходящим образом определено
2.5 Евклидова норма вектора (3,3,3,3) равна
2.6 Дисперсии складываются при сложении случайных процессов. 2.7 Эргодический случайный сигнал является случайным процессом.
2.8 Модуль спектральной плотности амплитуд сигнала: $S(f) = A; 0 < f < 1\Gamma u;$. Ширина спектра сигнала равна
2.9 В аддитивном канале связи и сигнал и шум независимые случайные процессы с дисперсиями 19 (B^2) и 6 (B^2). Дисперсия отклика канала связи равна B^2
2.10. Интервал дискретизации, если спектр сигнала ограничен частотой 500 Гц, равен
2.11 Максимальная и минимальная частоты при ЧМ равны, соответственно, 120 кГц и 140 кГц. Модулирующая частота равна 62800 рад/с. Ширина спектра ЧМ равна: кГц.
2.12 Максимальная и минимальная частоты при ЧМ равны, соответственно, 16 кГц и 20 кГц. Модулирующая частота равна 3140 рад/с. Ширина спектра ЧМ равна: кГц.
2.13 Двоичный источник выдает сообщения. Задана вероятность: p_1 =0,5. Энтропия источника равна: бит/сообщение.
2.14 Четверичный источник выдает сообщения. Заданы вероятности: p_1 =0,5; p_2 =0,125; p_3 =0,25. Энтропия источника равна: бит/сообщение.
2.15 Четверичный источник выдает сообщения. Заданы вероятности: p_1 =0,5; p_2 =0,125; p_3 =0,125. Энтропия источника равна: бит/сообщение.
2.16 Источник выдает 4 сообщения с вероятностями: p(A1)=0.14, p(A2)=0.21, p(A3)=0.09, p(A4)=0.56.Соответствующие вероятностям комбинации префиксного кода равны: 1,00,011,010. Средняя длина комбинации равна:
2.17 Взаимная информация определяется через безусловной и условной энтропий.

2.18 Код содержит комбинации вида: 0000, 0101, 1111, 0001, и т.д. Общее число комбинаций равно:
2.19. Код содержит комбинации вида: 000, 101, 111, 001, и т.д. Общее число комбинаций равно:
2.20 Кодовое расстояние между кодовыми комбинациями 101 и 011 равно
2.21 Кодовое расстояние между кодовыми комбинациями 1101 и 0110 равно
2.22 блочного двоичного кода (5,3) количество информационных символов равно:
2.23 Для блочного двоичного кода (5,3) количество проверочных символов равно:
$2.24~{ m Ha}$ входе приемника действует сигнал ДОФМ самплитудой U_m =1В и шум с дисперсией $0.1B^2$. Отношение мощности сигнала к мощности шума равно:
2.25 Сигнал и белый шум со спектральной плотностью G_0 = $0.001~\mathrm{B}^2/\Gamma_1$

3 Вопросы на установление последовательности

сигнала на выходе ПФ равна 2 В. Отношение с/ш равно: _____.

3.1 Укажите верную последовательность блоков на структурной схеме передатчика системы связи:

проходят через полосовой фильтр с полосой пропускания F=100Гц. Амплитуда

- а) источник сообщения, кодер, модулятор, генератор переносчика, выходное устройство
- б) источник сообщения, кодер, модулятор, генератор переносчика, демодулятор
- в) источник сообщения, декодер, модулятор, генератор переносчика, выходное устройство
- г) источник сообщения, кодер, демодулятор, генератор переносчика, выходное устройство
- д) источник сообщения, кодек, модулятор, генератор переносчика, выходное устройство
- 3.2 Укажите верную последовательность блоков на структурной схемеприемника системы связи:
 - а) входное устройство, демодулятор, декодер, получатель сообщения
 - б) выходное устройство, модулятор, декодер, получатель сообщения
 - в) входное устройство, демодулятор, кодер, получатель сообщения

- г) входное устройство, демодулятор, кодек, получатель сообщения
- д) входное устройство, модем, декодер, получатель сообщения
- 3.3 Укажите верную последовательность частот спектра амплитудномодулированного сигнала, заданного выражением $U(t)=10\cdot[1+\cos(628\cdot t)]\cdot\cos(31400\cdot t)$
 - а) 4.9 кГц; 5 кГц; 5.1 кГц
 - б) 100 Гц; 5000 Гц
 - в) 5 кГц; 0.1 кГц
 - г) 5000 Гц; 100 Гц; 5 кГц
- 3.4 Укажите верную последовательность параметров ЧМ-сигнала, описываемогоформулой: $u(t)=0.02\cos(3140t+0.3\sin 20t)$
 - а) $U_m = 0.02 \text{ B}$; $f_0 = 500 \Gamma \mu$; $M_u = 0.3$; $\Omega = 20 \text{ рад/c}$
 - б) U_m =0.02 B; f_0 = 3140 Γ ц; M_q =0.3; Ω = 20 рад/с
 - в) U_m =0.02 B; f_0 = 500 Γ ц; M_q =0.3; Ω = 20 Γ ц
 - г) U_m =0.3 B; f_0 = 500 Гц; $M_{\mbox{\tiny q}}$ =0.02; Ω = 20 рад/с
- 3.5. Укажите верную последовательность параметров ЧМ-сигнала, описываемогоформулой: $u(t)=5\cos(6280t+3\sin628t)$
 - а) $U_m = 5 B$; $f_0 = 1 к \Gamma ц$; $M_q = 3$; $F = 100 \Gamma ц$
 - б) U_m =5 B; f_0 = 1000 рад/c; M_u =3; Ω =628 рад/c
 - в) $U_m = 5 B$; $f_0 = 1 к \Gamma \mu$; $M_y = 3$; $\Omega = 628 \Gamma \mu$
 - Γ) $U_m = 3 B$; $f_0 = 1 \ \kappa \Gamma \mu$; $M_{\nu} = 5$; $\Omega = 628 \ \text{рад/c}$

4 Вопросы на установление соответствия

4.1 Установите соответствие между сигналами и их наименованиями, если известно, чтосвязь выхода и входа непрерывного канала связи определяется соотношением: $A(t) = B(t) \cdot V[t; C(t)] + D(t)$.

1.	A(t)	a)	отклик канала	
2.	B(t)	б)	мультипликативная помеха	
3.	V(t)	в)	полезная составляющая отклика	
4.	C(t)	г)	входное воздействие	
5.	D(t)	д)	аддитивная помеха	

1.	2.	3.	4.	5.

4.2 Установите соответствие между типом линии связи и используемыми сигналами в них.

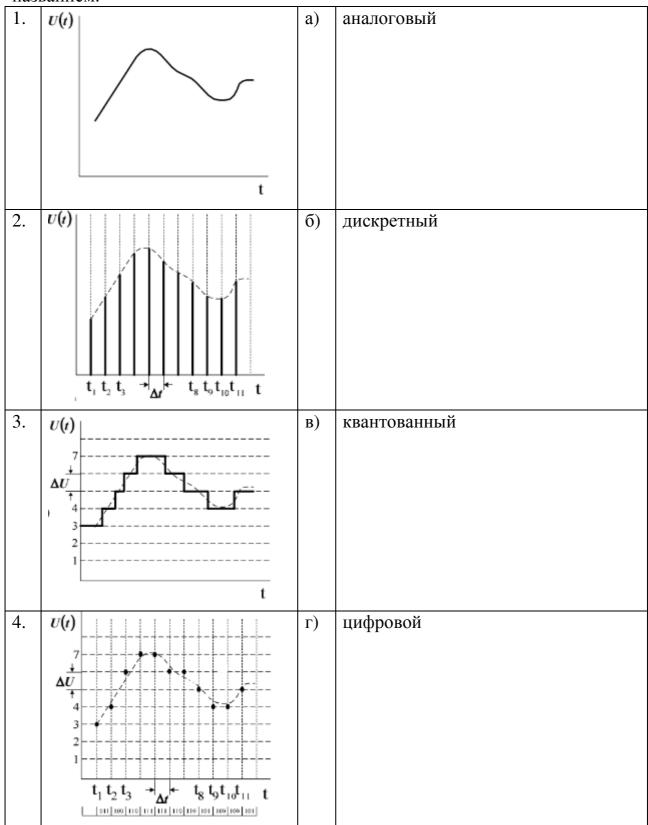
1.	Проводные линии	a)	Электромагнитные колебания высоких частот
----	-----------------	----	---

2.	Радиолинии	б)	Переменные токи невысоких частот
3.	ВОЛС	B)	Световые волны с частотой 10 ¹⁴ Гц

1.	2.	3.

4.3 Установите соответствие между элементом структурной схемы системы электрической связи и выполняемой им функцией.

1.	Модулятор	a)	осуществляет преобразование первичного сигнала s(t) во вторичный сигнал S(t), удобный для передачи в среде распространения в условиях действия помех.
2.	Источниксообщения	б)	формирует конкретное сообщение x(t)
3.	Преобразователь сообщения в электрический сигнал	в)	превращают сообщение x(t) в первичный сигнал s(t).
4.	Демодулятор	г)	выделяет из принятого сигнала U(t)первичный электрический сигнал u(t)


1.	2.	3.	4.

4.4 Установите соответствие между элементом структурной схемы системы электрической связи для передачи дискретных сообщений и выполняемой им функцией.

1.	Кодер источника	a)	служит для преобразования сообщений в кодовые символы с целью уменьшения избыточности источника сообщения, т.е. обеспечении минимума среднего числа символов на одно сообщение и представления в
2.	Кодер канала	б)	удобной форме предназначен для введения избыточности, позволяющей обнаруживать и исправлять ошибки в канальном декодере, с целью повышения достоверности передачи.
3.	Декодер канала	в)	обеспечивает проверку избыточного (помехоустойчивого) кода и преобразование его в последовательность первичного электрического сигнала безызбыточного кода.
4.	Декодерис	г)	устройство для преобразования последовательности

точника	П	ПЭС безизбыточного кода в сообщение.			
1.		2.	3.	4.	

4.5. Установите соответствие между осциллограммой сигнала и его названием.

1.	2.	3.	4.

4.6 Установите соответствие между изменением интервала корреляции и соответствующим ему изменением ширины энергетического спектра:

-	твететвующим сму изменением шири	11111 51	repressi reckoro enektipa.
1.	Интервал корреляции уменьшился	a)	ширина энергетического
	в 3 раза		спектра увеличилась в 3 раза
2.	Интервал корреляции уменьшился	б)	ширина энергетического
	в 2 раза		спектра увеличилась в 2 раза
3.	Интервал корреляции уменьшился	B)	ширина энергетического
	в 4 раза		спектра увеличилась в 4 раза
		L)	ширина энергетического
			спектра уменьшилась в 3 раза
		д)	ширина энергетического
			спектра уменьшилась в 2 раза
		e)	ширина энергетического
			спектра уменьшилась в 4 раза
		ж)	ширина энергетического
			спектра уменьшилась в 9 раз
		3)	ширина энергетического
			спектра уменьшилась в 16
			раза
		к)	ширина энергетического
			спектра увеличилась в 16 раза

1.	2.	3.

4.7 Установите соответствие между названием закона распределения и формулой для определения соответствующей ему плотности распределения вероятностей

1.	Нормальный	a)	$\frac{1}{\sqrt{2\pi}\sigma}\exp\left(-\frac{(x-a)^2}{2\sigma^2}\right)$
2.	Релея	б)	$\frac{x}{\sigma^2} \exp\left(-\frac{x^2}{2\sigma^2}\right), \ x \ge 0$
3.	Равномерный	В)	$\frac{1}{b-a}, a \le x \le b$

$\alpha\beta x^{\alpha-1} \exp\left(-\beta x^{\alpha}\right), x \ge 0$
--

1.	2.	3.

4.8 Установите соответствие между названием закона распределения и

формулой для определения соответствующих ему моментов

1.	Нормальный	a)	$m_1 = a, \mu_2 = \sigma^2,$
			$\mu_3 = 0, \mu_4 = 3\sigma^4$
2.	Релея	б)	$m_1 = \sigma \sqrt{\pi/2}$, $m_2 = 2\sigma^2$,
			$\mu_2 = \frac{4-\pi}{2}\sigma^2, \mu_3 \cong 0,63\sigma^3,$
			$\mu_4 \cong 2.7\sigma^4$
3.	Равномерный	в)	$m_1 = \frac{a+b}{2}, \ \mu_2 = \frac{(b-a)^2}{12},$
			$\mu_3 = 0, \ \mu_4 = \frac{1}{80} (b - a)^4$
		г)	$m_1 = 1/\lambda, m_2 = 2/\lambda^2,$
			$\mu_2 = 1/\lambda^2$, $\mu_3 = 2/\lambda^3$,
			$\mu_4 = 9/\lambda^4$

1.	2.	3.

4.9 Установите соответствие между значениями модулирующей частоты и

шириной спектра АМ-сигнала:

1.	100 Гц	a)	200 Гц
2.	200 Гц	б)	400 Гц
3.	1000 Гц	B)	3000 Гц
4.	15 Гц	Г)	2000 Гц
		д)	30 Гц
		e)	45 Гц
		ж)	100 Гц

1.	2.	3.	4.

4.10. Установите соответствие между модулирующей и несущей частотами и частотами составляющих спектра АМ-сигнала

1.	50 Гц, 1000 Гц	a)	950 Гц, 1000 Гц, 1050 Гц
2.	200 Гц, 5000 Гц	б)	4800 Гц, 5000 Гц, 5200 Гц
3.	628 рад/с, 6280 рад/с	в)	900 Гц, 1000 Гц, 1100 Гц
		г)	950 Гц, 1050 Гц, 1100 Гц
		д)	4850 Гц, 5200 Гц, 5400 Гц
		e)	960 Гц, 1000 Гц, 1060 Гц

1.	2.	3.

4.11. Установите соответствие между амплитудами несущей, глубиной модуляции и амплитудой боковых частотных составляющих АМ-сигнала

1.	1 B, 1	a)	0,5 B		
2.	8 B, 0.5	б)	2 B		
3.	4 B, 0.8	в)	1,6 B		
4.	6 B, 0.4	L)	1,2 B		
		д)	1,4 B		
		e)	12 B		

1.	2.	3.	4.

4.12. Установите соответствие между элементами амплитудного модулятора и их назначением

1.	транзистор	a)	сформировать новые частоты w_0 - Ω ,	
			$w_0+\Omega$;	
2.	резонансный контур	б)	выделить частоты w_0 - Ω , w_0 , w_0 + Ω	
		B)	сформировать новые частоты w_0 , Ω	
		L)	выделить несущую	

1.	2.

4.13 Установите соответствие между максимальной и минимальной частотами при ЧМ и значением девиации частоты

1.	2 кГц; 1 кГц	a)	3140 рад/с
----	--------------	----	------------

2.	12 кГц; 8 кГц	б)	2 кГц
3.	112 кГц; 110 кГц	B)	6280 рад/с;
4.	62800 рад/с; 31400 рад/с	L)	2.5 кГц
		д)	2.6 кГц
		e)	1 кГц

1.	2.	3.	4.

4.14 Установите соответствие между значением девиации частоты, модулирующей частоты при ЧМ и значением ширины спектра

1.	1 кГц ; 1кГц	a)	4 кГц
2.	2 кГц ; 1 кГц	б)	6 кГц
3.	2 кГц; 2 кГц	в)	8 кГц
		Г)	2 кГц
		д)	5 кГц
		e)	10 кГц

1.	2.	3.

4.15 Установите соответствие между параметрами ЧМ сигнала и его формулой

1.	M_{q} =2, $w_0 = 628000$ рад/с; Ω = 62800	a)	$u(t)=6\cos(628000t + 2\sin 62800t)$
	рад/c, U _m =6 B		
2.	$M_{\text{u}}=1,f_0=10^5$ Гц; $\Omega=62800$ рад/с,	б)	$u(t)=2\cos(628000t + \sin 62800t)$
	$U_m = 2 B$		
3.	M_{u} =3, $f_0 = 10^3$ Гц; Ω = 628 рад/с, U_{m}	B)	$u(t)=5\cos(6280t + 3\sin 628t)$
	=5 B		
4.	M_{u} =5, $f_0 = 10^3 \Gamma \text{ц}$; F = 100 $\Gamma \text{ц}$, U_{m}	Г)	$u(t)=3\cos(6280t + 5\sin 628t)$
	=3 B		
		д)	$u(t)=8\cos(1000t +0.1\sin 628t)$
		e)	$u(t)=9\cos(100t +0.9\sin 62,8t)$

1.	2.	3.	4.

Шкала оценивания результамов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов (установлено положением П 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения

(36)и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; суммабаллов переводится в оценку по5-бальной шкале следующим образом:

Соответствие 100-балльной и 5-балльной шкал

Сумма	баллов	ПО	100-бальной	Оценка по 5-бальной шкале
шкале				
100-85				отлично
84-70				хорошо
69-50				удовлетворительно
49 и мен	нее			неудовлетворительно

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено - **2 балла**, не выполнено - **0 баллов**.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

(производственные (или ситуационные) задачи и (или) кейс-задачи)

Компетентностно – ориентированная задача № 1

Нарисовать временную диаграмму периодической последовательности прямоугольных импульсов с заданными в таблице 1параметрами. Рассчитать и построить спектр амплитуд для данногосигнала. Указать ширину спектра для периодической последовательности импульсов. Написать ряд Фурье для периодической последовательности прямоугольных импульсов.

Таблица 1 – Исходные данные

таолица т	ттелодные данные			
№ варианта	Т _с , мс	$\tau_{\text{\tiny M}}(\text{MC})$	$U_{m}\left(B\right)$	
1	9.6	1.6	7	
2	4	2	8	
3	6	1	4	
4	15	3	6	
5	16	4	4	
6	15	5	10	
7	16	4	8	

8	20	10	10
9	36	6	20
10	18	3	12

Рассчитать спектр нелинейной И построить отклика цепи на гармоническоевоздействие: $u(t) = U_m \cos \omega_0 t$, используя полином 3-й степени:i = $a_0 + a_1 U + a_2 U^2 + a_3 U^3$, если U_m – амплитуда входного сигнала (B), ω_0 – частота входного сигнала (1/c), a_0 , a_1 , a_2 , a_3 - коэффициенты полинома из таблицы нелинейной 2.Рассчитать И построить спектр отклика бигармоническоевоздействие: $u(t)=U_{m1}\sin\omega_1 t+U_{m2}\sin\omega_2 t$, используя полином 2-йстепени: $i = a_0 + a_1 U + a_2 U^2$. Записать уравнение тока с числовымизначениями.

Таблица 2 – Исходные данные

№ вар.	a_0	a_1	a_2	a_3	U _m B	U _{m1} B	U _{m2} B	f ₀ к Гц	f ₁ к Гц	f ₂ к Гц
1	0.3	1.5	1.1	0.9	1	0.9	0.5	10	5	100
2	0.4	1.6	1.2	1.0	2	1.0	0.6	20	5	110
3	0.3	1.5	1.0	0.6	3	0.8	0.4	30	6	100
4	0.2	1.3	0.9	0.4	4	1.0	0.5	15	6	90
5	0.4	1.5	1.1	0.8	5	0.8	0.6	10	5	120
6	0.6	1.8	1.5	0.9	1	0.9	0.5	25	6	110
7	0.3	1.5	1.1	0.9	2	1.0	0.6	20	7	100
8	0.4	1.6	1.3	0.8	3	0.8	0.5	5	7	90
9	0.5	1.4	1.0	0.7	1,4	0.7	0.4	10	7	110
10	0.6	1.7	1.3	1.0	2,5	0.9	0.5	8	5	80

Компетентностно – ориентированная задача №3

В процессе модуляции максимальное отклонение амплитуды U_{max} , минимальное U_{min} , частота несущего колебания f_0 , частота модулирующего колебания F. Построить в масштабе временные и спектральные диаграммы модулирующего, модулированного и AM сигнала. Определить ширину спектра.

Таблица 3 – Исходные данные

№ вар.	m	f _{0,} кГц	F,Гц	U _m , B	U_{max} , B	U _{min,} B
1	0,2	10	2	1	6	2
2	0,4	15	3	4	8	3
3	0,3	20	4	3	3	1
4	0,5	120	12	5	8	3
5	0,55	18	3	7	9	5
6	0,6	16	2	4	5	2
7	0,6	25	5	4	7	3
8	0,25	21	3	6	8	4
9	0,7	28	4	8	9	3
10	0,7	24	4	1	8	2

Написать уравнение АМ сигнала, если частота несущего колебания f_0 , частота модулирующего колебания F, коэффициент модуляции m, амплитуда несущего колебания U_m . Построить спектр этого сигнала, определить ширину спектра.

Таблица 3 – Исходные данные

№ вар.	m	f _{0,} кГц	F,Гц	U _m , B	U_{max} , B	U _{min,} B
1	0,2	10	2	1	6	2
2	0,4	15	3	4	8	3
3	0,3	20	4	3	3	1
4	0,5	120	12	5	8	3
5	0,55	18	3	7	9	5
6	0,6	16	2	4	5	2
7	0,6	25	5	4	7	3
8	0,25	21	3	6	8	4
9	0,7	28	4	8	9	3
10	0,7	24	4	1	8	2

Компетентностно – ориентированная задача №5

Построить спектр ЧМ сигнала, если дано (таблица4):

- амплитуда несущего сигнала U_m;
- девиация частоты Δf_m ;
- несущая частотаf_o;
- частота управляющего сигнала F_{max} .

Написать ряд Фурье с числовыми значениями для построенногоспектра. Определить ширину спектра ЧМсигнала.

Таблица 4 – Исходные данные

№ варианта	F _{max} кГц	Δf_m кГц	f ₀ МГц	$egin{array}{c} U_m \ B \end{array}$
1	2	6	100	10
2	4	20	105	20
3	8	32	110	30
4	12	72	80	40
5	3	21	90	50
6	5	25	100	60
7	6	36	120	70
8	7	42	130	80
9	9	54	140	90
10	10	50	150	10

Компетентностно – ориентированная задача №6

По заданным в таблице 5 значениям и графику (рисунок 8) непрерывного сигнала определить: шаг дискретизации, число уровней квантования, величину ошибки квантования и число разрядов п в кодовойкомбинации. Построить графики заданного непрерывного сигнала, дискретного, ошибки квантования иИКМ.

Таблица 5 – Исходные данные

№ варианта	Спектрсигнала $F_{min}F_{max}$, к Γ ц	Шагквантования ΔU , мВ
1	0,0110	1,0
2	0,0312	2
3	0,056,3	2,5
4	0,0216	3
5	0,34	3,5
6	0,045	4
7	0,059	4,5
8	0,33,4	1,5

9	0,28	5
10	0,0315	3

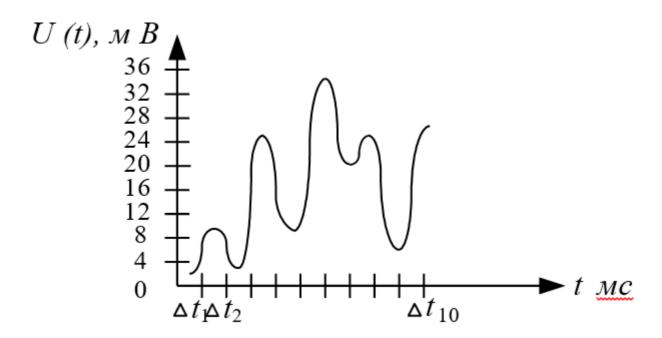


Рисунок 8 – Непрерывны й сигнал

Определить количество проверочныхэлементов. Составить уравнения для проверочныхэлементов. Построить кодирующее и декодирующее устройство для полученного кодового слова. Определить «синдром» в принятом кодовомслове. Для всех вариантов код Хэмминга (11;15).

Таблица 7 – Исходные данные

	71 71	
№ вар.	Информационныес имволы	Ошибка n - разряде
1	00000010101	1
2	00000011111	2
3	00000010011	3
4	00000011000	4
5	00000010100	5
6	00000011101	6
7	00001011001	7
8	0000010000	8
9	00000011110	9
10	00000011011	10

Компетентностно – ориентированная задача №8

Для заданного преподавателем варианта задания, рассчитать параметры первых восьми гармоник одностороннего спектра периодического сигнала и построить амплитудный и фазовый спектры заданного сигнала.

Варианты заданий

Вариант	Видсигнала	Рисунок	<i>E</i> , B	Т, мс	τ_u , MC
1.	Прямоугольныеимпульсы	2 a)	5	1	0,25
2.	Треугольныеимпульсы	2 б)	2	1	0,25
3.	Меандрнечетный	2 в)	3	1	_
4.	Пилообразноенапряжение	2 г)	4	1	_
5.	Прямоугольныеимпульсы	2 a)	1	0,5	0,1
6.	Треугольныеимпульсы	2 б)	6	0,5	0,1
7.	Меандрнечетный	2 в)	4	0,5	_
8.	Пилообразноенапряжение	2 г)	5	0,5	_
9.	Прямоугольныеимпульсы	2 a)	10	2	0,25
10.	Треугольныеимпульсы	2 б)	8	2	0,25

11.	Меандрнечетный	2 в)	2	2	_
12.	Пилообразноенапряжение	2 г)	1	2	-

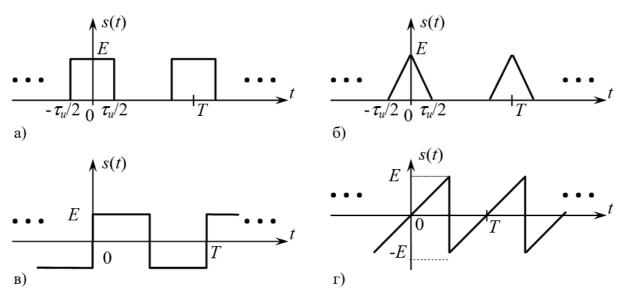


Рис. 2. Примеры периодических сигналов: а) – прямоугольные импульсы, б) – треугольные импульсы, в) – нечетный меандр, г) – пилообразный сигнал

Составить математическую модель AM сигнала и построить его спектральную диаграмму амплитуд согласно исходным данным, приведенным в таблице5.

Таблица 5 – Исходные данные

Вари-	Математическая модель несущего колебания <i>S(t)</i>	Параметрымод колеба	Коэффициент	
ант	ант несущего колсоания в(і)	Амплитуда, В	Период, мс	a_{AM}
1	$3,4\cos 62,8\cdot 10^4 t$	1,2	0,10	0,86
2	$10\cos 0.6 \cdot 12.56 \cdot 10^{5}$ t	4,7	0,08	0,92
3	$1.8 \cos 2\pi \cdot 13 \cdot 10^4 t$	0,9	6,25.10-2	0,85
4	$2,2\cos 2.251,2.10^{3}t$	1,0	16·10 ⁻²	0,93
5	$4,2\cos 3,14\cdot 1,8\cdot 10^4 t$	2,6	1·10 ⁻¹	0,84
6	$3.6 \cos 2\pi \cdot 104 \cdot 10^{3} t$	2,0	8·10 ⁻²	0,94
7	$1,6\cos 0,5\cdot 62,8\cdot 10^4 t$	0,7	0,25	0,88
8	$2.8 \cos 5.12.56.10^4 t$	1,6	6,25.10-2	0,86
9	$12\cos 2\pi \cdot 78 \cdot 10^{3}$ t	7,4	25.10-2	0,92
10	3,7 cos 31,4·18000t	2,1	0,16	0,94
11	1,7 cos 125,6·4200t	1,1	$62,5\cdot 10^{-3}$	0,82
12	$14\cos 62,8.92.10^{3}$ t	9,6	10·10 ⁻²	0,93
13	$3.8 \cos 2\pi \cdot 14.2 \cdot 10^4 t$	2,4	6,25.10-2	0,85
14	5,7 cos 628·860t	3,8	12,5.10-2	0,90
15	4,1 cos 314·1520t	2,6	16·10 ⁻²	0,86
16	$6,4\cos 2\pi \cdot 96\cdot 10^{3}$ t	4,1	0,08	0,82
17	4,8 cos 628000t	3,0	10·10 ⁻²	0,80
18	$3,9\cos 0,55\cdot 12,56\cdot 10^{5}t$	1,8	6,25.10-2	0,92

19	$4,4\cos 2,8\cdot 12,56\cdot 10^4 t$	3,1	20.10-2	0,94
20	5,6 cos 3,14·128000t	4,2	0,16	0,86
21	$7,2\cos 2\pi \cdot 106000t$	5,8	8·10 ⁻²	0,90
22	3,9 cos 2·251200t	2,8	0,125	0,95
23	9,4 cos 314·1980t	6,2	0,16	0,82
24	$6,2\cos 8,9\cdot 6,28\cdot 10^4 t$	4,1	10·10 ⁻²	0,84
25	5,2 cos 12,56·52000t	3,5	$6,25\cdot 10^{-2}$	0,80
26	7,4 cos 3,14·182000t	5,9	0,08	0,90
27	9,2 cos 125,6·3400t	7,6	16·10 ⁻²	0,92
28	1,9 cos 25,12·23000t	0,9	0,125	0,85
29	$2,6\cos 2\pi \cdot 6,9\cdot 10^4 t$	1,3	0,16	0,87
30	8,8 cos 314·1260t	6,1	0,32	0,89

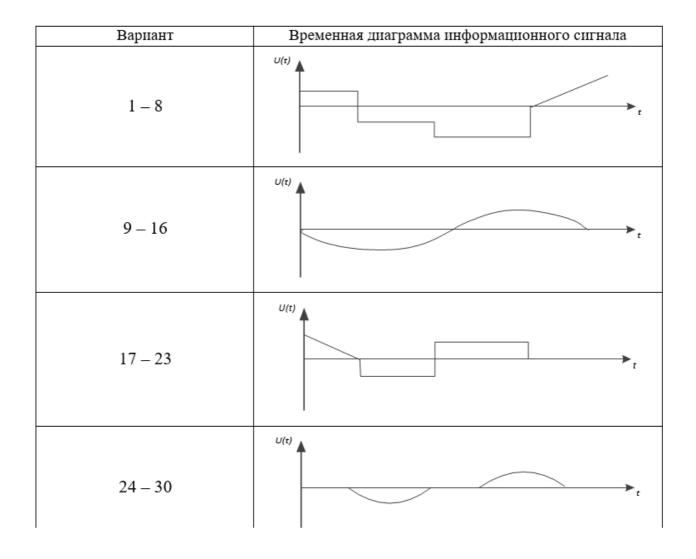

Составить математическую модель ЧМ сигнала и построить его спектральную диаграмму амплитуд согласно исходным данным, приведенным в таблице6.

Таблица 6 – Исходные данные

Вариант	$f_{\scriptscriptstyle H}$, М Γ ц	F , к Γ ц	U_m , B	Δf_m , к Γ ц	М	λ, м
1	66	15	32	-	3,33	-
2	67	15	31	-	3,33	-
3	68	15	30	-	3,33	-
4	69	15	29	-	3,33	-
5	70	15	28	-	3,33	-
6	71	15	27	-	3,33	-
7	72	15	26	-	3,33	-
8	73	15	25	-	3,33	-
9	-	15	24	50	-	4,1
10	-	15	23	50	-	4,2
11	-	15	22	50	-	4,3
12	-	15	21	50	-	4,4
13	-	15	20	50	-	4,5
14	-	15	19	50	-	4,15
15	-	15	18	50	-	4,25
16	-	15	17	50	-	4,35
17	-	-	10	45	3	4,16
18	-	-	9	45	3	4,46
19	-	-	8	45	3	4,55
20	-	-	7	45	3	4,45
21	66	15	6	-	3	-
22	67	15	5	-	3	-
23	68	15	4	ı	3	1
24	69	15	3	-	3	1
25	107	ı	4,4	45	3	ı
26	70	13	0,5	1	3	1
27	35	13	0,5	1	3	1
28	140	14	0,4	1	3	1
29	84	ı	5	45	3	-
30	70	14	1,5	-	3	-

Компетентностно – ориентированная задача №11

Нарисовать временные диаграммы AM и ЧМ сигналов, если информационный имеет вид, представленный в таблице 7.

Построить спектральную диаграмму и рассчитать частоту дискретизации сигнала, математическая модель которого имеет вид согласно данным таблицы8.

Таблица 8 – Исходные данные

Вариант	Математическаямодельсигнала
1	$U(t)=3\sin 62800t+1,5\sin 188400t$
2	U(t)=5cos163280t+5,7cos169560t
3	U(t)=2sin125600t+0,5sin251200t
4	U(t)=2,5cos339120t+7,7cos106760t
5	U(t)=1,3sin6280t-2,0sin18840t
6	$U(t) = 9\cos 144440t - 5,7\cos 270040t$
7	U(t)=0,7sin94200t+2,5sin219800t
8	U(t)=1,4cos119320t+2,9cos175840t
9	U(t)=0,3sin138160t+1,5sin69080t
10	U(t)=4,3sin163280t+5,1cos169560t
11	$U(t)=4\cos 75460t-2\cos 43960t$
12	U(t)=6,3cos75360t+1,5cos131880t
13	$U(t)=7\cos 131880t+3\sin 119320t$
14	$U(t)=3,2\cos 87920t+2,3\cos 257480$

15	U(t)=2sin314000t-1,5sin31400t
16	$U(t)=3,6\cos 383080t+6,3\cos 100480t$
17	U(t)=2sin6280t+1,5sin18840t
18	$U(t)=4,2\cos 527520t+2,4\cos 546360$
19	U(t)=15sin150720t+11sin175840t
20	$U(t)=3,5\cos 408200t+2,7\cos 395640t$
21	U(t)=3sin232360t-5sin87920t
22	U(t)=7cos270040t-5sin301440t
23	$U(t)=2\sin 75360t+4\sin 175840t$
24	$U(t) = 6\cos 445880t + 10\cos 106780t$
25	U(t)=11sin628000t+8sin1884000t
26	$U(t)=7,7\cos 138160t+4,3\cos 276320t$
27	U(t)=4sin37680t-1sin43960t
28	U(t)=6,3cos207240t+5,7cos345400t
29	$U(t)=1,2\sin 56520t+2,3\cos 87920t$
30	U(t)=6cos339120t+8cos113040t

В результате дискретизации сигнала получена последовательность отсчетов U_{m1} , U_{m2} , U_{m3} , U_{m4} , U_{m5} В. Преобразовать эту последовательность в ИКМ сигнал при шаге квантования ΔU В. Рассчитать ошибку квантования. Исходные данные смотреть в таблице9.

Таблица 9 – Исходные данные

Вариант	U_{ml} , B	U_{m2} , B	U_{m3} , B	U_{m4} , B	U_{m5} , B	ΔU , B
1	0,63	1,8	1,18	0,1	0,45	0,1
2	2,3	0,4	3,63	1,5	2,79	0,2
3	0,34	1,2	2,55	5,1	4,74	0,3
4	7,5	5,4	0,82	2,4	4,0	0,4
5	4,0	1,5	9,8	8,2	5,75	0,5
6	6,3	2,35	9,21	11,4	7,8	0,6
7	0,7	8,4	9,1	4,8	12,64	0,7
8	8,3	10,4	15,1	1,6	6,8	0,8
9	18,0	15,3	0,92	4,95	10,7	0,9
10	1,05	1,53	0,38	0,2	1,9	0,10
11	1,22	0,76	1,76	0,16	2,2	0,11
12	0,36	0,85	1,31	1,8	2,34	0,12
13	2,47	2,07	1,69	1,18	0,54	0,13
14	1,43	0,13	0,84	2,52	2,17	0,14
15	2,5	2,97	0,32	0,9	1,65	0,15
16	1,44	0,63	2,55	3,04	2,0	0,16
17	1,28	0,54	0,245	3,23	2,21	0,17
18	1,28	2,79	0,36	3,42	0,89	0,18
19	2,67	0,37	3,42	1,52	2,08	0,19
20	2,3	1,2	3,15	3,83	0,4	0,20
21	3,88	0,42	1,05	1,9	2,9	0,21
22	0,55	4,18	2,21	3,3	2,63	0,22
23	0,23	4,36	2,75	1,165	3,45	0,23
24	0,3	3,6	4,7	1,44	2,52	0,24
25	0,45	4,8	1,5	2,9	4	0,25
26	0,27	1,03	4,94	2,73	3,12	0,26
27	4,86	2,95	1,7	3,78	2,45	0,27
28	5,6	1,22	3,0	2,24	4,34	0,28
29	3,1	1,74	5,22	4,37	2,125	0,29
30	3,3	4,35	6,0	0,27	1,51	0,30

Закодировать четырехразрядное сообщение кодом Хэмминга (7,4,3) с использованием порождающей и проверочной матриц,согласно таблице 10, и сравнить полученные результаты. Декодировать синдромным способом кодовую комбинацию, полученную по пункту 2, для случаев внесения одно-, двух- и трехкратных ошибок (искаженные разряды – произвольно).

Таблица 10 – Исходные данные

Номерварианта	Порождающаяматрица	Проверочнаяматрица
15	$ \begin{array}{c} g_{4,7} \\ = \begin{vmatrix} 1000 & 1 \\ 0100 & 1 \\ 0010 & 1 \\ 0001 & 0 \end{vmatrix} $	$H_{3,7} = \begin{vmatrix} 1110 & 100 \\ 1101 & 010 \\ 1011 & 001 \end{vmatrix}$
610	$\mathbf{g}_{4,7} = \begin{vmatrix} 1000 & 111 \\ 0100 & 110 \\ 0010 & 101 \\ 0001 & 111 \end{vmatrix}$	$H_{3,7} = \begin{vmatrix} 0111 & 100 \\ 1101 & 010 \\ 1011 & 001 \end{vmatrix}$
1115	$\mathbf{g}_{4,7} = \begin{vmatrix} 1000 & 111 \\ 0100 & 110 \\ 0010 & 101 \\ 0001 & 011 \end{vmatrix}$	$H_{3,7} = \begin{vmatrix} 1110 & 100 \\ 1011 & 010 \\ 0111 & 001 \end{vmatrix}$
1620	$\mathbf{g_{4,7}} = \begin{vmatrix} 1000 & 111 \\ 0100 & 110 \\ 0010 & 101 \\ 0001 & 011 \end{vmatrix}$	$H_{3,7} = \begin{vmatrix} 1110 & 100 \\ 1101 & 010 \\ 0111 & 001 \end{vmatrix}$
2125	$\mathbf{g_{4,7}} = \begin{vmatrix} 1000 & 111 \\ 0100 & 110 \\ 0010 & 101 \\ 0001 & 011 \end{vmatrix}$	$= \begin{vmatrix} H_{3,7} \\ 1101 & 100 \\ 0111 & 010 \\ 1110 & 001 \end{vmatrix}$
2630	$\mathbf{g_{4,7}} = \begin{vmatrix} 1000 & 111 \\ 0100 & 110 \\ 0010 & 101 \\ 0001 & 011 \end{vmatrix}$	

Компетентностно – ориентированная задача №15

Канал тональной частоты занимает полосу частот от 300 до 3400 Гц. По нему в течение 30 с передается телефонное сообщение и такого же содержания телеграфное сообщение равномерным кодом с длительностью каждой посылки 20 мс. Оцените экономичность того и другого метода передачи. Динамические диапазоны сигналов принять равными.

Компетентностно – ориентированная задача №16

На вход приемного устройства, настроенного на частоту 500 кГц воздействует помеха в виде периодической последовательности прямоугольных импульсов амплитудой 5 *мВ*, следующих с периодом 40 *мкс* и длительностью импульсов 5 *мкс*. В полосу пропускания приемника попадает одна из гармоник периодической последовательности. Определите номер этой гармоники и амплитуду помехи на выходе приемника.

Компетентностно – ориентированная задача №17

Радиосвязь ведется на волне 47 M с использованием однополосной амплитудной модуляции (ОМ). Модулирующий сигнал занимает полосу частот $100...6000~\Gamma \mu$, амплитуда несущего колебания равна 100~B, коэффициент амплитудной модуляции равен 0,65. Определите наибольшую и наименьшую амплитуды модулированного сигнала, крайние частоты и ширину спектра модулированного сигнала, если выделяется нижняя боковая полоса частот. Составьте математическую модель ОМ сигнала.

Компетентностно – ориентированная задача №18

Определите ширину спектра частотно-модулированного (ЧМ) сигнала и составьте уравнение несущего колебания, если радиопередатчик работает на волне 4,16 M, девиация частоты равна 50 $\kappa \Gamma u$, максимальная частота модулирующего сигнала равна 15 $\kappa \Gamma u$, амплитуда несущего колебания -100 B.

Компетентностно – ориентированная задача №19

На вход приемника поступило 1000 биполярных импульсов в двоичном коде, из них "1"–250. Определите математическое ожидание и дисперсию при приеме серии импульсов, если амплитуда импульсов равна 2,6 *В*.

Компетентностно – ориентированная задача №20

По каналу связи ведется передача данных со скоростью 48 $\kappa 6 um/c$ в течение 3 минут. Динамический диапазон сигнала составляет 20 ∂E . Емкость

канала согласована с объемом сигнала ($V_K = V_C$). Как изменится время передачи сигнала, если скорость передачи сигнала увеличится в два раза, а динамический диапазон сигнала станет равным 15 $\partial \mathcal{D}$?

Компетентностно – ориентированная задача №21

Определите ширину спектра сигнала, передаваемого по непрерывному каналу связи, если максимальная скорость передачи информации равна 8,44 M6um/c, мощность сигнала в канале $19 \, MBm$, мощность помех $1 \, MBm$.

Компетентностно – ориентированная задача №22

Определите спектральную плотность помех (белый шум) в канале с полосой частот 312,3...359,4 $\kappa \Gamma u$, если средняя мощность сигнала равна 412 $m\kappa Bm$, пропускная способность канала 315,6 $\kappa \delta um/c$.

Компетентностно – ориентированная задача №23

Закодируйте кодом Шеннона-Фано восемь сообщений, вероятность появления которых $p(a_1)$ =0,07; $p(a_2)$ =0,13; $p(a_3)$ =0,1; $p(a_4)$ =0,15; $p(a_5)$ =0,2; $p(a_6)$ =0,12; $p(a_7)$ =0,11; $p(a_8)$ =0,12. Сравните энтропию источника со средним числом символов, приходящихся на одно закодированное сообщение.

Компетентностно – ориентированная задача №24

Закодируйте кодом Хаффмана восемь сообщений, вероятность появления которых $p(a_1)$ =0,06; $p(a_2)$ =0,16; $p(a_3)$ =0,1; $p(a_4)$ =0,15; $p(a_5)$ =0,19; $p(a_6)$ =0,13; $p(a_7)$ =0,1; $p(a_8)$ =0,11. Сравните энтропию источника со средним числом символов, приходящихся на одно закодированное сообщение.

Компетентностно – ориентированная задача №25

Компетентностно – ориентированная задача№26

Определите энергетический выигрыш приемника фазоманипулированных сигналов по сравнению с когерентным приемником амплитудно-манипулированных сигналов, если вероятность ошибок составляет $7 \cdot 10^{-4}$.

По каналу связи с помехами передается одна из двух команд управления в виде 11111 и 00000, вероятности передачи этих команд соответственно равны 0,7 и 0,3. Вероятность правильного приема каждого из символов 0 и 1 равна 0,6. Символы искажаются помехами независимо друг от друга. На выходе канала имеем кодовую комбинацию 10110. Определить какая комбинация была передана

Компетентностно – ориентированная задача №28

Рассчитайте отношение сигнал-помеха на выходе приемника частотно-модулированных сигналов, если мощность сигнала на входе $10~m\kappa Bm$, спектральная плотность мощности помехи (белый шум) $10^{-14}Bm/\Gamma u$, индекс частотной модуляции равен 3,33, коэффициент амплитуды $16~\partial E$, максимальная частота первичного сигнала $15~\kappa \Gamma u$.

Компетентностно – ориентированная задача №29

Определите на сколько выше помехоустойчивость приема частотно-модулированного сигнала по сравнению с помехоустойчивостью приема амплитудно-модулированного сигнала при одинаковых спектральной плотности мощности помех и средней мощности модулированных сигналов. Параметры первичного сигнала: максимальная частота $10 \ \kappa \Gamma u$, коэффициент амплитуд $15 \ \partial E$. Коэффициент амплитудной модуляции 100%, девиация частоты частотно модулированного сигнала $50 \ \kappa \Gamma u$.

Компетентностно – ориентированная задача №30

Постройте матрицу для группового кода, способного исправлять одиночную ошибку при передаче 16 символов первичного алфавита.

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся

осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи - 6 баллов.

Балл, полученный обучающимся за решение компетентностноориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; суммабаллов переводится в оценку по 5-балльной шкале следующим образом:

Соответствие 100-балльной и 5-балльной шкал

Сумма	баллов	ПО	100-бальной	Оценка по 5-бальной шкале
шкале				
100-85				отлично
84-70				хорошо
69-50				удовлетворительно
49 и мен	нее			неудовлетворительно

Критерии оценивания решения компетентностно-ориентированной задачи:

6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.

4-3 балла выставляетсяобучающемуся, еслирешение

задачи демонстрируетпонимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).

2-1 балла выставляется обучающемуся, если

решениезадачидемонстрируетповерхностное понимание обучающимся предложеннойпроблемы; осуществлена попыткашаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.

0 баллов выставляетсяобучающемуся, если

решениезадачидемонстрируетнепонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.