Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 18.11.2024 00:46:10 Уникальный программный ключ:

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра машиностроительных технологий и оборудования

НАРЕЗАНИЕ РЕЗЬБЫ НА ТОКАРНЫХ СТАНКАХ

Методические указания по выполнению лабораторной работы для студентов направления подготовки Машиностроение и Конструкторско-технологическое обеспечение машиностроительных производств УДК 621.31

Составитель: Е.И.Яцун

Рецензент:

кандидат технических наук, доцент кафедры «Машиностроительные технологии и оборудование» Зубкова О.С.

Нарезание резьбы на токарных станках: методические указания к выполнению лабораторной работы для студентов направления подготовки Машиностроение / Юго-Зап. гос. ун-т; сост. Е.И.Яцун. – Курск, 2021. – 16с.: ил. 3,. – Библиогр. 6: с.16.

Содержат сведения об оборудовании, инструменте, режимах резания, методах настройки станка на нарезание различных резьб, методах контроля параметров резьбы.

Методические указания соответствуют требованиям ФГОС ВПО по направлению подготовки «Машиностроение».

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л.. Уч.-изд.л. Тираж 100 экз. Заказ . Бесплатно. Юго-Западный государственный университет. 305040, г.Курск, ул.50 лет Октября, 94

СОДЕРЖАНИЕ

	ЦЕЛЬ РАБОТЫ	Стр. 4
	ЗАДАНИЕ	4
	ОБОРУДОВАНИЕ И ИНСТРУМЕНТЫ	4
1	Нарезание резьбы на токарных станках	4
2	Настройка кинематических цепей токарного станка	8
3	Варианты заданий	11
4	Примеры настройки винторезной цепи без коробки подач	11
5	Нарезание многозаходных резьб, резьб с увеличенным шагом и точным шагом	13
6	Содержание отчета	14
	Контрольные вопросы	15
	Список источников	16

https://vk.com/video-163076512_456239017

Посмотрите фильм «Нарезание резьбы на токарном станке»

ЦЕЛЬ РАБОТЫ - изучить методы нарезания резьбы на токарновинторезных станках мод. 16Б16A, 1К62, 16К2ОФ3 и последовательность их наладки.

ЗАДАНИЕ

- 1) Выбрать режимы нарезания наружной метрической резьбы;
- 2) произвести расчет наладки станка на нарезание различных типов резьбы, подобрать сменные колеса гитары настройки;
 - 3) нарезать метрическую резьбу на заготовке заданного диаметра;
 - 4) провести контроль резьбы;
 - 5) составить отчет о проделанной работе.

ОБОРУДОВАНИЕ И ИНСТРУМЕНТЫ

- 1) Токарно-винторезные станки мод. 16Б16А, 1К62 и 16К20Ф3.
- 2) Резцы резьбовые.
- 3) Штангенциркуль с пределами измерений от 0 до 150 мм.
- 4) Резьбовой калибр.
- 5) Резьбомер.

1 НАРЕЗАНИЕ РЕЗЬБЫ НА ТОКАРНЫХ СТАНКАХ

На токарно-винторезных станках нарезают внутренние и наружные резьбы 6-8 классов точности в условиях единичного, мелкосерийного и серийного производства (Рис. 1).

Резцами нарезают наружные резьбы диаметром d = 1...1000 мм, шагом P = 0.25...100 мм, 6...8 степени точности.

Наибольшая производительность обработки в серийном производстве, в том числе на станках с ЧПУ, — 5 шт./мин для резьбы с минимальными диаметром, шагом и длиной не более 2d.

Глубина резания t зависит от припуска на обработку и вида обработки (черновое или чистовое точение). Обработку ведут с возможно меньшим числом проходов.

Рассмотрим схему нарезания резьбы (Рис.1).

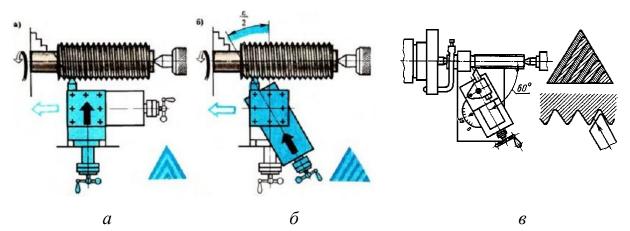


Рис. 1 Схемы врезания при нарезании резьбы резцом:

a – поперечная;

 δ – боковая с разворотом верхних салазок суппорта под углом $\epsilon/2$;

e – с поворотом резцедержателя на угол 60^{0}

Для перебега (выхода) резца на заготовке предварительно делается проточка – канавка (Рис. 2, поз.3)

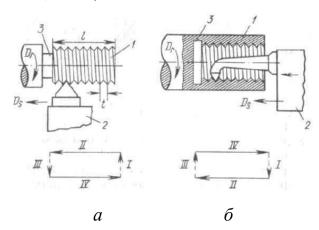


Рис. 2 Элементы схемы резания при нарезании наружной (a) и внутренней (δ) резьбы:

1 – заготовка; 2 – резец; 3 - проточка – канавка для выхода резца

Рассмотрим последовательность определения режимов резания при точении на одношпиндельных станках.

1. Определение длины рабочего хода $L_{p,x}$ суппорта на рабочей подаче, мм (или каждого суппорта, если их несколько), исходя из значений L, рассчитанных для отдельных инструментов суппорта и последовательности их работы. Расчет проводим для одного резца:

$$L_{\mathbf{p.x}} = L_{\mathbf{p}} + L_{\mathbf{n}} + L_{\mathbf{n}},$$

где L_p — длина резания, мм; L_n — длина подвода, врезания, перебега инструмента, мм; $L_{_{\! I}}$ — дополнительная длина хода, обусловленная особенностями наладки и конфигурации детали, мм. $L_{_{\! I}}$ =0.

$$L_{\pi}=1,5...2,0$$
 MM.

Далее приводятся фрагменты карт (табл. 1, 2 и 3), по которым могут быть назначены режимы резания для обработки наружной резьбы резцом на деталях из конструкционных сталей.

Таблица 1 2. Определение общей глубины резания t₁ и числа проходов і при точении

наружных и внутренних метрических резьб на деталях из конструкционных сталей

	Рабочая		Значени	t_1 , mm		
Шаг резьбы	высота профиля резьбы <i>h</i> , мм	51.00 to 100.00 to	одаче лом 27°	при рад по,	Значение	
Р, мм		наружная резьба	внутрен- няя резьба	наружная резьба	внутрен- няя резьба	
0,5	0,27	0,38	0,35	0,34	0,31	4
0,75	0,406	0,57	0,52	0,51	0,46	4
1,0	0,541	0,76	0,68	0,68	0,61	5
1,25	0,677	0,96	0,86	0,86	0,77	6
1,5	0,812	1,16	1,03	1,03	0,92	6
1,75	0,947	1,35	1,20	1,20	1,07	8
2,0	1,082	1,54	1,38	1,37	1,23	8

Таблица 2

Таблица 3

3. Радиальная подача на проход S при нарезании наружной метрической резьбы на деталях из конструкционных сталей

Но- мер про- хода	Значение S , мм/проход, для шагов резьбы P , мм													
	0,5	0,75	1,0	1,25	1,5	1,75	2,0	2,5	3,0	3,5	4,0	4,5	5,0	6,0
1	0,15	0,20	0,20	0,25	0,25	0,25	0,30	0,30	0,30	0,35	0,40	0,45	0,50	0,60
2	0,08	0,15	0,17	0,19	0,23	0,20	0,25	0,26	0,27	0,31	0,35	0,40	0,44	0,50
3	0,06	0,11	0,14.	0,14	0,20	0,18	0,20	0,22	0,24	0,27	0,31	0,35	0,39	0,45
4	0,05	0,05	0,11	0,12	0,17	0,16	0,17	0,19	0,21	0,24	0,28	0,30	0,34	0,40
5	_	_	0,06	0,10	0,12	0,14	0,15	0,17	0,18	0,22	0,25	0,26	0,30	0,35
6	-	-	-	0,06	0,06	0,12	0,13	0,15	0,16	0,20	0,23	0,22	0,26	0,30
7	_		_	_	_	0,09	0,11	0,13	0,15	0,18	0,21	0,19	0,22	0,26
8	_	_	_	_	-	0,06	0,06	0,12	0,14	0,16	0,19	0,17	0,18	0,24

4. Скорость резания V (Табл. 3).

Скорость резания V при резьботочении

Обрабать	ываемый	Значение v, м/мин, при резьботочении резцами							
матер	оиал	быстро-	твердосплавными						
Вид	Твердость НВ	режущими Р6М5	P10	P30	K10	K20			
Конст-	До 230	1520	120170	80100	-	-			
ные стали	230 270	1015	100140	7080	_	_			

4. Расчет режимов резьбообработки резцами завершается определением основного времени.

При точении резьбы основное время:

$$T_o = \frac{Lp.x \cdot i \cdot q}{P \cdot n}$$

где $L_{\text{p.x}}$ — длина рабочего хода резца, мм;

Р — шаг обрабатываемой резьбы, мм;

n — частота вращения заготовки, об/мин, определяемая по формуле:

$$n = \frac{1000 V}{\pi D}$$
,

i — число проходов; q — число заходов резьбы. q=1.

Далее n — корректируется по паспортным данным станка и пересчитывается скорость резания по формуле $V = \frac{\pi Dn}{1000}$ (м/мин.).

Режимы нарезания наружной метрической резьбы вносим в табл. 4.

Таблица 4 Режимы нарезания наружной метрической резьбы резцом

			1	J		L	1	F	
Материал	Диаметр	Шаг	Длина	Частота	Скорость	Продоль	Глубина	Число	Радиальная
детали	резьбы	резьбы	рабочего	вращения	резания	ная	резания	проходов	подача на
			хода	заготовки		подача			проход
Твердость			резца						
		MM							
			MM						
	d	P	$L_{p.x}$	n	V	$S_{прод.}$	t,	i	S
	MM	MM	MM	об/мин/	м/мин.	мм/об.	MM		мм/проход

2 НАСТРОЙКА КИНЕМАТИЧЕСКИХ ЦЕПЕЙ ТОКАРНОГО СТАНКА

Уравнение кинематических цепей от шпинделя к ходовому винту при нарезании резьбы составляют из условия, чтобы за один оборот шпинделя суппорт с резцом переместился вдоль оси заготовки на величину шага нарезаемой резьбы Т(Рис. 3).

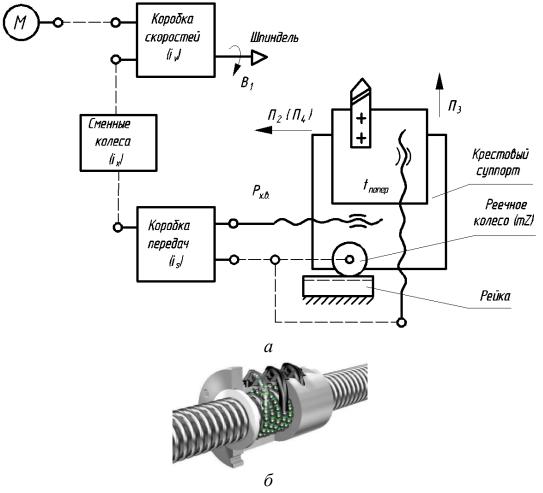


Рис. 3 Структурная схема токарно-винторезного станка (a) и ШВП (δ)

Уравнение кинематического баланса винторезной цепи за 1 оборот шпинделя:

$$T = l_{\text{of.min}} \cdot U \cdot t_{\text{B}}, \qquad (1)$$

где U - передаточное отношение кинематической цепи от шпинделя к ходовому винту;

 $t_{\rm \ B}$ - шаг ходового винта.

$$U=U_{\Gamma}\cdot U_{\kappa\Pi} \tag{2}$$

Здесь U $_{\Gamma}$ -передаточное отношение гитары настройки для нарезания резьбы определенного типа - метрических, модульных, дюймовых, питчевых; $U_{\kappa\Pi}$ - передаточное отношение коробки подач.

Подставив уравнение (2) в уравнение (1), получим:

$$T = I_{\text{об.шп}} U_{\Gamma} \cdot U_{\text{кп}} \quad t_{B}$$
 (3)

откуда
$$U_{\Gamma} = \frac{T}{1 \cdot U \kappa \pi \cdot t_{B}}$$
 (4)

Шаг нарезаемой резьбы Т определяется следующим образом:

- 1) Метрическая резьба задается шагом Т в мм.
- 2) Дюймовая резьба определяется числом ниток n на дюйм 1",

1 дюйм=1"=25,4 мм.
$$T = 25,4 / n$$
 (5)

https://yandex.ru/efir?stream_id=49441d37921281529d474ad23de3e21b&from_bloc k=logo_partner_player

Посмотрите фильм «Нарезание дюймовой резьбы на токарном станке»

3) Модульная резьба

$$T = \pi m$$
, MM (6)

где m - модуль червяка,

4) Питчевая резьба определяется диаметральным питчем (ρ),

T.e
$$T=25,4 \pi/\rho n$$
 (7)

Диаметральный питч (ρ) - это число зубьев червячного колеса, приходящееся на 1" диаметра начальной окружности.

Примечание: модульные и питчевые резьбы применяются только для нарезания червяков.

Подставляя (5,6,7) а уравнение (4), можно определить, в зависимости от типа нарезаемой резьбы, передаточное отношение гитары настройки и подобрать сменные колеса.

3 ВАРИАНТЫ ЗАДАНИЙ

Ш	аг нарезае	емой резь	бы	Шаг нарезаемой резьбы					
№ вар	Метрической Т (мм)	Дюймовой Т=n на i"	Модульной m	№ вар	Метрической Т (мм)	Дюймовой Т=п на i"	Модульной m		
1	0,2	3	1	13	1,25	18	9		
2	0,25	4	1.25	14	1.5	20	10		
3	0,3	5	1,5	15	2.0	24	I		
4	0,35	6	1,7	16	2,5	28	2		
5	0,4	7	2	17	3,0	32	2.5		
6	0,45	8	2,5	18	3,5	36	3		
7	0,5	9	3,5	19	4,0	40	4		
8	0.6	10	4	20	4,5	48	3.5		
9	0,7	11	5	21	5,0	56	4.5		
10	0,75	12	6	22	5.5	64	5		
11	0,8	14	7	23	6.0	72	6		
12	1.0	16	8	24	8.0	80	8		

4 ПРИМЕРЫ НАСТРОЙКИ ВИНТОРЕЗНОЙ ЦЕПИ БЕЗ КОРОБКИ ПОДАЧ

Пример 1.

Произвести расчет настройки токарно-винторезного станка мод. 16Б16А на нарезание однозаходной метрической резьбы с шагом T=1,75 мм, Принимаем передаточное отношение кинематической цепи от шпинделя к ходовому винту (без гитары настройки) $U_{\text{кп}} = 1$; $t_{\text{в}} = 6$ мм.

Тогла:

$$U_r = \frac{T}{U \kappa n \cdot t b} = \frac{1,75}{1 \cdot 6} = \frac{35}{60} \cdot \frac{25}{50} = \frac{K}{L} \cdot \frac{M}{N}$$

Проверяем гитару настройки по условию сцепляемости колес:

Второе условие не выполняется. Меняем местами числители дробей или их знаменатели. Тогда получим:

$$U_r = K/L \cdot M/N = 25/60 \cdot 35/50$$

Производим проверку

Условие сцепляемости сменных зубчатых колес выполняется.

Пример 2.

Произвести расчет настройки токарно-винторезного ставка мод. $16 \overline{b} 16 A$ для нарезания однозаходной дюймовой резьбы с числом ниток на 1" n=3,5.

Принимаем: $t_B = 6$ мм; $U_{KII} = 1$;

$$1" = 25.4 \text{ MM} = 127/5 \text{ MM}$$

$$U_{KII}=1 \cdot t_B=1 \cdot 6$$

Тогда:

$$U2 = \frac{K}{L} \cdot \frac{M}{N} = \frac{T}{1 \cdot U \kappa n \cdot n} = \frac{25.4}{1 \cdot 1 \cdot 6 \cdot 3.5} = \frac{127.5}{6 \cdot 3.5 \cdot 5} = \frac{127 \cdot 30}{60 \cdot 52}$$

Производим проверку гитары настройки по условию сцепляемости колес

Условие сцепляемости сменных зубчатых колес выполняется.

Пример 3.

Произвести расчет настройки токарно-винторезного станка на нарезание однозаходного червяка (k=1) модулем m=3 мм.

Принимаем $t_{\rm B} = 6$ мм.

Шаг модульной резьбы:

$$T=\pi \cdot m \text{ MM}.$$
 (8)

Принимаем $\pi = 3.1415926 = 22/7$

Тогда:
$$U_{\Gamma} = K/L \cdot M/N = \frac{\pi \cdot m}{U_{\Pi \in \Pi u} \cdot t_{B}} = \frac{22}{7 \cdot 1 \cdot 6}$$
.

Проверяем гитару настройки по условию сцепляемости колес:

Для подбора сменных колес гитары настройки в комплект поставки станка входит набор колес с числом зубьев кратным пяти и с четным числом

зубьев, а также специальные колеса с числом зубьев: Z = 47, 97, 127.

Пятковый набор (число зубьев кратное пяти):

$$Z = 20,25,30,35,40,45,50,55$$
 и т.д. до 120.

Четный набор (число зубьев краткое четырем):

5 НАРЕЗАНИЕ МНОГОЗАХОДНЫХ РЕЗЬБ, РЕЗЬБ С УВЕЛИЧЕННЫМ ШАГОМ И ТОЧНЫМ ШАГОМ

6.1. При нарезания многозаходной резьбы под шагом Т понимают расстояние между параллельными сторонами профиля двух соседних витков. Поэтому для нарезания резьбы заданного шага Т необходим, чтобы суппорт за один оборот заготовки переместился на величину хода резьбы S, равную:

$$S = k \cdot T \tag{9}$$

где К - число заходов нарезаемой резьбы.

Многозаходные резьба применяют при нарезании ходовых винтов, многозаходных червяков и др. деталей. В общем случае при К заходов резьба на нарезаемой детали угол R между соседними витками резьбы (если смотреть в торец детали) будет:

$$R=360^{\circ}/K$$
 (10)

Многозаходные резьбы можно нарезать двумя способами.

- 1) После нарезания первой нитки заготовку поворачивают на часть оборота, равную 360^{0} /К. При этом предварительно необходимо разомкнуть или отключить винторезную цепь.
- 2) При неподвижной заготовке перемещают инструмент вместе с резцовыми салазками не размыкая маточную гайку на величину шага Т нарезаемой резьбы. Величину перемещения контролируют по лимбу.

Нарезают следующий заход резьбы и т.д.

Для правильного деления окружности на равное число частей при

нарезании многозаходной резьбы на токарно-винторезном станке мод. 16Б16А имеется кольцо с риской, укрепленное на передней бабке и диск с 60 делениями, насаженный на шпиндель станка. После нарезания первого захода резьбы шпиндель станка при отключенной винторезной цепи необходимо повернуть на число делений С:

$$C = R/\alpha = 360^{\circ}/K \cdot \alpha \tag{11}$$

где К - число заходов нарезаемой резьбы;

- $\alpha = 6^{0}$ количество градусов, приходящихся на одно деление.
- 6.2. Для нарезания резьбы с увеличенным в 4, 8 и 16 раз шагом пользуются звеном увеличения шага нарезаемой резьбы путем переключения соответствующих зубчатых блоков, положение которых определяется таблицей шагов нарезаемых резьб, расположенной на лицевой стороне станка.
- 6.3. При нарезании резьбы с точным шагом ходовой винт с помощью муфт напрямую соединяется с ведомым валом гитары настройки. При этом величина шага нарезаемой резьбы определяется настройкой гитары сменных зубчатых колес и ее передаточным отношением.

https://youtu.be/gLS-YuJNe3Y

Посмотрите фильм Контроль резьбы на КИМ

6 СОДЕРЖАНИЕ ОТЧЕТА

- 1. Эскиз нарезания наружной резьбы и движения формообразования.
- 2. Выбор режимов нарезания метрической резьбы.
- 3. Расчет настройки токарно-винторезного станка мод. 16Б16А на нарезание резьб различных типов.
- 3. Контроль резьб: методы, инструменты, приборы.

Контрольные вопросы

- 1) Перечислите типы нарезаемых резьб на токарных станках.
- 2) Как определяется шаг нарезаемой резьбы: метрической, дюймовой, модульной, и питчевой? Формулы:
- 3) По назначению резьбы метрическая, дюймовая, модульная, питчевая, трапецеидальная относятся к каким резьбам?
- 4) Покажите эскиз резца и его геометрические параметры для нарезания метрической резьбы:
- 5) Покажите эскиз резца и его геометрические параметры для нарезания дюймовой резьбы:
 - 6) Определите шаг дюймовой резьбы при числе ниток n=16 на дюйм 1".
 - 7) Какой метод формообразования резьбы реализуется при обработке резьбы резцом?
 - 8) Для чего служит гитара настройки винторезной цепи?
- 9) Шаг нарезаемой резьбы p=2,5 мм. Чему равна продольная подача резьбового резца $S_{\text{прод}}$?
 - 10) На каких деталях нарезаются многозаходные резьбы?
 - 11) Где применяют резьбы с увеличенным шагом в 4, 8 и 16 раз?
 - 12) На каких деталях нарезают точные резьбы?
 - 13) Сколько классов точности резьбы существует?
 - 14) Расшифруйте обозначение резьбы М8-6gx50.58 ГОСТ 7798-70.
 - 15) Какие резьбы относятся к ходовым?
 - 16) На каких деталях нарезается ходовая резьба?
 - 17) Какой профиль имеют ходовые резьбы?
 - 18) Покажите профиль и геометрические параметры ходовой резьбы.
 - 19) Пример обозначения ходовой резьбы:
 - 20) Сколько заходов может быть у червяка, ходового винта?
 - 21) Чему равен ход резьбы ходового винта при числе заходов 2? Формула:
- 22) На какую величину переместится суппорт за один оборот однозаходного винта, если шаг резьбы p=12 мм (Рис. 1)?
- 23) На какую величину переместится суппорт токарного станка за один оборот ходового винта, если шаг ходового винта p=10 мм, а число заходов k=2 (Puc. 1)?

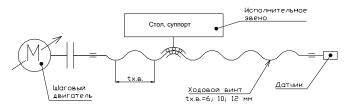
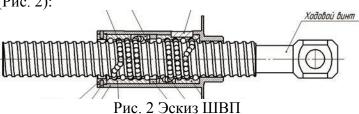



Рис. 1 Кинематическая схема привода подач токарного станка

- 24) Какой тип передачи винт-гайка показан на кинематической схеме (Рис. 1)?
- 25) Что такое передача винт-гайка качения?
- 26) ШВП это
- 27) Состав ШВП (Рис. 2):

- 28) Преимущества передачи винт-гайка качения (ШВП) по сравнению с передачей винт-гайка скольжения. Сравните КПД передач.
 - 29) На каких деталях нарезается модульная резьба?
 - 30) Какой профиль имеет модульная резьба? Эскиз.
- 31) Чему равно передаточное отношение червячной передачи при числе заходов червяка 1 и числе зубьев червячного колеса 50? Пределы редукции червячной передачи.

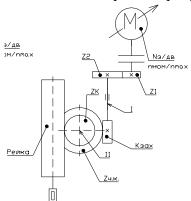


Рис. 2 Кинематическая схема

32) Расшифруйте обозначения: мод. 16Б16А, 1К62, 16К2ОФ3.

Список источников

- 1. Металлорежущие станки : учебник: в 2 т. Т. 2.: Машиностроение / В. В. Бушуев, А. В. Еремин, А. А. Какойло [и др.]; под. ред. В. В. Бушуева. 2011. 584 с.
- 2. Справочник технолога-машиностроителя : В 2-х т. / Под ред. А. Г. Косиловой, Р. К. Мещерякова. М.: Машиностроение. 2002.
- 3. https://vk.com/video-163076512_456239017/ Нарезание резьбы на токарном станке
 - 4. <u>tepka.ru>Metallorezhuschie_stanki/22.html/</u>

Режимы резания при точении и нарезании резьбы резцом

- - 6. https://youtu.be/gLS-YuJNe3Y/ Контроль резьбы на КИМ