Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Шлеенко Алексей Васильевич

Должность: Заведующий кафедрой Дата подписания: 23.09.2024 15:01:56 МИНОБРНАУКИ РОССИИ

Юго-Западный государственный университет

Уникальный программный ключ:

5f5bf1acee89a66c219718baf8e79671be8cb993

УТВЕРЖДАЮ:

Зав. кафедрой промышленного и

гражданского строительства

А.В. Шлеенко

(подпись)

«02» июля 2024 г.

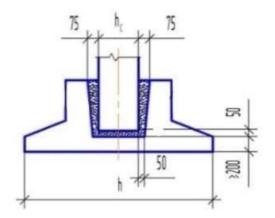
#### ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

«Проектирование железобетонных конструкций» (наименование дисциплины)

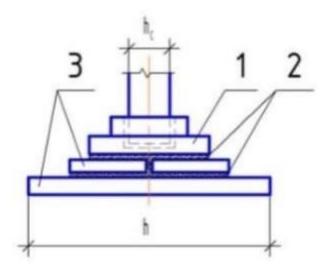
ОПОП ВО 08.04.01 «Строительство»

(код и наименование ОПОП ВО)


### 1. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ 1.1 ТЕСТИРОВАНИЕ

Современное состояние проектирования железобетонных конструкций. Направления развития.

- 1.1 Что может служить критерием образования нормальных трещин в бетоне, если неупругие деформации не учитываются?
- а) Величина максимальных сжимающих напряжений в бетоне
- б) Величина максимальной поперечной силы в балке
- в) Величина максимальных растягивающих напряжений в арматуре
- г) Величина максимальных растягивающих напряжений в бетоне
- 1.2. Из каких элементов состоит тавровое сечение?
  - а) Из ребра и стенки
  - б) Из плиты и полки
  - в) Из плиты и арки
  - г) Из полки и ребра
- 1.3.По какой причине нормы ограничивают расстояние между поперечными стержнями (хомутами) условием  $S \le bh \ R \ / \ Q$ 
  - а) Чтобы исключить условие  $\xi < \xi \ 0 \ 2$  bt R
  - б) Из уравнения проекций на продольную ось
  - в) Чтобы исключить возможность разрушения по наклонной трещине, не пересекающей ни одного хомута
  - г) Чтобы удовлетворить уравнению моментов сил относительно оси, проходя-щей через центр тяжести растянутой арматуры
- 1.4.При рассмотрении первого случая внецентренного сжатия сколько линейно независимых уравнений равновесия можно использовать ( из множества возможных) для решения задач и определения неизвестных величин?
  - a) 2
  - б)4
  - **B**)1
- 1.5.Из какого уравнения определяется площадь сечения растянутой арматуры (при изгибе элементов с двойной арматурой) при известных значениях  $x = \xi$  ho и A's
  - а) Уравнения моментов сил относительно оси, проходящей через центр тяжести растянутой арматуры
  - б) Уравнения Кулона
  - в) Уравнения проекций
- 1.6.Сколько неизвестных величин при проверке прочности внецентренно сжатого элемента, когда известны размеры прямоугольного сечения,

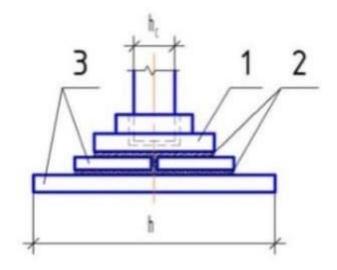

классы бетона и арматуры, площади растянутой и сжатой арматуры (1 случай – большие эксцентриситеты)?

- a)5
- б)1
- **B**)3
- 1.7. Какая формула является правильной для расчета продольной арматурыпри одиночном армировании ( $\xi < \xi$ )?
  - a) A = M / (xh0 Rb)
  - $6)A = M / (\eta h 0 Rb)$
  - B)A = Q/(xh0 Rb)
- 1.8.Принятая в нормах методика расчета учитывает ли в явном виде силы зацепления по берегам наклонной трещины (Т)?
  - а) Не учитывает
  - б) Учитывает в отдельных случаях
  - в)Учитывает
- 1.9. Какой тип железобетонного фундамента представлен на картинке.
  - а) монолитный
  - б) сборный составной



- 1.10. Чему равно напряжение в арматуре As(более удаленной от внешней сжимающей силы) при 2 случае внецентренного сжатия (малые эксцентриситеты), если  $\xi = 1$ 
  - а) R (растяжение)
  - б) R (сжатие)
  - в) 0.5R (растяжение)

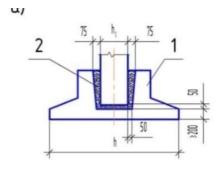
#### 1.11. Конструктивный элемент под цифрой 1, изображённый на рисунке, - это:



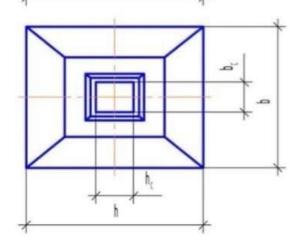

- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна

#### 1.12. Балка это

- а) прямолинейный стержень, работающий на изгиб (или комбинацию сопротивлений, где преобладает изгиб)
- б) прямолинейный элемент двутаврового профиля
- в) это брус или арка, работающие на изгиб


# 1.13. По характеру действия нагрузки делятся на

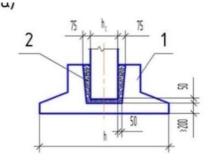



- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна

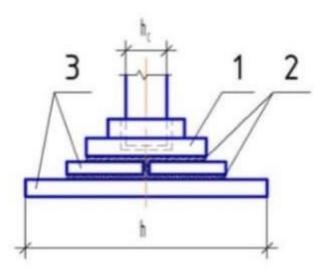
## 1.14. Конструктивный элемент под цифрой 1, изображённый на рисунке, - это:

- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна




# 1.15. Какой тип железобетонного фундамента представлен на картинке.




- а) монолитный
- б) сборный составной

# 1.16. Конструктивный элемент под цифрой 2, изображённый на рисунке, - это:

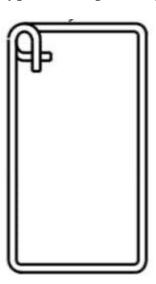
- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна



# 1.17. Конструктивный элемент под цифрой 2, изображённый на рисунке, - это:



- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна


### 1.18. Прочность здания – это:

- а) Способность воспринимать действующие нагрузки, а также усилия, возникающие в его конструктивных элементах.
- б) Степень занятости материалов конструкции, из которых оно сооружено.
- в) Уменьшение затрат стоимости и трудоемкости материалов, снижения массы здания и трудовых затрат на возведение.

## 1.19. Важной характеристикой поверхности является:

- а) Гауссова кривизна.
- б) Напряжение в сечении.
- в) Пролет конструкции.

### 1.20 Какой тип гнутого арматурного стержня представлен на картинке:

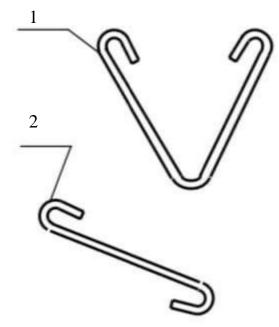


- а) шпилька
- б) закрытый хомут
- в) открытый хомут

### 1.21. Какой тип гнутого арматурного стержня представлен на картинке:



- а) шпилька
- б) закрытый хомут
- в) открытый хомут


# 1.22. Для решения стыков и узлов соединения железобетонных изделий применяются закладные детали следующих типов:

- а) из листового, сортового или фасонного проката с применением приварных анкеров;
- б) только из листового, сортового или фасонного проката.
- в) верны оба варианта.

# 1.23. Сборочные чертежи железобетонных изделий состоят из:

- а) разрезов
- б) схем армирования
- в) верны оба варианта
- г) оба варианта неверны

# 1.24. Какой тип гнутого арматурного стержня представлен на картинках 1, 2:



- а) шпилька
- б) закрытый хомут
- в) открытый хомут

## 1.25. Выберите самое выгодное сечение при кручении:

- а) Кольцевое
- б) Круглое
- в) Эллипсоидное
- г) Овоидное

# 1.26. Для армирования железобетонных конструкций применяются следующие виды арматуры:

- а) только горячекатаная гладкая и периодического профиля с постоянной и переменной высотой выступов;
- б) только термомеханически упрочнённая периодического профиля с постоянной и переменной высотой выступов;
- в) только холоднодеформируемая периодического профиля диаметром 3 12 мм.
- г) верны варианты а и б;
- д) верны варианты а, б и в.

#### 1.27. Формула Эйлера для расчёта стержней на устойчивость применима при:

- а) напряжениях в сечении, не превосходящих предел пропорциональности материала стержня.
- б) напряжениях в сечении, не превосходящих предел прочности материала стержня.
- в) напряжениях в сечении, не превосходящих предел расчётного сопротивления материала стержня.
- г) напряжениях в сечении, не превосходящих предел длительной прочности материала стержня.

# 1.28. С чего начинается разрушение «нормально» армированного изгибаемого элемента (стадия III) по нормальному сечению:

- а) С появления косых
- б) трещинС текучести растянутой.
- в) С разрушения сжатой зона бетона

#### 1.29. Практическая формула для расчёта на устойчивость применима при:

- а) любых напряжениях в сечении стержня
- б) напряжениях в сечении, превосходящих предел пропорциональности материала стержня.
- в) напряжениях в сечении, не превосходящих предел пропорциональности материала стержня.
- $\Gamma$ ) напряжениях в сечении, превосходящих предел временной прочности материала стержня.

#### 1.30 Расчётная длина стержня при расчёте на устойчивость зависит от:

- а) Геометрической длины и способа закрепления концов стержня.
- б) Геометрической длины, способа закрепления концов стержня и расчётного сопротивления материала стержня.
- в) Геометрической длины и и расчётного сопротивления материала стержня.
- г) Геометрической длины, способа закрепления концов стержня и гибкости стержня.

# 1.2 ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Принципы проектирования железобетонных конструкций.

- 1. Деформативность бетона.
- 2. Экспериментальные основы теории сопротивления железобетона.
- 3. Значение экспериментальных исследований в развитии теории железобетона.
- 4. Три стадии напряженно-деформированного состояния сечений железобетонных элементов под нагрузкой и характер разрушения при растяжении, изгибе, внецентренном сжатии, кручении.
- 5. Процесс образования и раскрытия трещин в растянутых зонах.
- 6. Влияние предварительного напряжения (начальные напряжения, предельные напряжения в бетоне при обжатии, предельные напряжения в арматуре при натяжении).

- 7. Методы расчета конструкций по допускаемым напряжениям и по разрушающим нагрузкам.
- 8. Основные положения метода расчета конструкций по предельным состояниям.
- 9. Метод расчета железобетонных элементов по предельным состояниям.
- 10. Две группы предельных состояний.
- 11. Расчетные факторы: нагрузки и механические характеристики бетона и арматуры, определяемые с учетом их статистической изменчивости.
- 12. Классификация нагрузок по времени действия.
- 13. Нормативные и расчетные нагрузки.
- 14. Сочетания нагрузок.
- 15. Снижение нагрузок.
- 16. Коэффициенты надежности по степени ответственности.
- 17. Коэффициенты надежности по нагрузке.
- 18. Коэффициенты надежности по материалам.
- 19. Нормативные сопротивления материалов, устанавливаемые с учетом нормированной обеспеченности.
- 20. Коэффициенты условий работы материалов.
- 21. Виды железобетонных конструкций по способу изготовления.
- 22. Время застывания (затвердевания) бетона.
- 23. Бетоны для несущих и ограждающих конструкций.
- 24. Влияние структуры бетона на его прочность и деформативность.
- 25. Марки бетона по морозостойкости.
- 26. Релаксация напряжений в бетоне.
- 27. Предельные относительные деформации бетона.
- 28. Диаграммы деформирования сталей.
- 29. Влияние высокотемпературного нагрева.
- 30. Арматура для напряженных железобетонных конструкций, рекомендуемые классы, защитные слои.

## Преднапряжённый железобетон.

- 1. Расчет железобетонных элементов по прочности.
- 2. Общий случай расчета железобетонных элементов по прочности нормальных сечений.
- 3. Разрушение по растянутой зоне.
- 4. Разрушение по сжатой зоне.
- 5. Граничное значение высоты сжатой зоны бетона.
- 6. Условие прочности нормальных сечений.
- 7. Расчетные зависимости.
- 8. Принципы расчета стержневых элементов по прочности при прямом учете неупругих свойств бетона и высокопрочной арматуры.
- 9. Прочность изгибаемых железобетонных элементов по нормальным сечениям.

- 10. Схемы внутренних усилий в сечениях.
- 11. Предпосылки расчета.
- 12. Расчет по прочности изгибаемых бетонных элементов.
- 13. Расчет по прочности нормальных сечений прямоугольных, тавровых (двутавровых) железобетонных элементов с одиночной и двойной арматурой.
- 14. Процент армирования.
- 15. Прочность изгибаемых железобетонных элементов по наклонным сечениям.
- 16. Расчет по прочности наклонных сечений: на действие поперечных сил по сжатой полосе между наклонными трещинами.
- 17. Расчет по прочности наклонных сечений: на действие поперечных сил по наклонной трещине.
- 18. Расчет по прочности наклонных сечений: на действие изгибающего момента по наклонной трещине.
- 19. Прочность сжатых элементов.
- 20. Учет случайных эксцентриситетов.
- 21. Влияние длительно действующей части нагрузки.
- 22. Расчет внецентренно сжатых бетонных элементов по прочности.
- 23. Учет продольного изгиба.
- 24. Расчет по прочности внецентренно сжатых железобетонных элементов.
- 25. Учет косвенного армирования.
- 26. Сжатые элементы с жесткой арматурой.
- 27. Предельные относительные деформации бетона.
- 28. Собственный вес железобетонных конструкций.
- 29. Расчёт по І группе предельных состояний для балок и плит.
- 30. Расчёт по І группе предельных состояний для колонн.

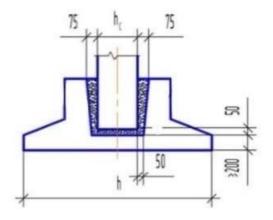
Использование современных технологий в проектировании железобетонных конструкций.

- 1. Расчет железобетонных элементов по образованию трещин.
- 2. Центрально-растянутые элементы.
- 3. Изгибаемые элементы.
- 4. Внецентренно сжатые элементы.
- 5. Внецентренно растянутые элементы.
- 6. Относительные деформации бетона при сжатии.
- 7. Относительные деформации бетона при растяжении.
- 8. Определение момента образования трещин по способу ядровых моментов.
- 9. Расчет железобетонных элементов по раскрытию нормальных трещин.
- 10. Расчет железобетонных элементов по раскрытию нормальных трещин.
- 11. Предельная ширина раскрытия трещин из условия сохранности арматуры и ограничения проницаемости железобетонных конструкций.
- 12. Схема учета нагрузок.
- 13. Коэффициент поперечной деформации бетона (коэффициент Пуассона)

- 14. Модуль сдвига.
- 15. Коэффициент линейной температурной деформации бетона.
- 16. Соотношение между марками и классами тяжелого бетона по прочности.
- 17. Коэффициент условий работы бетона.
- 18. Расчёт по продолжительному раскрытию трещин.
- 19. Расчёт по непродолжительному раскрытию трещин.
- 20. Комбинация нагрузок для разных расчётных случаев.
- 21. Собственный вес монолитных конструкций.
- 22. Собственный вес сборных железобетонных конструкций.
- 23. Объёмный вес бетона.
- 24. Объёмный вес железобетона при разном содержании арматуры.
- 25. Зашитный слой бетона.
- 26. Значения защитного слоя рабочей арматуры.
- 27. Виды фиксаторов.
- 28. Фиксаторы однократного применения.
- 29. Характер сопротивления материалов железобетонных и каменных конструкций.
- 30. Совершенствование конструктивных расчётов и решений.

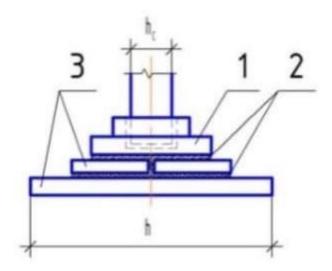
**Критерии оценивания** (нижеследующие критерии оценки являются примерными и могут корректироваться):

- 6 баллов (или оценка «отлично») выставляется обучающемуся, если он принимает активное участие в беседе по большинству обсуждаемых вопросов (в том числе самых сложных); демонстрирует сформированную способность к диалогическому мышлению, проявляет уважение и интерес к иным мнениям; владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, ораторскими способностями и правилами ведения полемики; строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; легко и заинтересованно откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 4 балла (или оценка «хорошо») выставляется обучающемуся, если он принимает участие в обсуждении не менее 50% дискуссионных вопросов; проявляет уважение и интерес к иным мнениям, доказательно и корректно защищает свое мнение; владеет хорошими знаниями вопросов, в обсуждении которых принимает участие; умеет не столько вести полемику, сколько участвовать в ней; строит логичные, аргументированные высказывания, сопровождаемые подходящими примерами; не всегда откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **2 балла** (или оценка **«удовлетворительно»**) выставляется обучающемуся, если он принимает участие в беседе по одному-двум наиболее простым обсуждаемым вопросам; корректно выслушивает иные мнения; неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике предпочитает занимать позицию заинтересованного слушателя; строит краткие, но в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; теряется при возникновении неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
  - **0 баллов** (или оценка **«неудовлетворительно»**) выставляется обучающемуся,


если он не владеет содержанием обсуждаемых вопросов или допускает грубые ошибки; пассивен в обмене мнениями или вообще не участвует в дискуссии; затрудняется в построении монологического высказывания и (или) допускает ошибочные высказывания; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

## 2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

## 2.1. БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ


- 2 Вопросы в закрытой форме
- 1.1 Что может служить критерием образования нормальных трещин в бетоне, если неупругие деформации не учитываются?
- а) Величина максимальных сжимающих напряжений в бетоне
- б) Величина максимальной поперечной силы в балке
- в) Величина максимальных растягивающих напряжений в арматуре
- г) Величина максимальных растягивающих напряжений в бетоне
- 2.2. Из каких элементов состоит тавровое сечение?
  - а) Из ребра и стенки
  - б) Из плиты и полки
  - в) Из плиты и арки
  - г) Из полки и ребра
- 2.3.По какой причине нормы ограничивают расстояние между поперечными стержнями (хомутами) условием  $S \le bh \ R \ / \ Q$ 
  - а) Чтобы исключить условие  $\xi < \xi \ 0 \ 2$  bt R
  - б) Из уравнения проекций на продольную ось
  - в) Чтобы исключить возможность разрушения по наклонной трещине, не пересекающей ни одного хомута
  - г) Чтобы удовлетворить уравнению моментов сил относительно оси, проходя-щей через центр тяжести растянутой арматуры
- 2.4. При рассмотрении первого случая внецентренного сжатия сколько линейно независимых уравнений равновесия можно использовать ( из множества возможных) для решения задач и определения неизвестных величин?
  - a) 2
  - б)4
  - в)1
- 2.5.Из какого уравнения определяется площадь сечения растянутой арматуры (при изгибе элементов с двойной арматурой) при известных значениях x =ξ ho и A's
  - а) Уравнения моментов сил относительно оси, проходящей через центр тяжести растянутой арматуры

- б) Уравнения Кулона
- в) Уравнения проекций
- 2.6. Сколько неизвестных величин при проверке прочности внецентренно сжатого элемента, когда известны размеры прямоугольного сечения, классы бетона и арматуры, площади растянутой и сжатой арматуры (1 случай большие эксцентриситеты)?
  - a)5
  - б)1
  - в)3
- 2.7. Какая формула является правильной для расчета продольной арматурыпри одиночном армировании ( $\xi < \xi$ )?
  - a) A = M / (xh0 Rb)
  - $\delta A = M / (\eta h 0 Rb)$
  - B)A = Q/(xh0 Rb)
- 2.8. Принятая в нормах методика расчета учитывает ли в явном виде силы зацепления по берегам наклонной трещины (Т)?
  - а) Не учитывает
  - б) Учитывает в отдельных случаях
  - в)Учитывает
- 2.9. Какой тип железобетонного фундамента представлен на картинке.
  - а) монолитный
  - б) сборный составной



- 2.10. Чему равно напряжение в арматуре As(более удаленной от внешней сжимающей силы) при 2 случае внецентренного сжатия (малые эксцентриситеты), если  $\xi = 1$ 
  - а) R (растяжение)
  - б) R (сжатие)
  - в) 0.5R (растяжение)

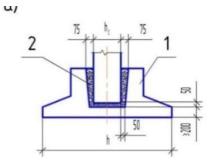
# 2.11 Конструктивный элемент под цифрой 1, изображённый на рисунке, - это:



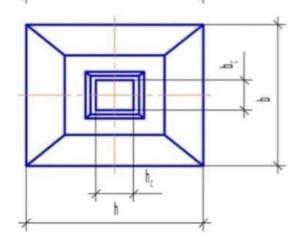
- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна

#### 2.12 Балка это

- а) прямолинейный стержень, работающий на изгиб (или комбинацию сопротивлений, где преобладает изгиб)
- б) прямолинейный элемент двутаврового профиля
- в) это брус или арка, работающие на изгиб


# 2.13 По характеру действия нагрузки делятся на

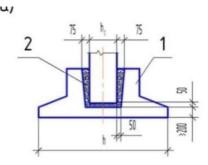



- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна

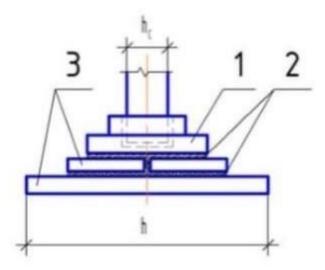
#### 2.14 Конструктивный элемент под цифрой 1, изображённый на рисунке, - это:

- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна




2.15 Какой тип железобетонного фундамента представлен на картинке.




- а) монолитный
- б) сборный составной

## 2.16 Конструктивный элемент под цифрой 2, изображённый на рисунке, - это:

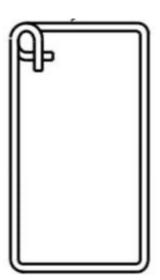
- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна



1.18. Конструктивный элемент под цифрой 2, изображённый на рисунке, - это:

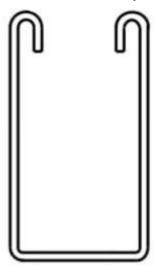


- а) подколонник со стаканом
- б) бетон
- в) бетонная плита
- г) колонна


#### 1.18. Прочность здания – это:

- а) Способность воспринимать действующие нагрузки, а также усилия, возникающие в его конструктивных элементах.
- б) Степень занятости материалов конструкции, из которых оно сооружено.
- в) Уменьшение затрат стоимости и трудоемкости материалов, снижения массы здания и трудовых затрат на возведение.

# 1.19. Важной характеристикой поверхности является:


- а) Гауссова кривизна.
- б) Напряжение в сечении.
- в) Пролет конструкции.

#### 1.20 Какой тип гнутого арматурного стержня представлен на картинке:

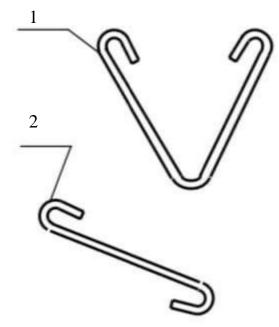


- а) шпилька
- б) закрытый хомут
- в) открытый хомут

### 1.21. Какой тип гнутого арматурного стержня представлен на картинке:



- а) шпилька
- б) закрытый хомут
- в) открытый хомут


# 1.22. Для решения стыков и узлов соединения железобетонных изделий применяются закладные детали следующих типов:

- а) из листового, сортового или фасонного проката с применением приварных анкеров;
- б) только из листового, сортового или фасонного проката.
- в) верны оба варианта.

#### 1.23. Сборочные чертежи железобетонных изделий состоят из:

- а) разрезов
- б) схем армирования
- в) верны оба варианта
- г) оба варианта неверны

# 1.24. Какой тип гнутого арматурного стержня представлен на картинках 1, 2:



- а) шпилька
- б) закрытый хомут
- в) открытый хомут

## 1.25. Выберите самое выгодное сечение при кручении:

- а) Кольцевое
- б) Круглое
- в) Эллипсоидное
- г) Овоидное

# 1.26. Для армирования железобетонных конструкций применяются следующие виды арматуры:

- а) только горячекатаная гладкая и периодического профиля с постоянной и переменной высотой выступов;
- б) только термомеханически упрочнённая периодического профиля с постоянной и переменной высотой выступов;
- в) только холоднодеформируемая периодического профиля диаметром 3 12 мм.
- г) верны варианты а и б;
- д) верны варианты а, б и в.

#### 1.27. Формула Эйлера для расчёта стержней на устойчивость применима при:

- а) напряжениях в сечении, не превосходящих предел пропорциональности материала стержня.
- б) напряжениях в сечении, не превосходящих предел прочности материала стержня.
- в) напряжениях в сечении, не превосходящих предел расчётного сопротивления материала стержня.
- г) напряжениях в сечении, не превосходящих предел длительной прочности материала стержня.

# 1.28. С чего начинается разрушение «нормально» армированного изгибаемого элемента (стадия III) по нормальному сечению:

- а) С появления косых
- б) трещинС текучести растянутой.
- в) С разрушения сжатой зона бетона

#### 1.29. Практическая формула для расчёта на устойчивость применима при:

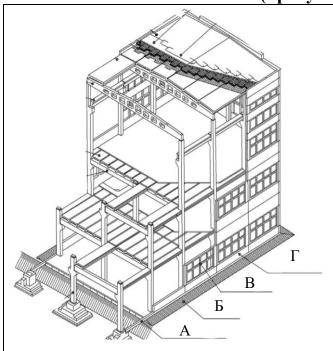
- а) любых напряжениях в сечении стержня
- б) напряжениях в сечении, превосходящих предел пропорциональности материала стержня.
- в) напряжениях в сечении, не превосходящих предел пропорциональности материала стержня.
- г) напряжениях в сечении, превосходящих предел временной прочности материала стержня.

#### 1.31 Расчётная длина стержня при расчёте на устойчивость зависит от:

- а) Геометрической длины и способа закрепления концов стержня.
- б) Геометрической длины, способа закрепления концов стержня и расчётного сопротивления материала стержня.
- в) Геометрической длины и и расчётного сопротивления материала стержня.
- г) Геометрической длины, способа закрепления концов стержня и гибкости стержня.

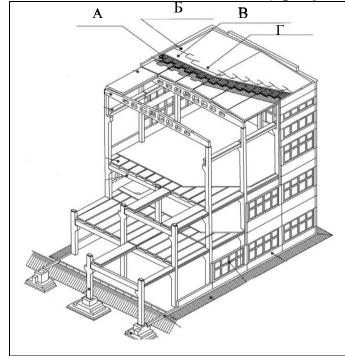
# 2 Вопросы в открытой форме

| 2.1. Железобетоном называется материал, в котором совместно работают                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| бетон и                                                                                                                                                                                                                                                                                                       |
| 2.2.Одиночные арматурные стержни изготовляются из горячекатаной стержневой арматуры и                                                                                                                                                                                                                         |
| <ul> <li>2.3 армирования называют изображения (виды, разрезы, сечения) железобетонного изделия в предположении прозрачности бетона.</li> <li>2.4 – арматура, воспринимающая расчетные усилия, возникающие в конструкции.</li> <li>2.5. Монтажная арматура может быть и устанавливается без расчета</li> </ul> |
| по конструктивным или технологическим соображениям.                                                                                                                                                                                                                                                           |
| 2.6. Выбор той или иной формы пространственных конструкций осуществляют с учетом                                                                                                                                                                                                                              |
| 2.7. Изделия закладные служат для отдельных элементов между собой при монтаже.                                                                                                                                                                                                                                |
| 2.8. Защитный слой бетона служит для железобетонных элементов с целью предупреждения коррозии арматуру защищают от внешней среды.                                                                                                                                                                             |
| 2.9. Как называются деформации, возрастающие с течением времени при постоянном напряжении?                                                                                                                                                                                                                    |
| 2.10. Что такое плечо внутренней пары сил изгибаемого железобетонного элемента?                                                                                                                                                                                                                               |
| 2.11. Как изменяется ширина раскрытия нормальных трещин асгс с увеличением напряжений в растянутой арматуре?                                                                                                                                                                                                  |
| 2.12. Учитывается ли работа растянутого бетона при расчете прочности по нормальным сечениям изгибаемых железобетонных элементов?                                                                                                                                                                              |
| 2.13. Фундамент относится к группе элементов конструкций                                                                                                                                                                                                                                                      |
| 2.14. Какие деформации являются полностью необратимыми при полной разгрузке?                                                                                                                                                                                                                                  |
| 2.15. Из какого уравнения определяется положение нейтральной оси тавровых сечений при расчете площади растянутой арматуры?                                                                                                                                                                                    |
| 2.16. При плоском наряженном состоянии прочность при сжатии в направлении оси X, если в направлении Y (оси X и Y перпендикулярны) приложено растягивающее напряжение                                                                                                                                          |
| 2.17. Действительно ли, что модуль мгновенных деформаций больше модуля полных деформаций?                                                                                                                                                                                                                     |
| 2.18. Для известных материалов коэффициент Пуассона находится в пределах                                                                                                                                                                                                                                      |
| 2.19. Чем может быть объяснено появление наклонных трещин у опор балок?                                                                                                                                                                                                                                       |
| 2.20. Чем характеризуется 2 случай внецентренного сжатия (малые эксцентриситеты)?                                                                                                                                                                                                                             |


- 2.21. Как вычислить коэффициент Пуассона?
- 2.22. При плоском наряженном состоянии прочность при сжатии в направлении X ...., если в направлении Y (оси X и Y перпендикулярны) приложено небольшое сжимающее напряжение ...
- 2.23. Действительно ли, что модуль мгновенных деформаций всегда равен модулю полных деформаций?
- 2.24. В чем экономия от замены прямоугольных сечений тавровыми при их одинаковой высоте?
- 2.25. Какие деформации являются полностью обратимыми при полной разгрузке?
- 2.26. С увеличением эксцентриситета продольной сжимающей силы величина критической силы ...
- 2.27. Если по формуле для расчета площади сжатой арматуры A's (первый случай внецентренного сжатия большие эксцентриситеты) площадь A's получается отрицательной, это значит, что...
- 2.28. Величина случайного эксцентриситета при сжатии должна приниматься не менее...
- 2.29. Прочность бетона при растяжении составляет примерно... от прочности бетона при сжатии.
- 2.30. Из какого дополнительного условия рассчитывается количество сжатой арматуры (случай действия моментов разных знаков в одном и том же сечении не рассматривается)?

#### 3 Вопросы на установление соответствия

3.1. Установите соответствие (присутствуют лишние варианты):

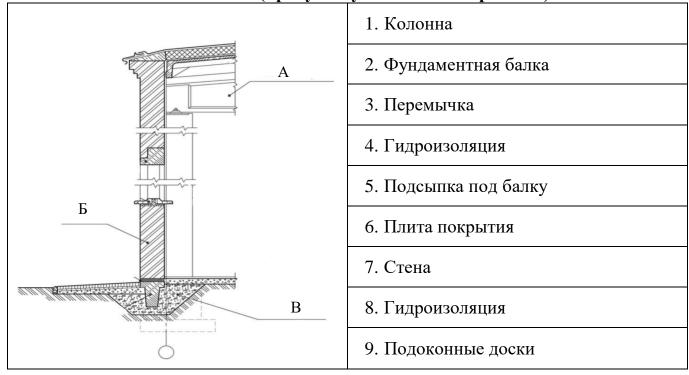



3.2. Установите соответствие (присутствуют лишние варианты):

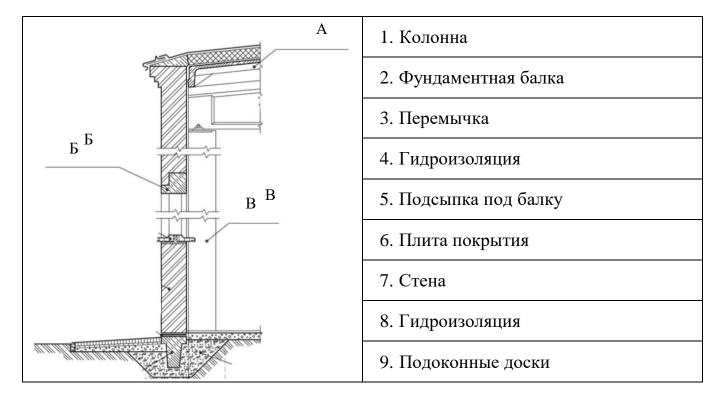


- 1. Утеплитель
- 2. Воронка внутреннего водостока
- 3. Колонна
- 4. Балка покрытия
- 5. Фундамент
- 6. Кровельный ковёр
- 7. Стеновая панель
- 8. Выравнивающий слой
- 9. Плита междуэтажного перекрытия
- 10. Плита покрытия
- 11. Подкрановая балка
- 12. Пароизоляция
- 13. Фундаментная балка
- 14. Оконная панель
- 15. Ригель междуэтажного перекрытия
- 16.Отмостка

3.3. Установите соответствие (присутствуют лишние варианты):



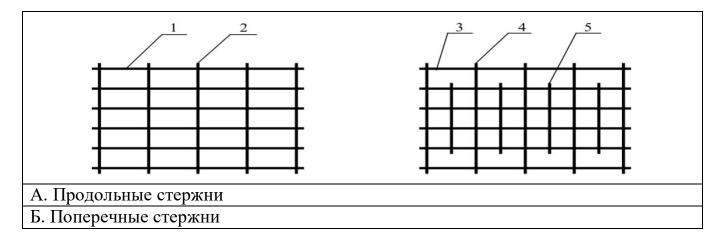

- 1. Утеплитель
- 2. Воронка внутреннего водостока
- 3. Колонна
- 4. Балка покрытия
- 5. Фундамент
- 6. Кровельный ковёр
- 7. Стеновая панель
- 8. Выравнивающий слой
- 9. Плита междуэтажного перекрытия
- 10. Плита покрытия
- 11. Подкрановая балка
- 12. Пароизоляция
- 13. Фундаментная балка
- 14. Оконная панель
- 15. Ригель междуэтажного перекрытия
- 16.Отмостка


3.4. Установите соответствие (присутствуют лишние варианты):

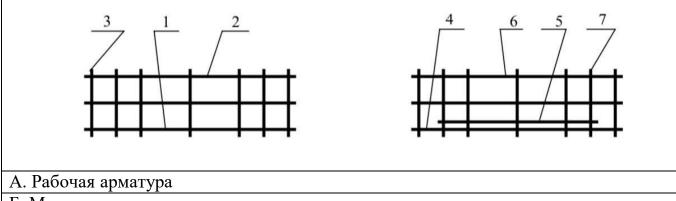


3.5 Установите соответствие (присутствуют лишние варианты):



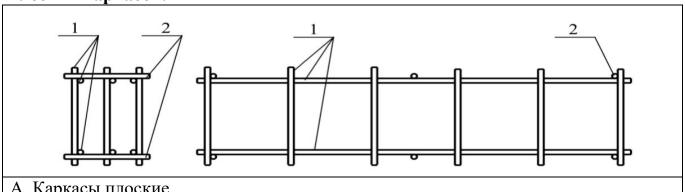

#### 3.6 Установите соответствие (присутствуют лишние варианты):




3.7 Установите соответствие (присутствуют лишние варианты):



#### 3.8 Установите соответствие (возможно несколько вариантов):




3.9 Установите соответствие (возможно несколько вариантов):



- Б. Монтажная арматура
- В. Поперечные стержни

## 3.10 Установите соответствие образования пространственных каркасов из плоских каркасов:



- А. Каркасы плоские
- Б. Соединительные стержни

3.11 Установите соответствие наращивания балок снизу при незначительном

увеличении их несущей способности:



- А. Железобетонное наращивание
- Б. Оголенная арматура балки
- В. Усиливаемая балка
- Г. Арматурные коротыши
- Д. Продольная арматура усиления

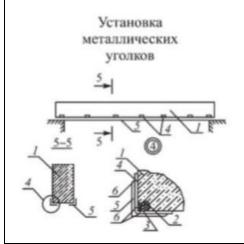
3.12 Установите соответствие наращивания балок снизу при значительном увеличении их несущей способности:



- А. Оголенная арматура балки
- Б. Арматурные коротыши
- В. Продольная арматура усиления
- Г. Железобетонное наращивание
- Д. Усиливаемая балка

3.13 Установите соответствие устройства железобетонной обоймы:




- А. Железобетонные плиты
- Б. Арматура обоймы
- В. Поверхность балки, подготовленная к армированию
- Г. Железобетонная обойма
- Д. Усиливаемая балка
- Е. Отверстия, пробитые в полках плит для укладки бетона

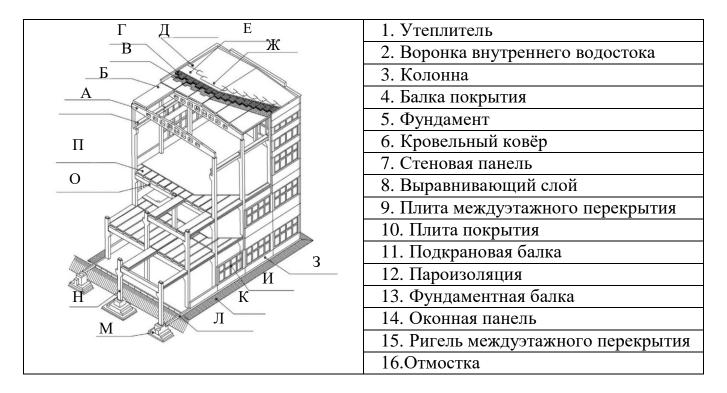
3.14 Установите соответствие установки внешней листовой арматуры на полимеррастворе:



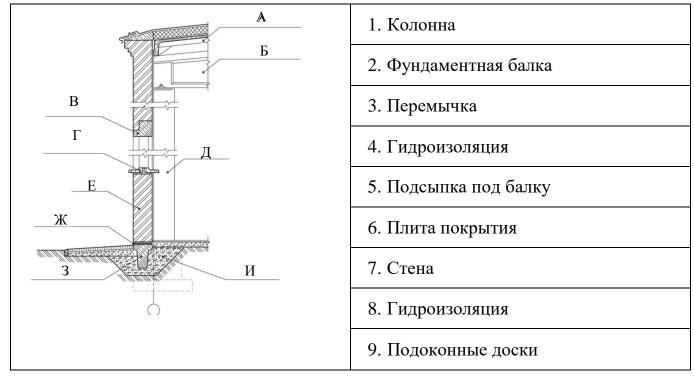
- А. Стальные анкерные связи
- Б. Адгезионная обмазка из защитно-конструкционного полимер-раствора по подготовительной поверхности
- В. Гнёзда, высверленные в балке
- Г. Усиливаемая балка
- Д. Стальной лист

3.15 Установите соответствие установки металлических уголков:

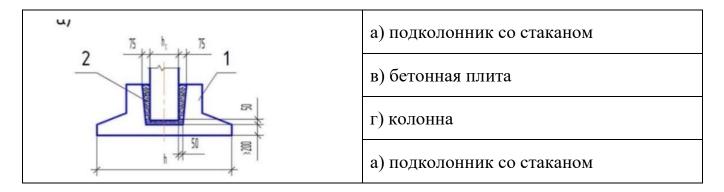



- А. Арматурные коротыши
- Б. Сварка
- В. Существующая арматура балки
- Г. Металлические пластины
- Д. Усиливаемая балка
- Е. Прокатный уголок

3.16 Установите соответствие установки дополнительной арматуры на полимеррастворе:




- А. защитно-конструкционного полимерраствор
- Б. Усиливаемая балка
- В. Дополнительная арматура
- Г. Пазы в бетоне, прорезанные фрезой


#### 3.17 Установите соответствие:

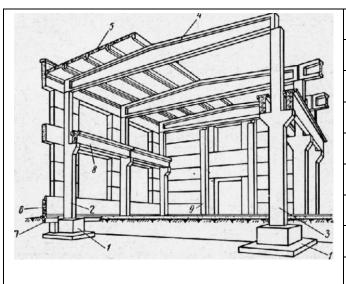


#### 3.18 Установите соответствие:



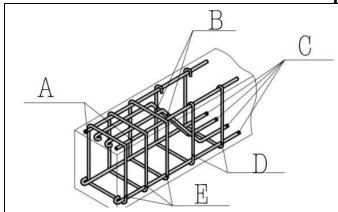
## 3.19 Установите соответствие (присутствуют лишние варианты):




3.20 Установите соответствие (присутствуют лишние варианты):

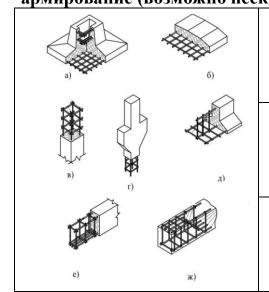


3.21 Установите соответствие условных обозначений арматурных изделий (присутствуют лишние варианты):


| (присутствуют лишние варианты). |                                                  |
|---------------------------------|--------------------------------------------------|
|                                 | 1. Анкерное кольцо или пластина (вид сбоку)      |
| a.                              | 2. Арматурный стержень с анкеровкой ( с крюками) |
|                                 | 3. Анкерное кольцо или пластина (вид с торца)    |
| b                               | 4. Арматурный стержень (вид сбоку)               |
| . · ·                           | 5. Предварительно напряжённый стержень или       |
| <u> </u>                        | трос (сечение)                                   |
| +                               | 6. Арматурный стержень (сечение)                 |
| <u>u.</u>                       | 7. Арматурный стержень с отгибом под прямым      |
|                                 | углом, идущим в направлении от читателя          |
|                                 | 8. Анкеровка у напрягаемых концов                |

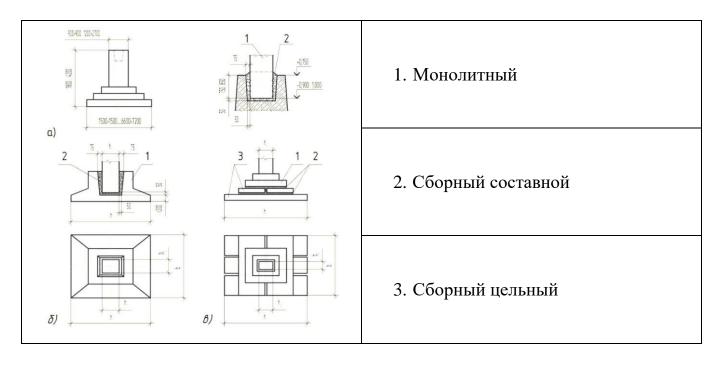
#### 3.22 Установите соответствие:




- А. Двускатная балка
- Б. Фундаментная балка
- В. Колонна среднего ряда
- Г. Подкрановая балка
- Д. Фундамент
- Е. Стеновая панель
- Ж. Фахверковая колонна
- 3. Колонна крайне ряда
- И. Ребристые плиты

3.23 Установите соответствие схемы армирования балки вязаными каркасами:

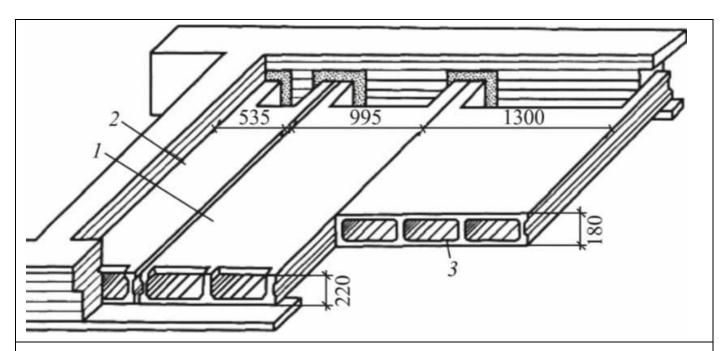



- 1. Отгибы
- 2. Хомуты открытые
- 3. Монтажные стержни
- 4. Хомуты закрытые
- 5. Рабочие стержни

3.24 Установите соответствие типовых железобетонных изделий и их армирование (возможно несколько вариантов ответов):

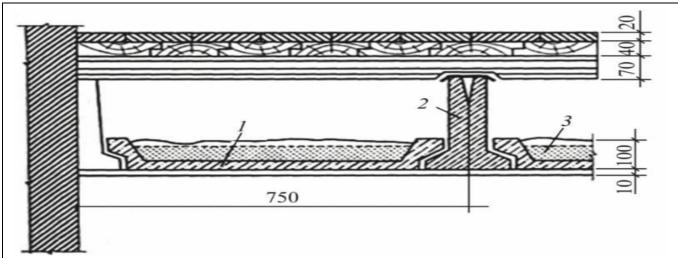


- 1. Колонны
- 2. Балки
- 3. Фундаменты


# 3.25 Установите соответствие железобетонных фундаментов и способ заделки в них колонн:

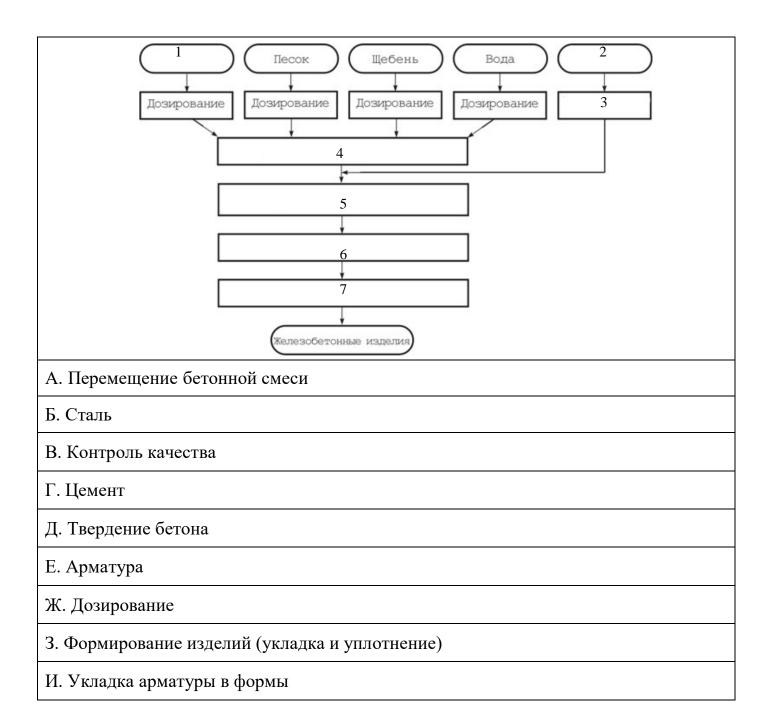


#### 3.26 Установите соответствие:

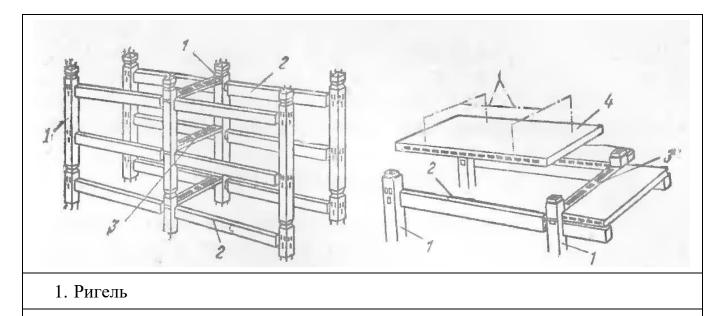



### 3.27 Установите соответствие:




- 1. Трёхпустотный сборный железобетонный настил для перекрытия малых пролётов
- 2. Двухаустотный сборный железобетонный настил
- 3. Однопустотный сборный железобетонный настил

#### 3.28 Установите соответствие:




- 1. Спаренные железобетонные балки
- 2. Железобетонные вкладки корытообразного сечения
- 3. Теплозвукоизоляционная засыпка

# 3.29 Установите соответствие (присутствуют лишние слова):



### 3.30 Установите соответствие:



- 2. Плита перекрытия
- 3. Колонна
- 4. Распорка

#### 4 Вопросы на установление последовательности

# 4.1 Правильная последовательность нахождения центра тяжести составного сечения:

- 1 Разбить составное сечение на части с известными геометрическими характеристиками
- 2 Выбрать исходную оси (оси)
- 3 Определить координаты центров тяжести составляющих сечений относительно исходной оси (осей)
- 4 Вычислить координату (координаты) центра тяжести составного сечения
- 5. Сделать проверку правильности нахождения центра тяжести составного сечения

#### 4.2 Последовательность проверки на устойчивость сжатого стержня:

- 1. Определить коэффициент приведения длины стержня
- 2. Определить радиус инерции сечения
- 3. Определить гибкость стержня
- 5. Определить коэффициент продольного изгиба
- 6. Определить напряжение в сечении стержня и сравнить его с расчётным сопротивлением материала

- 4.3 Для формулирования вычисления гибкости сжатого стержня составьте словосочетания в правильной последовательности Лишние словосочетания не используйте:
- 1 Гибкость равна
- 2 приведенной длине стержня
- 3 отнесённой
- 4 к радиусу инерции сечения стержня
- 5 к коэффициенту приведения длины стержня
- 6 умноженному на момент инерции сечения стержня
- 7 третий приведенной длины стержня
- 8 умноженной на модуль упругости материала стержня
- 4.4 Для формулирования условия прочности при растяжении составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:

1 нормальное напряжение

2продольное усилие

Зплощадь сечения

4разделить на

5умножить на

брасчётное сопротивление

7равно

8меньше или равно

- 4.5 Для формулирования условия прочности при плоском изгибе балки из пластичного материала составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:
- 1 нормальное напряжение
- 2 изгибающий момент
- 3 осевой момент сопротивления сечения
- 4 разделить на
- 5 умножить на
- 6 расчётное сопротивление
- 7 равно
  - 8 меньше или равно
- 4.6 Для формулирования условия расчета внецентренно сжатых бетонных элементов по прочности составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:
- 1 по прочности
- 2 не следует учитывать
- 3 сжатых бетонных элементов
- 4 следует учитывать
- 5 на действие сжимающей поперечной силы
- 6 определённый

- 7 при расчёте
- 8 внецентренно
- 9 на действие сжимающей продольной силы
- 10 случайный
- 11 эксцентриситет
- 4.7 Для записи величины угла закручивания одного участка вала, нагруженного постоянным усилием, составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:
  - 1 нормальное напряжение
  - 2 угол закручивания
  - 3 крутящий момент
  - 4 угол закручивания
  - 5 длина участка
  - 6 полярный момент инерции сечения
  - 7 в знаменателе дроби
  - 8 умножить на
  - 9 в числителе дроби
  - 10 равно
  - 11 меньше или равно
  - 12 допускаемое удлинение
  - 13 модуль сдвига материала
- 4.8 Для записи величины удлинения при растяжении одного участка, нагруженного постоянным усилием, составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:
  - 1 нормальное напряжение
  - 2 удлинение
  - 3 продольное усилие
  - 4 угол закручивания
  - 5 длина участка
  - 6 площадь сечения
  - 7 в знаменателе дроби
  - 8 умножить на
  - 9 в числителе дроби
  - 10 равно
  - 11 меньше или равно
  - 12 допускаемое удлинение
  - 13 модуль упругости материала
- 4.9 Для записи условия жёсткости по прогибам при плоском изгибе, составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:
  - 1 нормальное напряжение

- 2 прогиб
- 3 квадрат нормального напряжения
- 4 угол закручивания
- 5 разделить на
- 6 изгибающий момент
- 7 в знаменателе дроби
- 8 умножить на
- 9 в числителе дроби
- 10 равно
- 11 меньше или равно
- 12 допускаемый прогиб
- 13 минимальный момент инерции сечения
- 14 модуль упругости материала

# 4.10 Для записи условия жёсткости при сжатии, составьте словосочетания в правильной последовательности. Лишние словосочетания не используйте:

- 1 нормальное напряжение
- 2 корень квадратный из выражения
- 3 квадрат нормального напряжения
- 4 линейное перемещение
- 5 разделить на
- 6 изгибающий момент
- 7 в знаменателе дроби
- 8 умножить на
- 9 в числителе дроби
- 10 равно
- 11 меньше или равно
- 12 допускаемое линейное перемещение
- 13 минимальный момент инерции сечения
- 14 модуль упругости материала

### Шкала оценивания результатов тестирования:

в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очнозаочной и заочной формам обучения — 60 баллов (установлено положением П 02.016). Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно- ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи. Общий балл по промежуточной аттестации суммируется с баллами, полученными

обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической следующим образом:

Соответствие 100-балльной и дихотомической шкал

| Оценка по 100-балльной шкале | Оценка по дихотомической шкале |
|------------------------------|--------------------------------|
| 100-50                       | зачтено                        |
| 49 и менее                   | не зачтено                     |

### 2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № 1

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B20  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A400 |
| D                                    | <i>h</i> , мм | 800  |
| Размеры сечения                      | b, mm         | 400  |
| Величина изгибающего момента М, кН м |               | 250  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

Компетентностно-ориентированная задача N 2

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B25  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A500 |
| D                                    | <i>h</i> , mm | 750  |
| Размеры сечения                      | b, mm         | 350  |
| Величина изгибающего момента М, кН м |               | 280  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже

 $\varepsilon_{b2}=0{,}0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0{,}9$ . Минимальный коэффициент армирования  $\mu_{\min}=0{,}001$ .

Компетентностно-ориентированная задача № 3

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |               | B30  |
|--------------------------------------------|---------------|------|
| Класс арматуры                             |               | A600 |
| D                                          | <i>h</i> , mm | 700  |
| Размеры сечения                            | b, mm         | 300  |
| Величина изгибающего момента $M$ , к $H$ м |               | 300  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

Компетентностно-ориентированная задача № 4

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B35  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A800 |
| D                                    | <i>h</i> , mm | 600  |
| Размеры сечения                      | b, mm         | 200  |
| Величина изгибающего момента М, кН м |               | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B40   |
|--------------------------------------------------|---------------|-------|
| Класс арматуры                                   |               | Bp500 |
| D                                                | h, mm         | 950   |
| Размеры сечения                                  | <i>b</i> , mm | 300   |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 150   |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

Компетентностно-ориентированная задача  $\mathcal{N}_{2}$  6

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B20  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A400 |
| Danisani aayayya                                 | <i>h</i> , mm | 500  |
| Размеры сечения                                  | <i>b</i> , mm | 250  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 200  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |               | B25  |
|--------------------------------------------|---------------|------|
| Класс арматуры                             |               | A500 |
| Размеры сечения                            | <i>h</i> , mm | 580  |
|                                            | b, mm         | 230  |
| Величина изгибающего момента $M$ , к $H$ м |               | 380  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ .

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

Компетентностно-ориентированная задача № 8

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B30  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A600 |
| D                                                | <i>h</i> , mm | 450  |
| Размеры сечения                                  | b, mm         | 150  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 430  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B35  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A800 |
| Размеры сечения                                  | <i>h</i> , mm | 800  |
|                                                  | b, mm         | 200  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 220  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0{,}0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0{,}9$ . Минимальный коэффициент армирования  $\mu_{\min}=0{,}001$ .

Компетентностно-ориентированная задача № 10

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |       | B40   |
|--------------------------------------|-------|-------|
| Класс арматуры                       |       | Bp500 |
| D                                    | h, mm | 400   |
| Размеры сечения                      | b, mm | 120   |
| Величина изгибающего момента М, кН м |       | 180   |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |       | B20  |
|--------------------------------------------|-------|------|
| Класс арматуры                             |       | A500 |
| Размеры сечения                            | h, mm | 700  |
|                                            | b, mm | 300  |
| Величина изгибающего момента $M$ , к $H$ м |       | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0$ , 001

Компетентностно-ориентированная задача № 12

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B35  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A600 |
| D                                    | <i>h</i> , mm | 800  |
| Размеры сечения                      | b, mm         | 400  |
| Величина изгибающего момента М, кН м |               | 150  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B40  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A500 |
| D                                                | <i>h</i> , mm | 450  |
| Размеры сечения                                  | b, mm         | 150  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 250  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения  $\pmb{a}$ , во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0{,}0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0{,}9$ . Минимальный коэффициент армирования  $\mu_{\min}=0{,}001$ .

### Компетентностно-ориентированная задача № 14

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |       | B25  |
|--------------------------------------|-------|------|
| Класс арматуры                       |       | A600 |
| D                                    | h, mm | 700  |
| Размеры сечения                      | b, mm | 300  |
| Величина изгибающего момента М, кН м |       | 300  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0$ , 001

# Компетентностно-ориентированная задача № 15

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс арматуры                                   |               | A400 |
|--------------------------------------------------|---------------|------|
| Класс бетона                                     |               | B30  |
| Danisary agranga                                 | <i>h</i> , mm | 700  |
| Размеры сечения                                  | b, mm         | 300  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 380  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

### Компетентностно-ориентированная задача № 16

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B25  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A800 |
| Danisani                                         | <i>h</i> , mm | 500  |
| Размеры сечения                                  | b, mm         | 250  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

# Компетентностно-ориентированная задача № 17

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B40  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A800 |
| D                                                | <i>h</i> , мм | 500  |
| Размеры сечения                                  | <i>b</i> , мм | 250  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

# Компетентностно-ориентированная задача № 18

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |               | B25   |
|--------------------------------------------|---------------|-------|
| Класс арматуры                             |               | Bp500 |
| D                                          | <i>h</i> , mm | 500   |
| Размеры сечения                            | b, mm         | 250   |
| Величина изгибающего момента $M$ , к $H$ м |               | 180   |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

# Компетентностно-ориентированная задача № 19

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B25  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A800 |
| D                                                | <i>h</i> , mm | 600  |
| Размеры сечения                                  | b, mm         | 200  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9. Минимальный коэффициент армирования  $\mu_{\min}$  =0,001.

### Компетентностно-ориентированная задача № 20

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |       | B35  |
|--------------------------------------------------|-------|------|
| Класс арматуры                                   |       | A800 |
| Danisary agreemen                                | h, mm | 500  |
| Размеры сечения                                  | b, mm | 250  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |       | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0$ , 001

# Компетентностно-ориентированная задача № 21

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |       | B40  |
|--------------------------------------------|-------|------|
| Класс арматуры                             |       | A600 |
| D                                          | h, mm | 500  |
| Размеры сечения                            | b, mm | 250  |
| Величина изгибающего момента $M$ , к $H$ м |       | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже

 $\varepsilon_{b2}=0{,}0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0{,}9$ . Минимальный коэффициент армирования  $\mu_{\min}=0{,}001$ .

Компетентностно-ориентированная задача № 22

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B40  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A400 |
| D                                                | <i>h</i> , mm | 750  |
| Размеры сечения                                  | b, mm         | 300  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\bar{\mu}_{\min} = 0,001$ 

Компетентностно-ориентированная задача № 23

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| F                                    |               |      |
|--------------------------------------|---------------|------|
| Класс бетона                         |               | B25  |
| Класс арматуры                       |               | A600 |
| Danisary                             | h, mm         | 500  |
| Размеры сечения                      | <i>b</i> , mm | 250  |
| Величина изгибающего момента М, кН м |               | 180  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения  $\pmb{a}$ , во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии

нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

### Компетентностно-ориентированная задача № 24

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |       | B40  |
|--------------------------------------|-------|------|
| Класс арматуры                       |       | A800 |
| Размеры сечения                      | h, mm | 500  |
|                                      | b, mm | 250  |
| Величина изгибающего момента М, кН м |       | 380  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0$ , 001

# Компетентностно-ориентированная задача № 25

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| The second secon |       |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|
| Класс бетона                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | B35  |
| Класс арматуры                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | A500 |
| Размеры сечения                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | h, mm | 600  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | b, mm | 200  |
| Величина изгибающего момента М, кН м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 300  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}=0,0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1}=0,9$ . Минимальный коэффициент армирования  $\mu_{\min}=0,001$ .

### Компетентностно-ориентированная задача № 26

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B40  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A500 |
| Размеры сечения                      | <i>h</i> , mm | 600  |
|                                      | b, mm         | 200  |
| Величина изгибающего момента М, кН м |               | 300  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

# Компетентностно-ориентированная задача № 27

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B35  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A800 |
| Размеры сечения                                  | <i>h</i> , mm | 600  |
|                                                  | b, mm         | 200  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 430  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

Компетентностно-ориентированная задача № 28

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                               |               | B40  |
|--------------------------------------------|---------------|------|
| Класс арматуры                             |               | A800 |
| Размеры сечения                            | <i>h</i> , mm | 600  |
|                                            | b, mm         | 200  |
| Величина изгибающего момента $M$ , к $H$ м |               | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\mu_{\min} = 0$ , 001

Компетентностно-ориентированная задача № 29

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                                     |               | B35  |
|--------------------------------------------------|---------------|------|
| Класс арматуры                                   |               | A600 |
| Размеры сечения                                  | <i>h</i> , mm | 600  |
|                                                  | b, mm         | 200  |
| Величина изгибающего момента $M$ , к $H \cdot M$ |               | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже

 $\varepsilon_{b2} = 0{,}0035$ . Значение коэффициента условия работы бетона  $\gamma_{b1} = 0{,}9$ .

Минимальный коэффициент армирования  $\mu_{\min} = 0,001$ 

Компетентностно-ориентированная задача № 30

Определение площади сечения ненапрягаемой арматуры в изгибаемых элементах прямоугольного сечения из условия прочности нормальных сечений

| Класс бетона                         |               | B40  |
|--------------------------------------|---------------|------|
| Класс арматуры                       |               | A400 |
| Размеры сечения                      | <i>h</i> , mm | 600  |
|                                      | b, mm         | 200  |
| Величина изгибающего момента М, кН м |               | 350  |

Расстояние от центра тяжести арматуры до ближайшей грани сечения a, во всех вариантах принять 40 мм.

Значения относительных деформаций  $\varepsilon_{b2}$  для тяжелого и мелкозернистого бетонов принимается при непродолжительном действии нагрузки для бетонов класса по прочности на сжатие B60 и ниже $\varepsilon_{b2}$  = 0,0035. Значение коэффициента условия работы бетона  $\gamma_{b1}$  = 0,9.

Минимальный коэффициент армирования  $\bar{\mu}_{\min} = 0,001$ 

### Шкала оценивания решения компетентностно-ориентированной задачи:

в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016). Максимальное количество баллов за решение компетентностно-ориентированной залачи — 6 баллов.

Балл, полученный обучающимся за решение компетентностноориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования. Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале следующим образом:

Соответствие 100-балльной и дихотомической шкал

| Оценка по 100-балльной шкале | Оценка по дихотомической шкале |
|------------------------------|--------------------------------|
| 100-50                       | зачтено                        |
| 49 и менее                   | не зачтено                     |

Критерии оценивания решения компетентностно-ориентированной задачи:

- 6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **4-3** балла выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1** балла выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- *0 баллов* выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.