Документ подписан простой электронной подписью Информация о владель из Информация о владель из Информация о владель из ФИО: Локтионова Оксана Геннадьевна Должно элераявае оксана Сеннадьевна Должно элерая оксана Сеннадьевна Должно элераявае оксана Сеннадьевна Должно элераявае оксана Сеннадьевна Должно элераявае оксана Сеннадьевна Должно элераявае оксана Сенна Сенна Сенна Сенна Сенна Сенна Должно элераявае оксана Сенна Сенна Сенна Сенна Сенна Сенна Сенна Должно элераявае оксана Сенна Сенн

Кафедра дизайна и индустрии моды

УТВЕРЖДАЮ Проректор по учебной работе О.Г. Локтионова « 16 » os (103/2023 F

ИНСТРУМЕНТЫ КОНТРОЛЯ И УПРАВЛЕНИЯ КАЧЕСТВОМ Методические указания по выполнению лабораторной и самостоятельной работы

Курск 2023

УДК 658.5

Составитель: С.В. Ходыревская

Рецензент Доктор технических наук, профессор В.В. Куц

Инструменты контроля и управления качеством: методические указания по выполнению лабораторной и самостоятельной работы / Минобрнауки России, Юго-Зап. гос. ун-т; сост.: С.В. Ходыревская. – Курск, 2023. – 35 с.: – Библиогр.: с. 35.

Излагаются краткие теоретические сведения об инструментах контроля и управления качеством. Рассмотрены примеры построения различных видов графиков, гистограммы, диаграммы Парето и контрольных карт Шухарта в среде LibreOffice. Приведены задания для самостоятельного выполнения, вопросы для самопроверки и подготовки, а также тест для самоконтроля.

Методические указания предназначены для бакалавров и специалистов всех направлений подготовки и специальностей и для всех форм обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ. л. 2,03. Уч.-изд. л. 1,84. Тираж 100 экз. Заказ **ч2** б Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94. 1 Цель работы: изучить инструменты контроля и управления качеством и получить практические навыки их построения в среде LibreOffice.

2 Задания для самостоятельного выполнения:

Задание 1. Построить график, выраженный ломанной линией, столбчатый график, круговую диаграмму, ленточный график, радиационную диаграмму зависимости брака (шт.) от номера участка по цеху 2 на основании данных полученных в течение года. Сделать выводы.

Задание 2. Выполнить расчёты и построения в соответствии с примером. И построить гистограмму по результатам измерения длины деталей, мм. Сделать выводы.

Задание 3. Выполнить расчёты и построения в соответствии с примером, включая, диаграмму Парето по причинам по данным, выданным преподавателем. Сделать выводы.

Задание 4. Выполнить расчёты и построения в соответствии с примером и построить контрольную $\overline{x} - R$ – карту по результатам измерения некоторого параметра качества, представленным в таблице. Провести статистический анализ процесса.

3. Краткие теоретические сведения

3.1 Графики

Графики используются для визуального (наглядного) представления табличных данных, что упрощает их восприятие и анализ.

Обычно графики применяются на начальном этапе количественного анализа данных. Также они широко используются для анализа результатов исследований, проверки зависимостей между переменными, прогнозированию тенденции изменения состояния анализируемого объекта.

Наибольшее распространение получили следующие виды графиков:

І. График в виде ломаной линии (рисунок 1). Применяется для отображения изменения состояния показателя с течением времени.

Методика построения:

1. Постройте горизонтальную и вертикальную оси.

2. Горизонтальную ось разделите на интервалы времени, в течение которых производилось измерение показателя.

3. Выберите масштаб и отображаемый диапазон значений показателя так, чтобы все значения исследуемого показателя за рассматриваемый период времени входили в выбранный диапазон. На вертикальную ось нанесите шкалу значений в соответствии с выбранным масштабом и диапазоном.

4. Нанесите точки фактических данных на график. Положение точки соответствует: по горизонтали – интервалу времени, в которое получено значение исследуемого показателя, по вертикали – значению полученного показателя.

5. Соедините полученные точки отрезками прямых.

Рисунок 1 – График в виде ломаной линии

Для увеличения эффективности использования графика можно одновременно построить (а затем и сравнить) графики по нескольким источникам.

Шкалу значений рассматриваемого показателя для графика в виде ломаной линии лучше начинать не с нуля (в отличие скажем от столбиковых диаграмм). Это позволяет более детально продемонстрировать изменения показателя, даже если они незначительны по сравнению с величиной самого показателя.

II. Столбчатый график (рисунок 2). Представляет собой последовательность значений в виде столбиков.

Методика построения:

1. Постройте горизонтальную и вертикальную оси.

2. Горизонтальную ось разделите на интервалы в соответствии с числом контролируемых факторов (признаков).

3. Выберете масштаб и отображаемый диапазон значений показателя так, чтобы все значения исследуемого показателя за рассматриваемый период времени входили в выбранный диапазон. На вертикальную ось нанесите шкалу значений в соответствии с выбранным масштабом и диапазоном.

4. Для каждого фактора постройте столбик, высота которого равна полученной величине исследуемого показателя для этого фактора. Ширина столбиков должна быть одинаковой.

Рисунок 2 – Столбчатый график

Иногда для более наглядного представления данных можно составить общий график для нескольких исследуемых показателей, объединенных по группам столбиков (это более эффективно, чем составлять график для каждого показателя отдельно).

Ш. Круговой (кольцевой) график (рисунок 3). Применяется для отображения соотношения между составляющими показателя и самим показателем, а также составляющих показателя между собой.

Методика построения:

1. Пересчитайте составляющие показателя в процентные доли от самого показателя. Для этого величину каждой составляющей показателя разделите на величину самого показателя и умножьте на 100. Величина показателя может быть вычислена как сумма значений всех составляющих показателя.

2. Рассчитайте угловой размер сектора для каждой составляющей показателя. Для этого умножьте процентную долю составляющей на 3,6.

3. Начертите круг. Он будет обозначать рассматриваемый показатель.

4. От центра круга до его края проводите прямую (другими словами - радиус). Используя эту прямую (с помощью транспортира) отложите угловой размер и начертите сектор для составляющей показателя. Вторая прямая, ограничивающая сектор служит основой для откладывания углового размера сектора следующей составляющей. Так продолжайте до тех пор, пока не начертите все составляющие показателя.

5. Проставьте название составляющих показателя и их доли в процентах. Сектора необходимо обозначить различными цветами или штриховкой, чтобы они четко различались между собой.

Рисунок 3 – Круговой график

Кольцевой график применяется, если составляющие рассматриваемого показателя нужно разбить на более мелкие составляющие.

IV. Ленточный график (рисунок 4). Ленточный график, как и круговой, используется для наглядного отображения соотношения между составляющими какого-либо показателя, но в отличие от кругового, он позволяет показать изменения между этими составляющими с течением времени.

Методика построения:

1. Постройте горизонтальную и вертикальную оси.

2. На горизонтальную ось нанесите шкалу с интервалами (делениями) от 0 до 100%.

3. Вертикальную ось разделите на интервалы времени, в течение которых производилось измерение показателя. Рекомендуется откладывать интервалы времени сверху вниз, т.к. человеку легче воспринять изменение информации именно в этом направлении.

4. Для каждого интервала времени постройте ленту (полоска, шириной от 0 до 100%), которая обозначает рассматриваемый показатель. При построении оставьте небольшое пространство между лентами.

5. Составляющие показателя пересчитайте в процентные доли от самого показателя. Для этого величину каждой составляющей показателя разделите на величину самого показателя и умножьте на 100. Величина показателя может быть вычислена как сумма значений всех составляющих показателя.

6. Разделите ленты графика на зоны таким образом, чтобы ширина зон соответствовала размеру процентной доли составляющих показателя.

7. Соедините границы зон каждой составляющей показателя всех лент между собой отрезками прямых.

8. Нанесите название каждой составляющей показателя и ее доли в процентах на график. Обозначьте зоны различными цветами или штриховкой, чтобы они четко различались между собой.

график (рисунок **Z-образный** 5). Применяется V. ДЛЯ фактических определения тенденции изменения данных, определенный период регистрируемых времени 3a ИЛИ для выражения условий достижения намеченных значений.

Методика построения:

1. Постройте горизонтальную и вертикальную оси.

2. Горизонтальную ось разделите на 12 месяцев исследуемого года.

3. Выберете масштаб и отображаемый диапазон значений показателя так, чтобы все значения исследуемого показателя за рассматриваемый период времени входили в выбранный диапазон. В связи с тем, что Z-образный график состоит из 3 графиков в виде ломаной линии, значения для которых еще нужно высчитывать, возьмите диапазон с запасом. На вертикальную ось нанесите шкалу значений в соответствии с выбранным масштабом и диапазоном.

4. Отложите значения исследуемого показателя (фактические данные) по месяцам за период одного года (с января по декабрь) и соедините их отрезками прямой. В результате получается график, образуемый ломаной линией.

5. Постройте график рассматриваемого показателя с накоплением по месяцам (в январе точка графика соответствует значению рассматриваемого показателя за январь, в феврале точка графика соответствует сумме значений показателя за январь и февраль и т.д.; в декабре значение графика будет соответствовать сумме значений показателя за все 12 месяцев – с января по декабрь текущего года). Построенные точки графика соедините отрезками прямых.

6. Постройте график меняющегося итога рассматриваемого показателя (в январе точка графика соответствует сумме значений показателя с февраля предыдущего года по январь текущего года, в феврале точка графика соответствует сумме значений показателя с марта предыдущего года по февраль текущего года и т.д.; в ноябре точка графика соответствует сумме значений показателя с декабря предыдущего года по ноябрь текущего года и в декабре точка графика соответствует сумме значений показателя с января текущего года по декабрь текущего года, т.е. меняющийся итог представляет собой сумму значений показателя за год, предшествующий рассматриваемому месяцу). Построенные точки графика также соедините отрезками прямых.

Свое название Z-образный график получил в связи с тем, что составляющие его 3 графика имеют вид буквы Z.

По меняющемуся итогу можно оценить тенденцию изменения исследуемого показателя за длительный период. Если вместо меняющегося итога нанести на график планируемые значения, то с помощью Z-графика можно определить условия для достижения заданных значений.

3.2 Гистограмма

Гистограмма – инструмент, позволяющий зрительно оценить распределение статистических данных, сгруппированных по частоте заданный) (заранее интервал. попадания В определенный В классическом варианте гистограмма используется для определения формы разброса проблем при помощи анализа значений, центрального близости характера значения, его К номиналу, рассеивания.

Краткие комментарии: а) всё хорошо: среднее совпадает с вариабельность в пределах допусков; номиналом, б) следует сместить среднее для совпадения с номиналом; в) следует уменьшить рассеивание; г) следует сместить среднее и уменьшить рассеивание; д) следует значительно уменьшить рассеивание; е) смешаны две партии; следует разбить на две гистограммы, и проанализировать их; предыдущему пункту, только ж) аналогично ситуация более критичная; з) необходимо понять причины такого распределения; левый край, каких-то действиях «обрывистый» говорит о в отношении партий деталей; и) аналогично предыдущему (рисунок 6).

Вот какие гистограммы строили в течение нескольких лет для изучения времени обслуживания клиентов на складе (рисунок 7).

По оси абсцисс – 15-минутные диапазоны времени обслуживания клиентов на складе; по оси ординат – доля заявок обслуженных в выделенном диапазоне времени от общего числа заявок за год. Красная пунктирная линия показывает среднее время обслуживания в течение года.

Рисунок 6 – Варианты расположения гистограммы по отношению к технологическому допуску

Рисунок 7 – Гистограмма. Время обслуживания клиентов на складе.

3.3 Диаграмма Парето

Диаграмма Парето строится в виде столбчатого графика и показывает в убывающем порядке относительное влияние каждой причины на общую проблему. Кроме того, на диаграмме обычно приводят кумулятивную кривую накопленного процента причин.

Диаграмма Парето позволяет анализировать проблемы из любой сферы деятельности предприятия, в том числе в сфере управления качеством. Причины изменений качества делятся на две группы: немногочисленные существенно важные и многочисленные несущественные. Устраняя причины первой группы, можно устранить почти все потери, вызванные снижением качества.

Диаграмму Парето целесообразно применять вместе с причинно-следственной диаграммой.

При использовании диаграммы Парето обычно сначала строят диаграмму по результатам деятельности для выявления главной из существующих проблем. Затем строят диаграмму по причинами для выявления главных причин этой проблемы и её решения и т.д. После проведения корректирующих мероприятий диаграмму Парето можно вновь построить и проверить эффективность проведённых улучшений.

диаграммы Парето При использовании ДЛЯ контроля важнейших факторов распространён АВС-анализ. Например, если на складе находится большое число деталей, проводить контроль всех деталей без всякого различия неэффективно. Но если разделить детали на группы по их стоимости, то на долю группы наиболее дорогих деталей (группа А), составляющих 20-30% от общего числа деталей, придётся 70-80% от общей стоимости всех деталей. На долю группы самых дешёвых деталей (группа С), составляющей 40-50% от всего количества деталей, придётся всего 5-10% от общей стоимости. Стоимость промежуточной группы (группа В) составляет 20-30% от общей стоимости. Контроль деталей на складе будет эффективным, если контроль деталей группы А будет самым жёстким, а контроль деталей группы С – упрощённым (рисунок 8).

Рекомендуется составлять несколько вспомогательных диаграмм, входящих чтобы, В состав группы А, С тем последовательно анализируя ИX, В конечном итоге составить

отдельную диаграмму Парето для конкретных явлений недоброкачественности.

Рисунок 8 – АВС-анализ диаграммы Парето

3.4 Контрольная карта Шухарта

карты Контрольные используются для статистического контроля регулирования технологического Ha И процесса. контрольную карту наносят значения некоторой статистической характеристики (точки), рассчитываемые по данным выборок в порядке их получения, верхнюю и нижнюю контрольные границы К_в (или UCL) и К_н (или LCL), верхнюю и нижнюю границы технических допусков Т_в и Т_н (при их наличии), а также среднюю линию (CL). Иногда используют также предупредительные границы К_п. Для расчёта границ и построения контрольной карты используют обычно 20...30 точек. Пример контрольной карты представлен на рисунке 9.

По положению точек относительно границ судят о налаженности или разлаженности технологического процесса. Обычно процесс считают разлаженным в следующих случаях:

1. Некоторые точки выходят за контрольные пределы.

2. Серия из семи точек оказывается по одну сторону от средней линии. Кроме того, если по одну сторону от средней линии находятся:

а) десять из серии в одиннадцать точек

б) двенадцать из четырнадцати точек

в) шестнадцать из двадцати точек

3. Имеется тренд (дрейф), т.е. точки образуют непрерывно повышающуюся или непрерывно понижающуюся кривую.

4. Две – три точки оказываются за предупредительными двухсигмовыми границами

5. Приближение к центральной линии. Если большинство точек находится внутри полуторасигмовых линий, это значит, что в подгруппах смешиваются данные из различных распределений

6. Имеет место периодичность, т.е. то подъём, то спад с примерно одинаковыми интервалами времени

7. Контрольные границы шире поля допуска. В идеальном случае достаточно, чтобы контрольные границы составляли ³/₄ величины поля допуска.

Если процесс налажен (достигнута необходимая точность и стабильность), на контрольную карту продолжают наносить точки, но через 20...30 точек пересчитывают контрольные границы. Они должны совпадать с исходными границами. Если контрольная карта показывает, что процесс разлажен, находят причины разладки и производят наладку.

Бывают контрольные карты по количественным признакам (для непрерывных значений) и по качественным признакам (для дискретных значений). По количественным признакам используют в основном следующие контрольные карты:

- карта средних арифметических значений (\bar{x} -карта)
- карта медиан (\tilde{x} -карта)
- карта средних квадратичных отклонений (s-карта)
- карта размахов (R-карта)
- карта индивидуальных значений (х-карта)

Карта средних значений используется для контроля отклонения параметра от нормы и настройки на норму. Точки на контрольной карте – это средние значения небольших выборок, обычно одинакового объёма, из 3...10 элементов:

$$\overline{x}_i = \frac{x_{i1} + x_{i2} + \dots + x_{in}}{n}$$

где n – объём выборки (подгруппы).

Для получения выборок можно также использовать результаты измерений, проводившихся через одинаковые промежутки времени, путём разбиения их на группы.

Средние значения выборок находят с одним лишним знаком по сравнению с исходными данными. Среднюю линию рассчитывают как среднее из средних значений выборок:

$$\overset{=}{x} = \frac{\overline{x}_1 + \overline{x}_2 + \ldots + \overline{x}_k}{k}$$

где k – число подгрупп (число точек). Обычно k = 20...30.

Контрольные границы рассчитывают по формуле:

$$K_{B,H} = x \pm \frac{3\sigma}{\sqrt{n}}$$

$$\sigma = \sqrt{\frac{\sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \bar{x})^2}{nk}}$$

где ^{*nk*} - среднее квадратичное отклонение всей совокупности данных. В этом выражении (как и при расчёте контрольных границ для других видов контрольных карт) коэффициент 3 используется, исходя из правила трёх сигм.

Карта медиан используется вместо карты средних значений, когда хотят упростить расчёты. Точки на карте – это медианы \tilde{x} выборок одинакового объёма из 3...10 элементов. Медиана – это при нечётном объёме выборки середина вариационного ряда, при чётном объёме выборки – среднее из двух значений середины вариационного ряда.

Средняя линия \tilde{x} - это среднее из медиан выборок. Контрольные границы находят по формуле

$$K_{B,H} = \overline{\widetilde{x}} \pm 3\sigma \sqrt{\frac{\pi}{2n}}$$

Карта медиан менее точна, чем карта средних значений. При использовании для расчётов компьютера применение карты медиан вместо карты средних значений вряд ли оправдано.

Карта средних квадратичных отклонений используется для контроля рассеяния показателя. Точки на карте – средние квадратичные отклонения выборок одинакового объёма из 3...10 элементов. Средняя линия \overline{s} - это среднее из СКО выборок. Контрольные границы:

$$K_{H} = \frac{\overline{s}\sqrt{\chi^{2}_{\alpha'_{2};n-1}}}{\sqrt{n-1}} \qquad \qquad K_{B} = \frac{\overline{s}\sqrt{\chi^{2}_{1-\alpha'_{2};n-1}}}{\sqrt{n-1}}$$

где χ^2 – критерий Пирсона, n – объём выборки, α - уровень значимости. Обычно принимают $\alpha = 0,0027$, что соответствует доверительной вероятности 0,9973. Часто на s-карте используют только верхнюю границу.

Карта размахов используется вместо карты средних квадратичных отклонений, когда хотят упростить расчёты. При этом карта размахов менее точна.

При построении R-карты берут 20...30 выборок одинакового объёма из 2...10 элементов. Точки ан карте – размахи выборок. Размах выборки R – это разность между максимальным x_{max} и минимальным x_{min} значениями выборки. Средняя линия \overline{R} - это среднее размахов выборок. Контрольные границы рассчитывают по формулам:

$$K_H = D_3 \overline{R} \qquad \qquad K_B = D_4 \overline{R}$$

При уровне значимости 0,0027 коэффициенты D_3 и D_4 можно найти из таблицы 1. При n < 7 нижняя контрольная граница не используется.

Таблица 1

n	2	3	4	5	6	7	8	9	10
D_3	-	-	-	-	-	0,076	0,136	0,184	0,223
D_4	3,267	2,575	2,282	2,115	2,004	1,924	1,864	1,816	1,777

Часто при статистическом регулировании технологических процессов используют двойные карты, отражающие как отклонение параметра от нормы, так и его рассеяние. Это могут быть, например, $\overline{x} - R$ – карты или другие.

4. Построение инструментов контроля и управления качеством в среде LibreOffice

4.1. Построение графиков в программе LibreOffice

В работе аналитиков постоянно встречается задача подведения итогов работы компании за определенный период: месяц, квартал, год и т.п. При этом получаются числовые таблицы порой весьма не маленькой величины. Окинув такие взглядом, практически невозможно оценить степень успеха или провала компании за выбранный период. И, тем более, не видна динамика изменения отчетных показателей.

Если при этом приходится показывать отчетность вышестоящему руководству, то оно может не оценить большой набор чисел. В этом случае удобно показывать рисованные графики, построенные на основе исходных таблиц. Данная функция удобно реализована в программе LibreOffice.

1. Пусть имеется таблица выручек компании с детализацией по месяцам и отделам. По оси X в столбцах разделяется по месяцам, а по оси Y в строках указаны отделы (рисунок 10).

1	1	2	3	4	5	6	7
1							
2			Январь	Февраль	Март	Апрель	Май
3		Отдел 1	13900	20000	18690	25600	45000
4		Отдел 2	14650	24000	23010	24500	28000
5		Отдел 3	11020	15000	12430	16320	14600
6		Отдел 4	4000	8640	9000	12000	11000
7		Отдел 5	5600	7520	7800	8900	12600
0							

Рисунок 10 – Таблица выручек с детализацией по месяцам и отделам

2. Установите курсор на ячейку, где хотите расположить график и вверху в меню переключитесь на вкладку «Вставка». Затем нажмите на кнопку «График», выпадет несколько их видов. Выбрать можно любой, какой больше нравится, на сложность построения это не повлияет, только на внешний вид. В примере выбран первый – классический график (рисунок 11).

Ch		- Cr -	Ŧ				1
	Глав	ная Вс	тавка Раз	метка стран	ицы Фо	рмулы	Данние Рецензировани
Сво, табл	р дная Таб ица -	лица Ри	сунок Клип	Фигуры Sma	ertArt Fiect	ограмма	График Круговая Линейчатая
	Таблицы		Иллюст	рации			График
	R10C	1	▼ (3)	fx			
Z	1	2	3	4	5	6	
1							
2			Январь	Февраль	Март	Апреля	
3		Отдел 1	13900	20000	18690	256	
4		Отдел 2	14650	24000	23010	245	Объемный график
5		Отдел 3	11020	15000	12430	163	
б		Отдел 4	4000	8640	9000	120	
7		Отдел 5	5600	7520	7800	89	
8							все типы диаграмм
9		0.0					
10							

Рисунок 11 – Выбор вида графика

3. На листе появится новый объект – чистый график. Когда он выделен, то верхняя панель с иконками действий имеет другой вид, специально для работы с графиками. Чтобы заполнить график, нажмите на кнопку «Выбрать данные» (рисунок 12).

0	💽 🔄 🤊 - 🔍 - 🗧 Книга1 [Режим совместимости] - Microsoft Excel								
C	Глав	ная Вста	авка Раз	метка стран	ицы / Фо	рмулы	Данные	Рецензир	ование
Изі	иенить тип менить тип маграммы	Сохранить как шаблон	Строка/ст	Строка/столбец Выбрать данные					
	Ти	п		Данные		Макеты диаграмм			
	Диаграмма 1 🛛 🔻		f _x						
	1	2	3	4	5	6	7	8	9
1									
2			Январь	Февраль	Март	Апрель	Май		
3		Отдел 1	13900	20000	18690	25600	45000		
4		Отдел 2	14650	24000	23010	24500	28000		
5		Отдел 3	11020	15000	12430	1 6320	14600		
6		Отдел 4	4000	8640	9000	12000	11000		
7		Отдел 5	5600	7520	7800	8900	12600		
8									
9									
10									7
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21									
22									
23									
24		:							

Рисунок 12 – Выбор данных

4. Отобразится окно выбора данных для графика. В нем имеется поле «Выбор данных для диаграммы». В конце поля необходимо нажать на кнопку выбора диапазона (рисунок 13).

Выбор источника данных	2 🔀
Диапазон данных для диаграмны:	Кнопка выбора диапазона
Элененты легенды (рдды) РДобдвить З Кученить Х удалить 2 С	Подписи горизонтальной оси (категории)
Скрытые и пустые ячейки	ОК Отнена

Рисунок 13 – Выбор диапазона данных

5. Окно выбора данных – пример сокращенный вид. Следует выделить мышкой на листе таблицу с данными полностью с подписями строк и столбцов, как показано на рисунке ниже, и снова кликнуть на кнопку выбора диапазона данных (рисунок 14).

	Январь	Февраль	Март	Апрель	Май	Выделяем		
Отдел 1	13900	20000	18690	25600	45000	всю таблицу		
Отдел 2	14650	24000	23010	24500	28000	и нажимаем		
Отдел 3	11020	15000	12430	16320	14600	кнопку		
Отдел 4	4000	8640	9000	12000	11000	диапазона		
Отдел 5	5600	7520	7800	8900	12600			
ыбор источника данных 🛛 🤶 🛛								
-Dact1102C2:07C7								
=Лист1!R2C2:R7C7								

Рисунок 14 – Окно выбора данных

6. Окно выбора данных развернется до полного вида, и увидите, что поле «Выбор данных для диаграммы» наполнено некоторым значением. В принципе, это поле можно заполнять и вручную, но выделение мышью ячеек на листе проще и нагляднее. Подписи таблицы распределились по строкам и столбцам. Если что-то не устраивает, то их можно отредактировать вручную. Но в большинстве случаев автоматическое заполнение данных исправлять нет необходимости. Нажмите «ОК» (рисунок 15).

зыбор источн	ика данных			17
Диапазон данн	ых для диагранны	с –'Лист1'IR3	2C2:R7C7	(
Элементы легенд	ты (разы)	Στρο	жа/столбе	ц – – – – – – – – – – – – – – – – – – –
Добавить	🛛 Изменить	🗙 удалить	2 4	Изменить
Отдел 1				Январь
Отдел 2				Февраль
Отдел 3				Март
Отдел 4				Апрель
				Maß

Рисунок 15 – Выбор данных для диаграммы

В результате будет построен график с несколькими линиями (рисунок 16). Они отличаются цветом.

Рисунок 16 – Построение графика, выраженного ломаной линией

Оформление графика можно изменить, выделяя нужную его часть, кликая правой клавишей мыши и выбирая «Формат области диаграммы», либо изменить тип диаграммы (рисунок 17).

Рисунок 17 – Изменение типа диаграммы

Параметры оформления графика, такие как название, подписи осей, сетка и т.п, можно настроить, если мышкой выделить сам график и в главном меню переключиться на пункт "Макет". Например, чтобы включить подпись оси по вертикали, нужно выбрать "Макет"->"Названия осей"->"Название основной вертикальной" и один из появившихся вариантов расположения подписи, например "Вертикальное название" (рисунок 18).

Рисунок 18 – Оформление столбчатого графика

20

После того, как на графике появится подпись рядом с осью, кликните по ней дважды левой клавишей мыши и набирайте на клавиатуре нужно наименование.

4.2. Построение гистограммы в программе LibreOffice

Для определения характера рассеяния показателя строим гистограмму.

Порядок построения гистограммы:

1. Намечаем исследуемый показатель качества. В данном случае это коэффициент деформации материала.

2. Проводим измерения. Должно быть не менее 30...50 данных, оптимально – около 100.

Результаты измерений коэффициента деформации представлены в таблице 2.

Таблица 2

)	eP		- T T		- <u>r</u> - <u>r</u> - <u>r</u>		
0,9	1,5	0,9	1,1	1,0	0,9	1,1	1,1	1,2	1,0
0,6	0,1	0,7	0,8	0,7	0,8	0,5	0,8	1,2	0,6
0,5	0,8	0,3	0,4	0,5	1,0	1,1	0,6	1,2	0,4
0,6	0,7	0,5	0,2	0,3	0,5	0,4	1,0	0,5	0,8
0,7	0,8	0,3	0,4	0,6	0,7	1,1	0,7	1,2	0,8
0,8	1,0	0,6	1,0	0,7	0,6	0,3	1,2	1,4	1,0
1,0	0,9	1,0	1,2	1,3	0,9	1,3	1,2	1,4	1,0
1,4	1,4	0,9	1,1	0,9	1,4	0,9	1,8	0,9	1,4
1,1	1,4	1,4	1,4	0,9	1,1	1,4	1,1	1,3	1,1
1,5	1,6	1,6	1,5	1,6	1,5	1,6	1,7	1,8	1,5

Результаты измерений коэффициента деформации

Результаты измерений вводим в электронную таблицу. В ячейку А1 вводим заголовок работы. Начиная с ячейки А3 вводим в столбец порядковые номера измерений с 1 по 100, например при помощи команды *Правка > Заполнить > Прогрессия...*. В ячейки В3:В102 вводим значения коэффициента деформации из таблицы 2.

3. *Вводим единицу измерений*. Единица измерений равна точности, с которой проводились измерения, в данном случае 0,1. Вводим единицу измерений в ячейку Е2.

4. *Находим минимальное и максимальное значения выборки*. Минимальное и максимальное значения выборки находим с помощью статистических функций МИН и МАКС соответственно в ячейках E3 и E4. При этом интервал для этих функций указываем от ячейки B3 до ячейки B102.

5. Находим размах выборки в ячейке Е5 как разность между максимальным и минимальным значениями выборки.

6. Определяем предварительное количество интервалов К_{предв} как квадратный корень из объёма выборки N. Количество интервалов находим в ячейке Еб. Поскольку количество интервалов должно быть полученный квадратный числом. целым т.е. корень следует округлить до целого значения, то сначала в ячейку Е6 вводим математическую функцию ОКРУГЛ. В строке Количество цифр этой функции указываем 0, т.к. необходимо округление до целого числа. Затем переводим курсор в строку Число и в качестве аргумента функции ОКРУГЛ встраиваем функцию КОРЕНЬ. Для этого в строке формул открываем список функций, выбираем Другие функции... и открываем математическую функцию КОРЕНЬ. В качестве аргумента функции КОРЕНЬ опять при помощи списка в строке формул выбираем статистическую функцию СЧЁТ, в качестве аргумента которой вводим диапазон ячеек от ВЗ до В102. Поскольку функция СЧЁТ подсчитывает количество чисел в указанном диапазоне, т.е. в данном случае объём выборки, то будет получено значение 100. Затем функция КОРЕНЬ пересчитает это значение в 10, а функция ОКРУГЛ округлит его до целых, т.е. до 10. В целом формула ячейке E6 будет выглядеть примерно В так: =OKPУГЛ(КОРЕНЬ(СЧЁТ(B3:B102));0)

7. Определяем ширину интервала в ячейке Е7 по формуле h = R/K_{предв} с округлением до единицы измерения, т.е. в нашем случае до десятых долей. Формула в ячейке Е7 будет выглядеть так: =OKPYГЛ(E5/E6;1).

8. *Вводим номера интервалов*. Для этого в ячейку D9 вводим заголовок столбца № инт. Начиная с ячейки D10 вводим номера интервалов с 1 примерно до 25.

9. Рассчитываем границы и середины интервалов. В ячейке Е10 рассчитываем нижнюю границу первого интервала по формуле

Для этого в ячейку E10 вводим формулу =E3-E2/2 и получаем значение нижней границы первого интервала 0,05.

В ячейке Е11 рассчитываем нижнюю границу второго интервала,

прибавляя к нижней границе первого интервала значение шага. Формула в ячейке E11 будет выглядеть =E10+E7. После указания необходимой абсолютной адресации копирует эту формулу в диапазон E12:E34.

В ячейке F10 рассчитываем верхнюю границу первого интервала, прибавляя к его нижней границе значение шага. После указания необходимой абсолютной1 адресации полученную формулу копируем в диапазон F11:F34.

В ячейке G10 рассчитываем среднее значение первого интервала, например, по статистической формуле СРЗНАЧ. Полученную формулу копируем в диапазон G11:G34.

Поскольку уже в десятом интервале нижняя граница равна 1,85. что больше X_{max}, то необходимое количество интервалов равно 9. Поэтому содержимое ячеек диапазона D19:F34 следует очистить.

10. Подсчитываем частоты появления результатов измерений в интервалах. В ячейке Н10 рассчитываем частоту для первого интервала при помощи статистической функции СЧЁТЕСЛИ. Функция СЧЁТЕСЛИ подсчитывает количество непустых ячеек в указанном диапазоне, удовлетворяющих заданному условию. Следует подсчитать, сколько раз в диапазоне ВЗ:В102 встречаются ячейки, значения которых находятся в границах первого интервала, т.е. больше 0,05, но меньше 0,25. Таким образом, надо подсчитать ячейки, значения двойному которых удовлетворяют условию. Однако функция СЧЁТЕСЛИ использует только одинарное условие. Поэтому СЧЁТЕСЛИ формуле, записываемой ячейке Н10, функцию В используем дважды. Сначала в функции СЧЁТЕСЛИ вводим диапазон ВЗ:В102 и условие ">0,05". (к сожалению, нельзя указать условие '>E10", ссылаясь на значение нижней границы интервала, поскольку функция СЧЁТЕСЛИ использует условие критерий в форме числа, выражения или текста, но не в форме ссылки на ячейку). Затем переводим курсор в строку формул, ставим знак минус, вновь вводим функцию СЧЁТЕСЛИ, указываем в ней диапазон ВЗ:В102 и условие ">0.25". B результате получаем формулу расчётную =СЧЁТЕСЛИ(В3:В102;">0,05")-СЧЁТЕСЛИ(В3:В102;">0,25"), ПО которой рассчитывается частота для первого интервала. После указания абсолютной адресации для интервалов копируем эту формулу в диапазон Н11:Н18. Поскольку в копируемой формуле границы интервалов были указаны численными значениями, то в формулах ячеек диапазона H11:H18 следует исправить численные значения границ на соответствующие тому или иному диапазону. Например. в ячейке H11 формула будет выглядеть так: =СЧЁТЕСЛИ(\$B\$3:\$B\$102;">0,25")-СЧЁТЕСЛИ(\$B\$3:\$B\$102;">0,45").

Результаты расчётов показаны на рисунке 19.

	H11	•	= =C4Ë	ЕТЕСЛИ(\$Е	\$3:\$B\$102	;">0,25")-C	ЧЁТЕСЛИ	(\$B\$3:\$B\$1	02;
	A	В	С	D	E	F	G	Н	
1	🗌 Лаб. работа 6. Гистогра шы								
2	N≏	Коэф. деф	юрм.	Ед. изм.=	0,1				
3	1	0,9		Хмин =	0,1				
4	2	0,6		Хмах =	1,8				
5	3	0,5		R =	1,7				
6	4	0,6		Кпредв =	10				
7	5	0,7		h =	0,2				
8	6	0,8							
9	7	1		№ инт.	Ниж. гр.	Верх. гр.	Середина	Частота f	
10	8	1,4		1	0,05	0,25	0,15	2	
11	9	1,1		2	0,25	0,45	0,35	8	
12	10	1,5		3	0,45	0,65	0,55	13	
13	11	1,5		4	0,65	0,85	0,75	15	
14	12	0,1		5	0,85	1,05	0,95	20	
15	13	0,8		6	1,05	1,25	1,15	17	

Рисунок 19 – Расчёт данных для построения гистограммы

Строим гистограмму распределения. Открываем мастер 11. диаграмм, выбираем тип Гистограмма и вид Обычная гистограмма отображает значения различных категорий. На втором шаге на вкладке Диапазон данных указываем диапазон H10:H18. На вкладке Ряд в строке Подписи по X указываем диапазон G10:G18 (возможно указание диапазона E10:F18). На третьем шаге вводим заголовки по осям, а также убираем легенду и линии сетки. После создания редактируем её, используя диаграммы контекстное меню. В частности, открыв контекстное меню на ИЗ столбцов ОДНОМ диаграммы, выбираем команду Формат рядов данных..., вкладку Параметры, и устанавливаем ширину зазора 0.

Готовая гистограмма показана на рисунке 20а. Возможно представление гистограммы в виде непрерывной кривой или ломаной линии. Для этого надо в области гистограммы открыть контекстное меню, выбрать команду **Тип диаграммы...**, выбрать диаграмму **Точечная** и соответствующий её вид. (Рисунок 20 б, в).

Рисунок $20 - \Gamma$ истограмма в виде столбиковой диаграммы (*a*), ломаной линии (δ) и непрерывной кривой (e)

Полученная гистограмма близка к обычной гистограмме с двусторонней симметрией, что указывает на стабильность процесса.

4.3 Построение диаграммы Парето в программе LibreOffice

Исследуем проблему появления брака при выпуске деталей с помощью построения диаграммы Парето.

С учётом того, что потери от брака одной детали каждого вида примерно одинаковы, в качестве единицы измерения выбираем число дефектных деталей каждого вида. После заполнения контрольных листков получаем данные, представленные в таблице 3.

Таблица 3

Сведные	данны		1 P 0 1 1 2			2	
№ детали	1	2	3	4	5	6	Прочие
Число дефектных деталей	255	101	59	39	26	15	11

Сволные данные контрольных пистков

По полученным данным разрабатываем таблицу для проверок данных. Создаём новую книгу LibreOffice. В ячейке A1 вводим заголовок работы. В ячейки АЗ:ЕЗ вводим заголовки: № детали, Число дефектных деталей, Накопленная сумма деталей, Процент деталей, Накопленный процент. Для компактного размещения строку заголовков выделяем третью И используем команду Формат ▶ Ячейки..., вкладку Выравнивание, режим выравнивания по вертикали По центру, режим отображения Переносить по словам.

В ячейки А4:В10 вводим данные из таблицы 3. В ячейку А11 вводим заголовок Итого. В ячейке В11 рассчитываем суммарное число дефектных деталей при помощи математической формулы СУММ.

Для расчёта накопленной суммы деталей в ячейку С4 вводим значение 255, т.е. число дефектных деталей 1. В ячейке С5 суммируем число дефектных деталей 1 и 2, т.е. вводим формулу =С4+В5. Для расчёта накопленной суммы деталей в остальных ячейках копируем формулу из ячейки С5 в диапазон C6:C10.

Для расчёта процента деталей следует делить число дефектных деталей каждого вида на общее число дефектных деталей и умножать на 100. Таким образом, в ячейку D4 вводим формулу =B4/B11*100. После указания необходимой абсолютной адресации копируем эту формулу в диапазон D5:D10. В ячейке D11 рассчитываем суммарный процент, который должен составить 100%.

Для расчёта накопленного процента деталей в ячейку Е4 значение (только значение, а не формулу) из ячейки D4. Для этого используем команды *Правка > Копировать* и *Правка > Специальная вставка...*. В ячейке E5 суммируем процент дефектных деталей 1 и 2, т.е. вводим формулу =E4+D5. Для расчёта накопленного процента в остальных ячейках копируем формулу из ячейки E5 в диапазон E6:E10.

По таблице для проверок данных строим диаграмму Парето. Для этого открываем в мастере диаграмм вкладку **Нестандартные**, выбираем диаграмму типа **График/гистограмма 2**. На втором шаге указываем диапазон данных A4:B10; E4:E10. На третьем шаге вводим заголовки и убираем легенду.

После создания диаграммы мастером диаграмм редактируем её при помощи контекстных меню. В частности, максимальное значение шкалы **Число дефектных деталей** указываем 506, а минимальное 0. Максимальное значение шкалы **Накопленный процент** указываем 100. Открываем контекстное меню на одном из столбцов, выбираем команду **Формат рядов данных...**, вкладку **Параметры**, и устанавливаем ширину зазора 0.

Результаты расчётов и построений показаны на рисунке 21.

Как видно из диаграммы (рис. 15), к группе А можно отнести детали 1 и 2 (70% от брака), к группе В – детали 3,4,5, к группе С – детали 6 и прочие.

Для выяснения наиболее важных дефектов целесообразно построить диаграммы Парето по явления дефектности в деталях 1 и 2.

	Α	В	С	D	E	F G H	
1	Лаб. ра	абота 7. Ди	агра ци а Пар	ето			
2						Диаграмма Парето по	числу
	No	Число	Накопленная		Havenaar	дефектных детал	еи
	N≌	дефектных	сумма	процент	пакопленн		. 100
3	детали	деталей	деталей	деталеи	процент	300	
4	1	255	255	50,3953	50,3952569		$\int_{a_0}^{\infty}$
5	2	101	356	19,9605	70,3557312		170 1 1
6	3	59	415	11,6601	82,0158102	ām.	- 60 de
7	4	39	454	7,70751	89,7233201	₹~L_	- 30 - 1
8	5	26	480	5,13834	94,8616600	± 200+	
9	6	15	495	2,96443	97,8260869	2	- 30 등
10	Прочие	11	506	2,17391	100	[§] / ₁₀₀	- 20 [±]
11	Итого	506		100			- 10
12						₀┾╾╀╾╀	
13						1 2 3 4 5	6 Прочие
4.4						Nº детали	

Рисунок 21 – Построение диаграммы Парето по числу дефектных деталей

Рассмотрим построение такой диаграммы для детали 1. В качестве единицы измерения выбираем сумму потерь от брака, млн. руб. После исследования явлений дефектности получили данные, представленные в таблице 4.

Потери из пефектности цетаци 1

Таблица 4

потери из дефектности детали т							
Дефект	Сумма потерь, млн. руб.						
Шаг резьбы завышен	1,5						
На режущей кромке резца налипы	6,9						
Зависание	1,9						
Пропуск операции	0,4						
Осталась чернота	0,9						
Скос кромки увеличен	0,6						
Наружный диаметр занижен	8,3						
Прочие	0,2						

Диаграмма Парето, построенная по этим данным, показана на рисунке 22.

Как видно из диаграммы (см. рисунок 22), к группе А можно отнести занижение наружного диаметра и налипы на режущей кромке резца (73% от суммы потерь), к группе В – зависание, завышение шага резьбы, остаточную черноту, к группе С – увеличение скоса кромки, пропуск операции и прочие.

Рисунок 22 – Диаграмма Парето по дефектам детали 1

Для выяснения наиболее важных причин потерь целесообразно построить диаграммы Парето по причинам занижения наружного диаметра и налипов на режущей кромке резца.

При построении такой диаграммы для причин занижения наружного диаметра после заполнения контрольных листков получили данные, представленные в таблице 5.

Таблица 5

	Тиолици э
Причина	Число дефектов
Смещение копира	53
Неопытность оператора	11
Неточность рабочего инструмента	4
Устаревший чертёж	98
Ошибки в управлении станком	20
Неточность станка	8
Прочие	7

По этим данным необходимо построить диаграмму Парето, выявить причины занижения наружного диаметра группы A и провести по ним корректирующие мероприятия. После этого можно вновь построить диаграмму Парето для изменившихся условий, чтобы проверить эффективность улучшений.

В цехе принято решение перевести на статистическое регулирование технологический процесс изготовления болта на автоматах. За показатель качества выбран диаметр болта, равный 26 мм, и его допускаемые отклонения: es = -0,005 мм; ei = -0,019 мм. провести по ней Построить контрольную $\overline{x} - s$ — карту и статистический анализ процесса. Для упрощения измерений и вычислений измерительный прибор (рычажная скоба) был настроен на размер 25,980 мм. Результаты измерений (отклонения от размера 25,980 мм в микрометрах) приведены в таблице 6.

Таблица 6

Цех авт	оматный	Оборудован	цование –		тролируемая	Контро	Контролируемый			
		токарный	2	oner	рация	– параме	p = 0.005			
		abromar 360.	5	наре	зание резьоы	$\alpha 26$	-0,005			
						\bigcirc 20	-0.019			
Объём	контроля	Объём выб	орки	Cpe	лство контрол	пя	0,017			
N=100	- I	n=5	- 1-	— ры	чажная скоба	L				
Время	N⁰			Pes	ультаты конт	роля				
1	выборки					L				
7.00	1	10		3	5	14	10			
8.00	2	2	1	4	8	13	11			
9.00	3	12	1	2	3	8	10			
10.00	4	12	1	4	7	11	9			
11.00	5	10	1	1	9	15	7			
12.00	6	11	1	2	11	14	12			
13.00	7	15	1	1	14	8	3			
14.00	8	12	1	4	12	11	11			
15.00	9	11	, ,	7	11	13	9			
16.00	10	14	1	0	9	12	8			
7.00	11	9	1	1 14		10	13			
8.00	12	13	1	3	6	4	13			
9.00	13	5	8	3	3	3	4			
10.00	14	8	4	5	6	9	13			
11.00	15	8	2	1	9	5	8			
12.00	16	4	1	2	10	6	10			
13.00	17	10	6	5	13	10	5			
14.00	18	7	9)	12	1	7			
15.00	19	4	7	7	6	7	12			
16.00	20	10	1	0	6	9	3			

Результаты измерений (отклонения от размера 25,980 мм в мкм)

В ячейку A1 новой книги LibreOffice вводим заголовок работы. В диапазон A4:F24 вводим исходные данные (номера выборок и результаты контроля).

Вначале рассчитываем данные для построения контрольной карты средних значений. В ячейке G5 рассчитываем среднее значение первой выборки при помощи статистической функции СРЗНАЧ. Полученную формулу копируем в диапазон G6:G24.

В ячейке H5 рассчитываем значение \overline{x} (среднюю линию) как среднее из средних значений выборок при помощи статистической функции СРЗНАЧ. В полученной формуле для диапазона ячеек вводим абсолютную адресацию и копируем формулу в диапазон H6:H24. Это необходимо для того, чтобы в дальнейшем можно было провести среднюю линию на контрольной карте.

В ячейке B26 рассчитываем среднее квадратичное отклонение всей совокупности результатов измерений *σ* при помощи статистической функции СТАНДОТКЛОН для диапазона B5:F24.

В ячейке I5 рассчитываем нижнюю контрольную границу К_н. Формула в ячейке будет выглядеть так: =H5-3*B26/KOPEHb(5). Указав абсолютную адресацию для имён ячеек, копируем формулу из ячейки I5 в диапазон I6:I24. Это необходимо, чтобы в дальнейшем провести границу на карте.

В ячейке J5 рассчитываем верхнюю контрольную границу, и после указания абсолютной адресации для имён ячеек копируем формулу из ячейки J5 в диапазон J6:J24.

В ячейках К5 и L5 рассчитываем значения нижнего и верхнего технических допусков, вводя в них формулы =26000-19-25980 и =26000-5-25980 соответственно. Эти формулы копируем также в диапазон К6:L24.

Далее рассчитываем данные для построения контрольной карты средних квадратичных отклонений. В ячейке М5 рассчитываем среднее квадратичное отклонение первой выборки и копируем полученную формулу M6:M24. диапазон B ячейке N5 В выборок, СКО рассчитываем среднее ИЗ И после указания абсолютной адресации копируем формулу в диапазон N6:N24. В ячейке О5 рассчитываем нижнюю контрольную границу по формуле =N5*KOPEHЬ(XИ2OБР(1-0,0027/2;4)/5) и копируем формулу В диапазон O6:O24. В ячейке P5 рассчитываем верхнюю контрольную

границу и копируем содержимое ячейки в диапазон Р6:Р24.

Полученная электронная таблица показана на рисунке 23. По расчётным значениям строим $\overline{x} - s$ – карту.

	A	В	С	D	E	F	G	Н	Ι	J	Κ	L	M	N	0	Р	
1	Лаб. работ	a 8. Ko	энтро.	льные	е карт	ы по	коли	честве	нно	ч у прі	изн	аку	•				
2																	
3							Карта	а средн	их зн	начени	1Й		Карта	я СКО			
4	№ выборки		Резул	пьтаты	контр	оля	Хср	Хср ср	Кн	Кв	Τн	Τв	S	Scp	Кн	Кв	
5	1	10	3	5	14	10	8,4	9,15	4,5	13,8	1	15	4,39	3,05	0,44	5,76	
6	2	2	14	8	13	11	9,6	9,15	4,5	13,8	1	15	4,83	3,05	0,44	5,76	
7	3	12	12	3	8	10	9	9,15	4,5	13,8	1	15	3,74	3,05	0,44	5,76	

Рисунок 23 – Расчёт контрольных границ

Сначала строим \overline{x} – карту. В мастере диаграмм выбираем вид диаграммы **Точечная диаграмма, на которой значения соединены отрезками**. В качестве исходных данных выделяем диапазон A5:A24, G5:L24. Полученную диаграмму редактируем при помощи контекстного меню, а также наносим обозначения контрольных границ при помощи инструмента **Надпись** панели инструментов **Рисование**.

Аналогичным образом строим *s*-карту.

Чтобы получить ИЗ ДВУХ построенных карт единый объект, (например, прижав совмещаем их по длине К левому краю электронной таблицы), одновременно выделяем щелчками левой кнопкой мыши на каждой диаграмме при нажатой клавише Shift и группируем командой Группировать, вызываемой из инструмента Полученная Действия инструментов Рисование. панели контрольная $\overline{x} - s$ – карта показана на рисунке 24.

Анализ контрольной карты на рисунке 24 показывает, что рассеяние диаметра болта приемлемо, и по рассеянию процесс стабилен (оборудование настроено достаточно точно), поскольку на s-карте нет показаний разлаженности процесса. Однако на \overline{x} – карте имеются серии из девяти точек (с четвёртой по двенадцатую) и из восьми точек (с тринадцатой по двадцатую), расположенных по одну сторону от средней линии. Это указывает на нестабильность процесса. Видимо, в течение процесса, при переходе от двенадцатой точке к тринадцатой изменилось математическое ожидание диаметра. Следует постараться причину этой выяснить нестабильности и провести управляющее воздействие на процесс. После стабилизации контрольную карту следует построить заново.

Рисунок $24 - \overline{x} - s -$ карта

5 Порядок выполнения работы

Получив у преподавателя исходные данные для выполнения лабораторной работы, студент изучает теоретические сведения согласно пункту 3. Далее выполняет на компьютере построение в программе *LibreOffice*: графиков по пункту 4.1., гистограммы по 4.2., диаграммы Парето по п. 4.3, контрольных карт Шухарта по п. 4.4

6 Содержание отчета

Отчет по лабораторной работе должен содержать следующие пункты:

- название лабораторной работы;

– цель работы;

- краткие теоретические сведения;

- краткое описание хода выполнения работы;

– индивидуальные задания для выполнения лабораторной работы;

– результаты выполнения работы: таблицы с исходными данными, графики, итоговая таблица расчета параметров построения гистограммы, гистограмма в виде столбиковой диаграммы, ломаной линии и непрерывной кривой, таблица построения диаграммы Парето, диаграмма Парето, итоговая таблица расчета параметров контрольной карты, контрольная карта Шухарта.

– выводы.

Вопросы для самопроверки и подготовки

1. Какие виды графиков Вы знаете?

2. В каких случаях применяются круговые графики?

3. Для чего используют столбчатые графики?

4. Какие разновидности столбчатых графиков вам известны?

5. Что представляет собой ленточный график? В каких случаях он применяется?

6. В каких случаях применяется Z-образный график?

7. Что такое контрольная карта?

8. Для чего применяются контрольные карты?

9. Какие виды контрольных карт Вы знаете? И чем они отличаются?

10. Опишите алгоритм построения контрольной карты?

11. Что такое граница регулирования?

12. Что такое гистограмма?

13. Для чего используется гистограмма?

14. Опишите варианты расположения гистограммы по отношению к технологическому допуску.

15. Опишите последовательность построения гистограммы.

16. что такое диаграмма Парето?

17. Для чего используется диаграмма Парето?

18. Сформулируйте принцип Парето.

19. Опишите принцип построения диаграммы Парето.

Тест для самоконтроля

1. На рисунке представлен график

а) Диаграммы Парето

б) Дома качества

в) Сравнения планируемого и фактического выполнения плана

- г) Диаграммы Исикавы
- 2. Контрольные карты позволяют проводить анализ процесса.

10000		100.0
	-	
	/	- 80,00
		- 00,00
		- 40,00
220 -	11	- 20,00
1000		
61 62	03 04 05 05	67 06 09

3. Установите последовательность расположения границ на контрольной карте Шухарта:

а) верхняя граница регулирования

б) верхняя граница поля допуска

в) нижняя граница регулирования

г) нижняя граница поля допуска

д) центральная линия и/или номинальное значение

4. Установите соответствие:

1. Индекс пригодности

2. Индекс воспроизводимости

3. Наименьший индекс воспроизводимости

4. Верхний индекс пригодности

5. Коэффициент точности

5. На рисунке изображено ...

а) Гистограмма

б) Диаграмма раасеяния

в) Диаграмма разброса

г) Диаграмма Парето

6. Чертеж, на котором статистическая информация изображается посредством геометрических фигур или символических знаков называется ______.

7. Установите последовательность основных этапов статистического управления качеством:

1 - статистическое обследование

2 – наладка процесса

3 - статистическое управление

8. Установите соответствие:

1 – сильная положительная корреляция

2 – слабая положительная корреляция

3 – сильная отрицательная корреляция

4 – слабая отрицательная корреляция

5 – отсутствие корреляции

6 – криволинейная корреляция

a) CP

б) PP

в) CR

г) СРК

1. Всеобщее управление качеством: учебник для вузов / О.П. Глудкин [и др.] – М.: Горячая линия – Телеком, 2001. – 599 с.

2. Клячкин, В. Н. Статистические методы в управлении качеством: компьютерные технологии : учебное пособие / В. Н. Клячкин. - Москва : Финансы и статистика, 2009. - 304 с. : ил.

3. Ефимов, В. В. Статистические методы в управлении качеством продукции : учебное пособие / В. В. Ефимов, Т. В. Барт. - М. : КноРус, 2006. - 240 с.

4. Статистические методы контроля и управления качеством: методические указания по выполнению практических работ и самостоятельной работы по дисциплине «Статистические методы контроля и управления качеством» для студентов направления подготовки 27.03.01 Стандартизация и метрология / Юго-Зап. гос. ун-т; сост.: С.В. Ходыревская. Курск, 2018. 144 с.: прилож. 13. Библиогр.: с. 119.

Инструменты 5. контроля управления И качеством: методические указания ПО выполнению практической И самостоятельной работы бакалавров И магистров, изучающих дисциплины «Управление качеством» и «Управление качеством продукции» / Юго-Зап. гос. ун-т; сост.: С.В. Ходыревская. Курск, 2018. 34 с. Библиогр.: с. 33.

6. Ходыревская С.В. Программные статистические комплексы: практикум / С.В. Ходыревская; Юго-Зап. гос. ун-т. Курск, 2019. 153 с.: ил. 140, табл. 23, прилож. 5. библиогр.: с. 139. (Имеется электрон. аналог).

7. Пономарев С. В. Управление качеством продукции. Введение в системы менеджмента качества: Учебное пособие / С. В. Пономарев, С. В. Мищенко, В. Я. Белобрагин. - М. : Стандарты и качество, 2004. - 248 с. (гриф УМО)