Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

МИНОБРНАУКИ РОССИИ

Должность: проректор по учебной работе дата подписанфедеральное государственное бюджетное образовательное

Уникальный программный ключ: учреждение высшего образования 0b817ca911e6668abb13a5d426d39e5dc11eabb73e943dr4a4851rda56d089

ов 1/са у 11 е 6 6 6 8 а обът 2 ба 3 у е 5 м стре абот 75 е 9 4 3 об 4 а 4 8 5 1 об а 5 об 4 2 об 4 3 об 4 3 об 4 2 об 4 3 об 4 3 об 4 2 об 4 2 об 4 2 об 4 об 4 2 об 4 2

(ЮЗГУ)

Кафедра программной инженерии

УТВЕРЖДАЮ

Проректор по учебной работе

О.Г. Локтионова

« 4 » 03

2019 г.

ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ МЕТОДАМИ ПРЯМОУГОЛЬНИКОВ, ТРАПЕЦИЙ, СИМПСОНА

Методические указания к лабораторной работе №5 по дисциплине «Вычислительная математика» направлений подготовки 09.03.01 «Информатика и вычислительная техника» и 09.03.04 «Программная инженерия»

Составители Е.П. Кочура, В.М. Буторин

Рецензент Кандидат технических наук, доцент кафедры программной инженерии И.Н. Ефремова

Вычисление интегралов методами прямоугольников, трапеций, Симпсона: методические указания к лабораторной работе №5 по дисциплине «Вычислительная математика» для студентов направлений подготовки 09.03.01 «Информатика и вычислительная техника» и 09.03.04 «Программная инженерия» / Юго-Зап. гос. ун-т; сост. Е.П. Кочура, В.М. Буторин. Курск, 2019. 12 с.

Содержит краткие теоретические сведения по теме лабораторной работы, цель выполнения работы, задание, пример выполнения лабораторной работы, требования к составлению отчета, список контрольных вопросов, таблицу индивидуальных заланий.

Предназначено для студентов направлений подготовки 09.03.01 «Информатика и вычислительная техника» и 09.03.04 «Программная инженерия».

Текст печатается в авторской редакции.

Подписано в печать *ОУ-ОЗ-19*. Формат 60х84 1/16. Усл. печ. л. 0,7. Уч.-изд. л. 0,63. Тираж 100 экз. Заказ *УЧ9* Бесплатно.

Юго-Западный государственный университет 305040, Курск, ул.50 лет Октября, 94.

ЛАБОРАТОРНАЯ РАБОТА №5

ВЫЧИСЛЕНИЕ ИНТЕГРАЛОВ МЕТОДАМИ ПРЯМОУГОЛЬНИКОВ, ТРАПЕЦИЙ, СИМПСОНА

І. ЦЕЛЬ РАБОТЫ

- 1. Изучение основных определений и положений теории численного интегрирования.
- 2. Изучение основных квадратурных формул численного интегрирования.
- 3. Разработка численного алгоритма и программ для вычисления на ЭВМ интегралов по квадратурным формулам прямоугольников, трапеций, Симпсона. Оценка погрешности этих формул по правилу Рунге.

II. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

1. Основные определения. Определенным интегралом от функции f(x) на отрезке [a,b] называется предел интегральной суммы:

$$\int_{a}^{b} f(x) \cdot dx = \lim_{\substack{\max \Delta x_i \to 0 \\ n \to \infty}} \sum_{i=1}^{n} f(\xi_i) \cdot \Delta x_i.$$
(2.1)

где, n - количество элементарных отрезков [x_i - x_{i-1}], i=1,...,n; на которые разбивается отрезок интегрирования [a,b], Δx_i =(x_i - x_{i-1}) - длина i-ого отрезка, ξ_i - точка на отрезке [x_{i-1} , x_i].

Когда функция f(x) задана аналитически в виде формулы и интеграл удается свести к табличному, то интеграл (2.1) вычисляется с помощью таблиц неопределенных интегралов и формулы Ньютона-Лейбница, например:

$$\int_{a}^{b} f(x)dx = F(b) - F(d), \tag{2.2}$$

где F'(x) - первообразная, т.е. F'(x)=f(x).

Однако на практике обычно интеграл (2.2) не сводится известными приемами к табличному интегралу, даже тогда, когда под интегральная функция задана аналитически, не говоря уже о тех случаях, когда значения под интегральной f(x) заданы в виде таблицы. В этом случае используют численные методы

2. Основные квадратурные формулы. Для вычисления определенных интегралов используется приближенное соотношение:

$$\int_{a}^{b} f(x) \cdot dx \approx \sum_{i=1}^{n} f(\xi_{i}) \cdot q_{i}, \quad i = 0, 1, ..., n; \quad \xi \in [a, b],$$
(2.3)

которое называется **квадратурной** формулой с **узлами** ξ_i и **весами** q_i .

В формуле (2.3) интеграл приближенно заменяется конечной суммой, члены которой представляют произведение значений функций в некоторых узлах на некоторую величину. Наиболее часто используются следующие квадратурные формулы:

а) формула прямоугольников:

$$\int_{x_{i-1}}^{x_i} f(x) \cdot dx \approx f(\xi_i) \cdot h, \tag{2.4}$$

где
$$\xi_i = \frac{x_i + x_{i-1}}{2}$$
, $h = x_i - x_{i-1}$, $i = 1, ... n$.

Для всего отрезка [a,b] имеем:

$$\int_{a}^{b} f(x) \cdot dx \approx \sum_{i=1}^{n} f(\xi_{i}) \cdot h = h \sum_{i=1}^{n} f(\xi_{i}).$$
 (2.5)

Погрешность формулы (2.5), полученная с помощью ряда Тейлора равна:

$$|R(x)| = \frac{h^2(b-a)}{24} |f_{max}^{(2)}(\xi)|,$$
 (2.6)

 $\left|f_{\text{max}}^{(2)}(\xi)\right|$ - максимальное значение второй производной на отрезке [a,b].

б) формула трапеции:

$$\int_{x_{i-1}}^{x_i} f(x) dx \approx \frac{f_{i-1} + f_i}{2} \cdot h,$$
(2.7)

где $f_i = f(x_i)$, i = 1,...n.

Для всего отрезка имеем:

$$\int_{a}^{b} f(x)dx \approx h \left[\frac{1}{2} f_0 + \sum_{i=2}^{n-1} f_i + \frac{1}{2} f_n \right], \tag{2.8}$$

при этом погрешность равна:

$$|R(x)| = \frac{h^2(b-a)}{12} |f_{max}^{(2)}(\xi)|.$$

в) формула Симпсона (формула парабол):

$$\int_{x_{i+1}}^{x_{i+1}} f(x) dx \approx \frac{h}{3} (f_{i-1} + 4f_i + f_{i+1}).$$
(2.9)

Для всего отрезка:

$$\int_{a}^{b} f(x) dx \approx \frac{h}{3} \sum_{i=0}^{n} f_{i} q_{i}, \qquad (2.10)$$

где

1,
$$\begin{cases} i = 0, n; \\ q_i = 4, \begin{cases} i = 1, 3, ..., n - 1; \\ i = 2, 4, ..., n - 2. \end{cases}$$

Погрешность формулы Симпсона равна:

$$|R(x)| = \frac{h^4(b-a)}{90} |f_{\text{max}}^{(4)}(\xi)|.$$
 (2.11)

3. Метод ячеек для вычисления кратных интегралов. Пусть требуется вычислить двукратный интеграл в области $G(a \le x \le b, c \le y \le d)$:

$$\iint_{G} U(x,y) dx dy.$$

С помощью узлов x_i (i=0,1,...n) и y_j (j=0,1,...,m) и прямых, проходящих через эти узлы: $x=x_i$ и $y=y_j$, разобьем область G на $(n\cdot m)$ прямоугольных ячеек, имеющих площадь:

$$\Delta G_{ij} = \Delta x_i \cdot \Delta y_j$$
, $\Delta x_i = (x_i - x_{i-1})$, $\Delta y_i = (y_j - y_{j-1})$.

Выбираем в этой ячейке центральную точку:

$$\overline{x}_i = \frac{x_i + x_{i-1}}{2}, \ \overline{y}_j = \frac{y_j + y_{j-1}}{2}.$$

Будем считать, что интеграл для каждой ячейке приближенно равен:

$$\iint_{\Delta G_{ij}} (x, y) dx dy \approx f(\overline{x}_i, \overline{y}_j) \Delta x_i \Delta y_j.$$
(2.12)

Суммируя по всем ячейкам имеем:

$$\iint_{G} (x,y) dx dy \approx \sum_{i=1}^{n} \sum_{j=1}^{m} f(\overline{x}_{i}, \overline{y}_{j}) \Delta x_{i} \Delta y_{j}, \qquad (2.13)$$

при этом погрешность, когда все ячейки имеют одинаковую площадь

$$(\Delta x_i = \frac{b-a}{n} = \Delta y_j = \frac{c-d}{m} = h, i = 1,...,n; j = 1,...,m)$$
 будет равна

$$|R(x,y)| = \frac{S}{24} \left[\left(\frac{b-a}{n} \right)^2 f_x^{(2)} + \left(\frac{d-c}{m} \right) f_y^{(2)} \right] \approx \frac{S}{12} h^2 ||f_x^{(2)}| + |f_y^{(2)}||;$$
 (2.14)

где S - площадь области G, m и n - количество узлов по координатам x,y; $\left|f_x^{(2)}\right|, \left|f_y^{(2)}\right|$ - максимальное значение вторых частных производных по соответствующим координатам.

4. Правило Рунге практической оценки погрешности и уточнению по Ричардсону. Пусть I - точное значение интеграла, I_h - значение интеграла, вычисленное по квадратурной формуле с шагом h, а $I_{h/2}$ - значение того же интеграла, вычисленное для шага h/2.

Можем записать:

$$I = I_h + c \cdot h^k + 0(h^{k+1}),$$

$$I = I_{h/2} + c \cdot \left(\frac{h}{2}\right)^k + 0(h^{k+1}),$$
(2.15)

где с - константа.

Величина $c \cdot h^k$ - называется главной частью погрешности квадратурной формулы с порядком точности k по шагу h. Остальная часть погрешности обозначена как $0(h^{k+1})$ и имеет порядок k+1.

Вычитая из первого уравнения (2.15) второе получаем соотношение, которое с точностью порядка $0(h^{k+1})$ позволяет вычислить значение главной части погрешности:

$$c \cdot h^{k} = \frac{I_{h/2} - I_{h}}{1 - (1/2)^{k}} + 0(h^{k+1}). \tag{2.16}$$

Данная формула называется практической оценкой погрешности по правилу Рунге:

Подставляя (2.16) в первую формулу (2.15) получаем формулу для уточнения значение интеграла **по Ричардсону**:

$$I = I_h + \frac{I_{h/2} - I_h}{1 - (1/2)^k} + 0(h^{k+1}) = \frac{2^k I_{h/2} - I_h}{2^k - 1} + 0(h^{k+1}).$$
 (2.17)

Для формул прямоугольников, трапеций и ячеек имеем k=2, для формул Симпсона - k=4.

III. ЗАДАНИЕ

- 1. Написать соотношения для приближенного вычисления интеграла для функции, взятой из таблицы заданий с использованием заданной квадратурной формулы.
- 2. Определить величину шага исходя из заданной точности.

- 3. Для вычисления интеграла применить уточнение по Ричардсону.
- 4. Написать программу и рассчитать на ЭВМ интеграл от заданной функции.

IV. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание. Вычислить интеграл $\int_{0}^{1} \sin(\sin x) dx$ методом прямоугольников с точностью не ниже 10^{-4} .

1. Для приближенного вычисления интеграла от под интегральной функции $f(x)=\sin(\sin(x))$ используем квадратурную формулу прямоугольников (2.5):

$$\int_{0}^{1} f(x)dx \approx I_{h} = h \sum_{i=1}^{n} \sin(\sin(\xi_{i})), \quad \xi_{i} = \frac{x_{i} - x_{i+1}}{2}.$$
(4.1)

2. Определяем число узлов интегрирования. Для этого с помощью соотношения (2.6) вначале выбираем промежуточный шаг:

$$h_{p}^{2} = \frac{|R(x)| \cdot 24}{(b-a)|f_{\text{max}}^{(2)}|}.$$
 (4.2)

Далее оцениваем величину $f_{max}^{(2)}$

$$\left| f_{\text{max}}^{(2)} \right| = \left| (\sin(\sin(x)))^{(2)} \right| = \left| (\cos(\sin x) \cos x)^{(1)} \right| =
= \left| -\sin(\sin x) \cos^2 x - \cos(\sin x) \sin x \right| \le 2.$$
(4.3)

Знаем все значения: $\left|R(x)\right| = 10^{-4}$, b-a=1, $\left|f_{max}^{(2)}\right| = 2$, поэтому согласно

(4.2) имеем

$$h_{p} = \sqrt{\frac{|R(x)| \cdot 24}{(b-a)|f_{max}^{(2)}|}} \approx 3.5 \cdot 10^{-2}.$$
 (4.4)

Определяем число узлов для шага $h_p=3.5*10^{-2}$:

$$N = int \left(\frac{b-a}{h_p}\right) + 1 \approx 30. \tag{4.5}$$

3. Определяем уточненное значение шага для выбранного числа узлов N=30:

$$h=(b-a)/N=1/30.$$
 (4.6)

4. Для уточнения квадратурной формулы (4.1) используем метод Ричардсона. Согласно (2.17) имеем:

$$\int_{0}^{1} \sin(\sin x) dx \approx \frac{4I_{h/2} - I_{h}}{3},$$
(4.7)

где $I_{h/2}$ - значение интеграла, вычисленное по формуле (4.1) для шага h/2.

4. Пример текста программ на Mathcad и на Delphy (в консольном режиме) для приближенного вычисления интеграла по формуле прямоугольников.

$$\begin{split} a &:= 0 \quad b := 1 \qquad f(x) := \sin(\sin(x)) \qquad \epsilon := 10^{-4} \\ f2(x) &:= \frac{d^2}{dx^2} f(x) \to -\sin(\sin(x)) \cdot \cos(x)^2 - \cos(\sin(x)) \cdot \sin(x) \\ \text{Tak Rak } \left| -\sin(\sin(x)) \cdot \cos(x)^2 - \cos(\sin(x)) \cdot \sin(x) \right| \leq 2 \,, \quad \text{To} \quad f2p := 2 \\ hp &:= \sqrt{\frac{24\epsilon}{(b-a) \cdot f2p}} \qquad n := round \left(\frac{b-a}{hp} \right) + 1 \qquad h := \left(\frac{b-a}{n} \right) \\ i &:= 1, 2 ... n \qquad x_i := a + h \cdot i \qquad \xi_i := \frac{x_i + x_{i-1}}{2} \\ Ih &:= h \cdot \sum_{i=1}^n \sin(\sin(\xi_i)) \qquad Ih = 0.430636 \\ h &:= \frac{h}{2} \qquad n := \frac{b-a}{h} \qquad i := 1, 2 ... n \qquad x_i := a + h \cdot i \qquad \xi_i := \frac{x_i + x_{i-1}}{2} \\ Ih2 &:= h \cdot \sum_{i=1}^n \sin(\sin(\xi_i)) \qquad Ih2 = 0.430614 \qquad I := Ih + \frac{Ih2 - Ih}{1 - \left(\frac{1}{2}\right)^2} \\ I &= 0.430606 \qquad \qquad \int_0^1 \sin(\sin(x)) \, dx = 0.430606 \end{split}$$

program lab5;

{Вычисление интегралов по формуле прямоугольников}

{а -нижний, b- верхний пределы интегрирования}

{г-точность вычисления}

{fp - максимальное значение второй производной функции}

```
{Ih - значение интеграла с шагом h}
     {Ih2 - значение интеграла с шагом h/2}
     {Ihh - уточненное значение интеграла по Ричардсону}
var a,b,yp,fp,r,Ih,Ih2,Ihh,hp,h,y,Iz,s: real;
var x: array[0..1000] of real;
var i,j,n: integer;
       begin
        writeln('Введите значение нижнего предела интегрирования а');
       readln (a);
        writeln('Введите значение верхнего предела интегрирования b');
       readln (b);
        writeln('Введите максимальное значение второй производной fp');
       readln (fp);
        writeln('Введите значение погрешности r');
       readln (r);
         hp:=sqrt(24.*r/((b-a)*fp));
                                                              вычисление по (4.4)
         n = round((b-a)/hp)+1;
                                                              вычисление по (4.5)
         h:=(b-a)/n;
                                                              вычисление по (4.6)
         for j:=1 to 2 do begin
             if j=1 then hp:=h else hp:=h/2;
                n := round((b-a)/hp);
                hp:=(b-a)/n;
                s = 0;
                x[0]:=a;
                 for i:=1 to n do begin
                   x[i] := x[0] + i*hp;
                   y := (x[i] + x[i-1])/2;
                                                            вычисление \xi_i по (4.1)
                                                        вычисление суммы в (4.1)
                   s:=s+\sin(\sin(y));
                 end:
                   Iz:=hp*s;
                                                              вычисление по (4.1)
                 if j=1 then Ih:=Iz else Ih2:=Iz;
              end;
                Ihh:=(4*Ih2-Ih)/3.;
                                                              вычисление по (4.7)
            writeln('Шаг h=',h,'
                                    Знач. интеграла Ih=',Ih);
         writeln('Шаг h/2=',hp,' Знач. интеграла Ih2=',Ih2);
        writeln(Уточн. по Ричардсону знач. интеграла Ihh=',Ihh);
end.
```

6. Заполняем таблицу:

$I_{h/2}$	0,430614
Ihh	0,430606

V. СОДЕРЖАНИЕ ОТЧЕТА

- 1. Название лабораторной работы.
- 2. Индивидуальное задание.
- 3. Теоретическая часть.
- 4. Текст программы.
- 5. Результаты расчета.

Пункты 1-4 должны быть оформлены до начала лабораторной работы.

VI. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Понятие определенного интеграла.
- 2. Определение квадратурной формулы.
- 3. Обусловленность задачи численного интегрирования.
- 4. Формулы прямоугольников, трапеций, Симпсона.
- 5. Погрешности основных квадратурных формул.
- 6. Формула численного интегрирования с помощью сплайнов.
- 7. Метод ячеек.
- 8. Погрешность метода ячеек.
- 9. Правило Рунге.
 - 10. Уточнение по Ричардсону.
- 11. Метод Монте-Карло.
- 12. Погрешность метода Монте-Карло.

VII. ТАБЛИЦА ИНДИВИДУАЛЬНЫХ ЗАДАНИЙ

No॒	Определенный интеграл	Метод	Точность
1	$\int_{0}^{1} \cos(x + x^{3}) dx$	трапеций	метода 10 ⁻²
2	$\int_{0}^{1} e^{\sin x} dx$	прямоугольников	10-2
3	$\int_{0}^{1} e^{\cos x} dx$	трапеций	10-2
4	$\int_{1}^{2} \ln(x+x^2) dx$	прямоугольников	10-2
5	$\int_{1}^{2} x \sin x^{-3} dx$	трапеций	10-2
6	$\int_{1}^{2} \frac{\sin x}{\sqrt{x}} dx$	прямоугольников	10-2
7	$\int_{1}^{2} \int_{0}^{1} \sin(xy) dxdy$	ячеек	10-2
8	$\int_{0}^{1} e^{x} x dx$	Симпсона	10 ⁻⁴
9	$\int_{0}^{1} e^{x^{2}} dx$	прямоугольников	10 ⁻⁴
10	$\int_{1}^{2} \ln x^{2} dx$	Симпсона	10-2
11	$\int_{0}^{1} \int_{0}^{1} \cos(\sin(x+y)) dxdy$ 1 2	ячеек	10-2
12	$\int_{0}^{1} \int_{1}^{2} \sin(\cos(x+y)) dxdy$	ячеек	10-2

No	Определенный интеграл	Метод	Точность метода
13	$\int_{0}^{1} \cos(\cos x) dx$	трапеций	10 ⁻²
14	$\int_{1}^{2} \cos(x\sqrt{x}) dx$	прямоугольников	10 ⁻²
15	$\int_{0}^{1} \sin(x+x^2) dx$	трапеций	10 ⁻²
16	$\int_{-1}^{1} \ln(e^{\sin(x)}) dx$	Симпсона	10 ⁻⁴
17	$\int_{-1}^{1} \ln(e^{\cos(x)}) dx$	прямоугольников	10 ⁻³
18	$\int_{1}^{5} \int_{2}^{4} \ln(x+y^2) dx dy$	ячеек	10 ⁻²
19	$\int_{1}^{5} \int_{2}^{4} \ln(x^3 + y) dx dy$	ячеек	10 ⁻²
20	$\int_{20}^{100} \frac{1+\sqrt{x}}{5+\sin(x)} dx$	трапеций	10 ⁻⁴