Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

Дата подписания: 13.11.2024 11:23:29

МИНОБРНАУКИ РОССИИ

Уникальный программный ключ:

обытса образовательное образовательное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра Машиностроительных технологий и оборудования

	<i>>>></i>	 2016 г
		О.Г. Локтионова
Про	ректор п	о учебной работе
УTI	ВЕРЖДА	Ю

РАСЧЕТ ФИЗИЧЕСКОГО ИЗНОСА ТЕХНОЛОГИЧЕСКОГО ОБОРУДОВАНИЯ РАЗЛИЧНЫМИ МЕТОДАМИ.

Методические указания к выполнению практической работы №5 по дисциплине «Методы оценки технического уровня машиностроения» для студентов направления 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (очной и заочной формы обучения)

УДК 621.(923)

Составитель О.С. Зубкова

Рецензент Кандидат технических наук, доцент кафедры «Машиностроительные технологии и оборудование» $A.A.\ \Gamma opoxob$

Расчет физического износа технологического оборудования различными методами: методические указания по выполнению практической работы №5/ Юго-Зап. гос. ун-т; сост. О.С. Зубкова. Курск, 2016. 22 с., ил. 1, табл. 7, Библиогр.: с. 22.

Содержат сведения о различных методах расчета физического износа оборудования при проведении оценки его стоимости. Знакомит студентов с основными математическими зависимостями при проведении расчетов.

Методические указания соответствуют требованиям ФГОС-3 по направлению подготовки дипломированных специалистов 15.03.05 (151900.62) Конструкторско-технологическое обеспечение машиностроительных производств

Работа предназначена для студентов очной и заочной формы обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Печать офсетная. Усл. печ. л. . Уч. - изд. л. . Тираж 30 экз. Заказ . Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

1. Цель занятия

Познакомиться с различными методами расчета физического износа технологического оборудования и учетом его влияния на технологической уровень технологического оборудования.

Работа предусматривает решение следующих задач:

- обоснование выбора классификационных показателей;
- расчет классификационного интервала;
- подбор моделей технологического оборудования;
- формирование группы аналогов и проведение анализа их оценочных показателей.

2. Теоретическая часть

2.1. Виды износа.

Применительно к вопросам оценки износ означает потерю стоимости объекта в процессе его эксплуатации или длительного хранения, научно-технического прогресса и экономической ситуации в целом.

Классификация износов может быть проведена по критерию технической возможности и экономической целесообразности их устранения и по причинам, их вызывающим. С точки зрения возможности устранения различают:

неустранимый износ, т. е. износ, который невозможно устранить из-за конструктивных особенностей машин и оборудования или нецелесообразно устранять по экономическим соображениям, так как расходы на устранение превышают прирост полезности и стоимости соответствующего объекта;

устранимый износ, который возможно осуществить технически и целесообразно экономически.

На современном уровне развития науки и техники превалируют экономические причины отнесения износа к неустранимому, так как технически практически при любой стадии износа возможно поддерживать работоспособное состояние машины.

По причине, вызвавшей износ, различают следующие виды износов.

оборудования называется Физическим износом машин И изменение размеров, формы, массы или состояния поверхностей вследствие изнашивания из-за постоянно действующих нагрузок либо поверхностного СЛОЯ при трении. разрушения изнашивания деталей оборудования зависит от многих причин: условий и режима их работы; материала, из которого они изготовлены; характера смазки трущихся поверхностей; удельного усилия и скорости скольжения; температуры в зоне сопряжения; состояния окружающей среды (запыленность и др.).

Величина износа характеризуется установленными единицами длины, объема, массы и др. Определяется износ по изменению зазоров между сопрягаемыми поверхностями деталей, появлению течи в уплотнениях, уменьшению точности обработки изделия и др. Износы бывают нормальными и аварийными.

Нормальным, или естественным, называют износ, который возникает при правильной, но длительной эксплуатации машины, т. е. в результате использования заданного ресурса ее работы. Аварийным, или прогрессирующим, называют износ, наступающий в течение короткого времени и достигающий таких размеров, что дальнейшая эксплуатация машины становится невозможной. При определенных значениях изменений, возникающих в результате изнашивания, наступает предельный износ, вызывающий резкое ухудшение эксплуатационных качеств отдельных деталей, механизмов, машины в целом, что вызывает необходимость ее ремонта.

Функциональное устаревание (обесценение) — потеря стоимости машин и оборудования, вызванная появлением новых технологий. Обычно рассматриваются две стороны возможного отличия новой техники от старой или две категории функционального устаревания: избыток капитальных затрат и избыток производственных затрат.

Экономическое устаревание — потеря стоимости, обусловленная влиянием внешних факторов. Оно может быть вызвано общеэкономическими и внутриотраслевыми изменениями,

в том числе сокращением спроса на определенный вид продукции, сокращением предложения или ухудшением качества сырья, рабочей силы, вспомогательных систем, сооружений и коммуникаций, а также правовыми изменениями, относящимися к законодательству, муниципальным постановлениям, зонированию и административным распоряжениям.

2.2. Влияние износа на стоимость машин и оборудования

В общем случае износ машин и оборудования в целом может быть определен как снижение потребительских свойств в зависимости от наработки. Для некоторых видов машин накоплена значительная статистика по износу и построены соответствующие зависимости, позволяющие оценить износ как функцию наработки. Однако для большинства видов статистика не накоплена или недоступна для оценщиков, и для определения величины физического износа пользуются методами, классификация которых приведена ниже:

- а) экспертные:
 - метод эффективного возраста;
 - метод экспертизы состояния;
- б) экономико-статистические:
 - метод снижения доходности;
 - метод стадии ремонтного цикла;
- в) экспериментально-аналитические:
 - метод снижения потребительских свойств;
 - метод поэлементного расчета;
 - прямой метод.

Экспертные методы основываются на суждении специалиста-эксперта или самого оценщика о фактическом состоянии машины исходя из ее внешнего вида, условий эксплуатации и других факторов. Экспертные методы требуют высокого уровня знаний в области конструкции и эксплуатационных характеристик оцениваемых машин.

Метод эффективного возраста базируется на допущении о том, что можно достаточно достоверно определить остающийся срок службы

 T_{ocm} . Зная величину нормативного срока службы T_{H} , эффективный возраст может быть определен из выражения

$$T_{gb} = T_{\mu} - T_{ocm} \tag{2.1}$$

а физический износ — по формуле

$$\Phi_{_{\mathrm{H}}} = \frac{T_{_{\mathcal{D}}\phi}}{T_{_{\mathrm{H}}}} \tag{2.2}$$

Срок T_{H} определяется из технической документации, а значение T_{ocm} —экспертно. В случае сниженения износа оборудования на К процентов из-за

недогрузки формула (2.2) приобретает вид

$$\Phi_{_{\rm H}} = \left(\frac{100 - K}{100}\right) \frac{T_{_{9}\phi}}{T_{_{\rm H}}} \tag{2.3}$$

Метод экспертизы состояния предусматривает привлечение специалистов для определения физического состояния машин и оборудования в соответствии с оценочной шкалой. Для повышения степени достоверности могут быть привлечены несколько экспертов, при этом результирующее значение износа определяется из зависимости

$$\Phi_{\text{M}\Sigma} = \sum \Phi_{\text{M}i} \cdot a_i \tag{2.4}$$

где Φ_{ui} — оценка износа і-го эксперта; a_i — весомость мнения і-го эксперта. Весомость мнений экспертов определяется из условия $\sum a_i = 1$.

Таблица 2.1 – Шкала экспертных оценок для определения

коэффициента износа

Состояние оборудования	Характеристика физического состояния	Коэффициент износа, %
Новое	Новое, установленное и еще не эксплуатировавшееся оборудование в отличном	0 5
Очень хорошее	Бывшее в эксплуатации оборудование, полностью отремонтированное или реконструированное, в отличном	10 15
Хорошее	Бывшее в эксплуатации оборудование, полностью отремонтированное или реконструированное, в отличном	20 25 30 35
Удовлетворитель ное	Бывшее в эксплуатации оборудование, требующее некоторого ремонта или замены отдельных мелких частей, таких,	40 45 50 55
Условно пригодное	Бывшее в эксплуатации оборудование в состоянии, пригодном для дальнейшей эксплуатации, но требующее значительного ремонта или	65 70 75 80
Неудовлетворите льное	Бывшее в эксплуатации оборудование, требующее капитального ремонта, такого, как замена рабочих органов	85 90
Негодное к применению или лом	Оборудование, в отношении которого нет разумных перспектив на продажу, кроме как по стоимости основных	97,5 100

Экономико-статистические методы применимы в тех случаях, когда имеется достоверная информация об эксплуатационных и экономических показателях оборудования в ретроспективном периоде.

Метод снижения доходности базируется на допущении о том, что нарастание физического износа пропорционально снижению доходности оборудования, т. е. сокращению чистой прибыли, определяемой как разность между выручкой и издержками. Величина $\Phi_{\rm u}$ определяется из зависимости

$$\Phi_{_{\mathrm{II}}} = \frac{\Pi_0 - \Pi_{_{\mathrm{t}}}}{\Pi_0} \tag{2.5}$$

где Π_0 – прибыль, получаемая при эксплуатации новых машин; Π_t – прибыль в текущем интервале времени.

Метод стадии ремонтного цикла базируется на положении о том, что по мере эксплуатации машин и оборудования их потребительские свойства снижаются при возрастании физического износа. На рис.2.1 представлена примерная зависимость потребительских свойств от наработки и проведенных ремонтов. Для упрощения при расчетах учитываются лишь капитальные ремонты, на протяжении ремонтного (наработка между двумя $T_{\rm p}$ капитальными потребительские убывают свойства ПО линейной зависимости. Обозначим относительное снижение потребительских свойств к концу через K_p , тогда ремонтного цикла В конце цикла значение потребительских свойств к концу ремонтного цикла через K_p , тогда в конце цикла значение потребительских свойств Π_{cp1} составит:

$$\Pi_{\rm cp1} = \Pi C - K_{\rm p} \Pi C \tag{2.6}$$

Капитальный ремонт повышает потребительские свойства на величину $\Delta\Pi C$, таким образом, после его проведения

$$\Pi C_{p} = \Pi C - K_{p} \Pi C + \Delta \Pi C \tag{2.7}$$

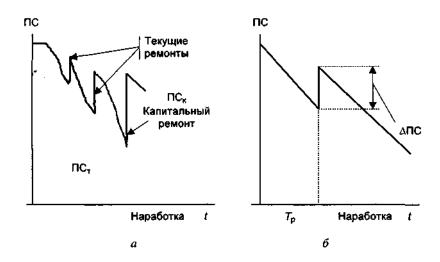


Рис. 2.1. Фактическое (а) и принятое (б) изменение потребительских свойств в процессе эксплуатации машин и оборудования

Длительность ремонтного цикла для основных видов машин и оборудования регламентируется системой плановопредупредительных ремонтов (СППР), поэтому при допущении, что в отношении объекта оценки соблюдается СППР, задача расчета износа сводится к определению интенсивности снижения потребительских свойств d ПС за цикл и нахождению фактической наработки после ближайшего ремонта (начала эксплуатации). Расчеты проводятся по зависимостям:

$$d\Pi C = (\Pi C_0 - K_p \Pi C_0 + \Delta \Pi C)/T_p$$
(2.8)

$$\Pi C_t = \Pi C - t \cdot d\Pi C \tag{2.9}$$

$$t = M \cdot \coprod \cdot K_{\text{CM}} \cdot K_{\text{RM}} \cdot T_{\text{C}} \tag{2.10}$$

$$\Phi_{\mathsf{M}} = \frac{\Pi C_0 - \Pi C_t}{\Pi C_0} \tag{2.11}$$

где ΠC_0 — значение потребительских свойств в начале ремонтного цикла;

t — наработка после капитального ремонта;

M – число месяцев, отработанных после капитального ремонта;

 $K_{c_{M}}$ — коэффициент сменности;

 $K_{e.u}$ – коэффициент внутрисменного использования;

 T_c — продолжительность смены

Экспериментально-аналитические методы требуют проведения испытаний оцениваемого оборудования и наличия технико-экономической и технологической документации по оцениваемому объекту.

Метод снижения потребительских свойств отражает зависимость потребительских свойств машин и оборудования от износа. Обобщенные потребительские свойства ΠC_{Σ} определяются как сумма отдельных потребительских свойств ΠC_i с учетом их весомости а: $\Pi C_{\Sigma} = \Sigma \Pi C_i a_i$, где $\Sigma a_i = 1$.

В процессе эксплуатации потребительские свойства снижаются на величину $\Delta \Pi C_i$, при этом износ

$$\Phi_{\mathsf{N}} = \sum \Pi C_0 a_i \tag{2.12}$$

Метод поэлементного расчета основан на определении износа для отдельных элементов машин и оборудования и суммировании полученных величин с учетом доли себестоимости этих элементов в себестоимости объекта оценки в целом. Расчетный износ i-ro элемента F_{ip} определяется из выражения

$$F_{ip} = f_i(c_i/c_\Sigma)(T_i/T_\Sigma) \tag{2.13}$$

где f_i – фактический физический износ i-го элемента;

 c_i, c_{Σ} — себестоимость i-ro элемента и машин и оборудования в целом соответственно;

T, T_{Σ} — нормативный срок службы і-го элемента и машин и оборудования в целом соответственно.

Износ объекта в целом определяется как сумма расчетных износов его элементов:

$$\Phi_{\mathbf{H}} = \sum F_{i} \tag{2.14}$$

Прямой метод определения износа применим в тех случаях, когда известны стоимость новых машин и оборудования $C_{\rm H}$ и затраты 3, которые необходимо произвести для того, чтобы довести изношенный объект до состояния нового. При этом износ определяется из выражения

$$\Phi_{\scriptscriptstyle \rm M} = \frac{3}{C_{\scriptscriptstyle \rm H}} \tag{2.15}$$

- 3. Задания для выполнения практических работ
- 3.1. Определить физический износ технологического оборудования методом эффективного возраста

Таблица 3.1. – Данные к заданию 3.1

No॒	T_{μ} , ε .	T_{ocm} , r	K	No.	T_{μ} , ε .	T_{ocm} , ε	К
1	10	3,5	20	11	10	5,2	10
2	10	4,2	30	12	10	5,8	20
3	12	4,6	15	13	12	7,3	20
4	15	5,3	5	14	15	2,7	35
5	12	2,2	25	15	12	8,2	25
6	10	7	35	16	10	8,5	15
7	15	5,5	40	17	15	2	15
8	15	2	25	18	15	3,8	20
9	12	3,3	10	19	12	1,5	25
10	10	6,4	5	20	10	4,3	25

3.2. Определить физический износ технологического оборудования методом экспертизы состояния

Таблица 3.2. – Данные к заданию 3.2

No		3.2. — данн		1		Mararra	0/
№	Мнение	%	a_i	$N_{\underline{0}}$	$N_{\underline{0}}$	Мнение	%
	ЭКСП	износа				ЭКСП	износа
1	2	3	4	1	2	3	4
1	ОТЛ	5	0,5	11	ОТЛ	5	0,2
	оч.хор	10	0,1		оч.хор	10	0,4
	оч.хор	10	0,2		оч.хор	10	0,3
	оч.хор	15	0,2		оч.хор	15	0,1
2	удовл	40	0,5	12	удовл	40	0,2
	xop	20	0,1		xop	20	0,4
	xop	25	0,2		xop	25	0,3
	оч.хор	15	0,3		оч.хор	15	0,1
3	ОТЛ	5	0,5	13	ОТЛ	5	0,2
	удовл	40	0,1		удовл	40	0,4
	xop	10	0,2		xop	10	0,3
	xop	15	0,3		xop	15	0,1
4	удовл	45	0,5	14	удовл	45	0,2
	xop	20	0,1		xop	20	0,4
	удовл	40	0,2		удовл	40	0,3
	xop	15	0,3		xop	15	0,1
5	удовл	45	0,5	15	удовл	45	0,2
	удовл	60	0,1		удовл	60	0,4
	xop	20	0,2		xop	20	0,3
	xop	25	0,3		xop	25	0,1
6	xop	35	0,5	16	xop	35	0,2
	удовл	50	0,1		удовл	50	0,4
	удовл	50	0,2		удовл	50	0,3
	уловл	55	0,3		уловл	55	0,1

Продолжение табл. 3.2

	продолжение таол. 5.2							
1	2	3	4	5	6	7	8	
7	удовл	55	0,5	17	удовл	55	0,2	
	удовл	60	0,1		удовл	60	0,4	
	усл.	50	0,2		усл.	50	0,3	
	приг	65	0,3		приг	65	0,1	
	усл.				усл.			
	приг				приг			
8	удовл	55	0,5	18	удовл	55	0,2	
	усл.	65	0,1		усл.	65	0,4	
	приг	70	0,2		приг	70	0,3	
	усл.	80	0,3		усл.	80	0,1	
	приг				приг			
	усл.				усл.			
	приг				приг			
9	удовл	65	0,5	19	удовл	65	0,2	
	удовл	60	0,1		удовл	60	0,4	
	удовл	55	0,2		удовл	55	0,3	
	усл.	75	0,3		усл.	75	0,1	
	приг				приг			
10	усл.	70	0,5	20	усл.	70	0,2	
	приг	65	0,1		приг	65	0,4	
	усл.	85	0,2		усл.	85	0,3	
	приг	70	0,3		приг	70	0,1	
	неудовл				неудовл			
	усл.				усл.			
	приг				приг			

.

3.3. Построить график снижения прибыли термопластавтомата. Определить физический износ технологического оборудования методом снижения доходности без учета инфляции по результатам каждого квартала относительно доходности во I квартале 2013 г. Сколько процентов составил износ за IV квартал?

Таблица 3.3. – Данные к заданию 3.3

	Лица 5.5. Данные к заданию 5.5							
$N_{\underline{0}}$, тыс. руб.	1			
		20	20	14				
	I	II	II	IV	I	II		
1	150	150	145	143	143	139		
2	130	124	126	116	110	105		
3	135	130	130	120	118	116		
4	120	120	120	110	100	85		
5	125	120	120	118	116	110		
6	115	115	110	108	106	104		
7	110	108	106	102	100	100		
8	100	90	89	87	85	80		
9	95	90	86	84	82	80		
10	90	90	85	85	82	80		
11	150	140	142	140	135	130		
12	130	130	125	120	110	110		
13	135	132	1328	120	116	114		
14	120	118	120	110	100	95		
15	125	122	120	115	110	105		
16	115	110	105	90	85	80		
17	110	100	106	102	95	83		
18	100	95	86	87	80	75		
19	95	87	80	76	70	68		
20	90	90	80	75	68	60		

3.4. Неавтоматизированный металлорежущий станок средних размеров прошел один капитальный ремонт и после этого отработал в основном производстве М мес. Определить физический износ станка методом стадии ремонтного цикла. Для всех вариантов $\mathcal{L}=22$ дня, $T_c=8$ ч, $\Pi C_0=1$.

Таблица 3.4. – Данные к заданию 3.4

1 ao.	лица <i>Э.</i> т. –	данные к з	аданию э.¬	Ī		
№	K_p	K_{cM}	K_{eu}	$\Delta\Pi C_0$	M	T_p
1	0,5	1,5	0,6	0,2	10	12 000
2	0,4	1	0,5	0,25	12	12 500
3	0,6	2	0,7	0,3	15	13 200
4	0,5	1	0,8	0,35	18	14 600
5	0,4	2	0,9	0,2	20	14 800
6	0,6	1,5	1	0,2	22	15 000
7	0,5	1,5	0,6	0,25	25	15 300
8	0,4	1	0,5	0,3	10	15 800
9	0,6	2	0,7	0,35	12	16 200
10	0,5	2	0,8	0,4	15	16 600
11	0,4	1,5	0,9	0,2	18	17 000
12	0,6	1	1	0,25	20	17 300
13	0,5	1,5	0,6	0,3	22	17 800
14	0,4	2	0,5	0,35	25	18 000
15	0,6	1	0,7	0,4	10	18 500
16	0,5	1	0,8	0,2	12	19 100
17	0,4	1,5	0,9	0,25	15	19 700
18	0,6	1,5	1	0,3	18	20 000
19	0,4	2	0,6	0,35	20	20 200
20	0,5	2	0,5	0,4	22	20 500

3.5. Определить физический износ технологического оборудования методом снижения потребительских свойств. Рассматриваются следующие фактические и номинальные потребительские свойства: производительность (Π_{ϕ}, Π) , наработка на отказ (t_{ϕ}, t) , коэффициент полезного действия (η_{ϕ}, η)

Таблица 3.5. – Данные к заданию 3.5

No No	$\frac{\Pi_{\Phi}}{\Pi_{\Phi}}$	П,шт	a_1	t_{ϕ} , ч	 t, ч	a_2	η_{ϕ}	η	a_3
	ШТ		1	Ψ		_	ТФ	-1	3
1	2	3	4	5	6	7	8	9	10
1	350	400	0,5	9 300	10 000	0,3	0,6	0,8	0,2
2	20	22	0,4	19 100	20 000	0,4	0,65	0,75	0,2
3	150	200	0,3	13 600	15 000	0,4	0,7	0,8	0,3
4	80	90	0,5	8 500	10 000	0,2	0,55	0,75	0,3
5	35	40	0,5	16 800	20 000	0,3	0,5	0,8	0,2
6	230	300	0,4	14 100	15 000	0,4	0,6	0,75	0,2
7	160	180	0,3	8 900	10 000	0,4	0,65	0,8	0,3
8	50	56	0,5	15 600	20 000	0,2	0,7	0,75	0,3
9	15	17	0,5	12 500	15 000	0,3	0,55	0,8	0,2
10	96	100	0,4	7 500	10 000	0,4	0,5	0,8	0,2
11	300	360	0,3	15 800	20 000	0,4	0,6	0,75	0,3
12	130	150	0,5	11 500	15 000	0,2	0,65	0,8	0,3
13	120	150	0,5	7 800	10 000	0,3	0,7	0,75	0,2
14	220	260	0,4	16 300	20 000	0,4	0,55	0,8	0,2
15	140	180	0,3	10 900	15 000	0,4	0,5	0,75	0,3
16	60	65	0,5	8 100	10 000	0,2	0,6	0,8	0,3
17	40	48	0,5	18 000	20 000	0,3	0,65	0,75	0,2
18	125	200	0,4	12 200	15 000	0,4	0,7	0,8	0,2
19	180	220	0,3	8 000	10 000	0,4	0,55	0,75	0,3
20	13	15	0,5	17 300	20 000	0,2	0,5	0,75	0,3

3.6. Определить физический износ технологического оборудования методом поэлементного расчета.

Таблица 3.6. – Данные к заданию 3.6

<u>No</u>	Элементы	Срок	Фактичес	Себесто	Норм.
		службы	кий	и-мость,	срок
		Γ.	износ, %	тыс. руб	службы
				1.5	станка, г
1	2	3	4	5	6
1	Станина,	15	5	250	15
	Корп. детали	15	5	150	
	Кор. подач	10	30	100	
	Кор. скоростей	10	30	80	
	Шпинд. группа	10	20	50	
	Электрообор.	5	20	30	
2	Станина	20	10	300	20
	Корп. детали	20	10	300	
	Кор. подач	15	40	200	
	Кор. скоростей	15	30	150	
	Шпинд. группа	5	30	100	
	Электрообор.	5	20	100	
3	Станина	10	8	200	10
	Корп. детали	10	8	200	
	Кор. подач	7	35	150	
	Кор. скоростей	7	40	150	
	Шпинд. группа	5	40	100	
	Электрообор.	5	25	50	
4	Станина,	12	10	250	12
	Корп. детали	12	10	250	
	Кор. подач	10	50	150	
	Кор. скоростей	12	45	150	
	Шпинд. группа	10	30	100	
	Электрообор.	5	20	70	

Продолжение табл 3.6.

1	2	3	4	<u> </u>	6
5		20		150	20
)	Станина,	20	15		20
	Корп. детали	-	15	100	
	Кор. подач	10	65	100	
	Кор. скоростей	15	50	70	
	Шпинд. группа	10	40	70	
	Электрообор.	5	30	50	20
6	Станина,	20	12	300	20
	Корп. детали	20	10	250	
	Кор. подач	10	50	150	
	Кор. скоростей	10	50	150	
	Шпинд. группа	5	35	100	
	Электрообор.	5	20	100	
7	Станина,	12	10	300	12
	Корп. детали	12	10	200	
	Кор. подач	7	60	140	
	Кор. скоростей	7	60	100	
	Шпинд. группа	5	30	100	
	Электрообор.	5	30	150	
8	Станина,	15	20	360	15
	Корп. детали	15	25	300	
	Кор. подач	7	70	200	
	Кор. скоростей	10	75	100	
	Шпинд. группа	7	50	150	
	Электрообор.	5	50	280	
9	Станина,	20	15	300	20
	Корп. детали	20	10	450	
	Кор. подач	10	30	200	
	Кор. скоростей	10	30	200	
	Шпинд. группа	5	25	240	
	Электрообор.	5	25	540	
10	Станина,	12	10	150	12
	Корп. детали	12	10	150	
	Кор. подач	6	45	80	
	Кор. скоростей	6	50	80	
	Шпинд. группа	6	20	50	
	Электрообор.	6	20	30	
	Jucki booodh.				

Продолжение табл 3.6.

1	2	3	4	5	6
11	Станина,	15	5	300	15
	Корп. детали	15	5	300	_
	Кор. подач	10	20	150	
	Кор. скоростей	10	15	150	
	Шпинд. группа	10	10	100	
	Электрообор.	5	10	80	
12	Станина,	20	10	450	20
	Корп. детали	20	10	300	
	Кор. подач	15	50	150	
	Кор. скоростей	15	55	150	
	Шпинд. группа	5	45	150	
	Электрообор.	5	25	200	
13	Станина,	10	15	200	10
	Корп. детали	10	15	150	
	Кор. подач	7	60	100	
	Кор. скоростей	7	65	150	
	Шпинд. группа	5	30	100	
	Электрообор.	5	30	50	
14	Станина,	12	5	250	12
	Корп. детали	12	5	200	
	Кор. подач	10	35	100	
	Кор. скоростей	12	30	100	
	Шпинд. группа	10	15	100	
	Электрообор.	5	15	80	
15	Станина,	20	15	250	20
	Корп. детали	20	15	250	
	Кор. подач	10	70	100	
	Кор. скоростей	15	70	150	
	Шпинд. группа	10	55	80	
	Электрообор.	5	30	50	
16	Станина,	20	15	300	20
	Корп. детали	20	10	200	
	Кор. подач	10	50	100	
	Кор. скоростей	10	45	120	
	Шпинд. группа	5	20	80	
	Электрообор.	5	25	100	

Продолжение табл 3.6.

1	2	3	4	<u> </u>	6 б
17	Станина,	12	5		12
	Корп. детали	12	5		
	Кор. подач	7	25		
	Кор. скоростей	7	30		
	Шпинд. группа	5	30		
	Электрообор.	5	5		
18	Станина,	15	10	450	15
	Корп. детали	15	10	400	
	Кор. подач	7	45	150	
	Кор. скоростей	10	60	150	
	Шпинд. группа	7	45	200	
	Электрообор.	5	20	300	
19	Станина,	20	10	560	20
	Корп. детали	20	5	450	
	Кор. подач	10	35	150	
	Кор. скоростей	10	45	200	
	Шпинд. группа	5	40	150	
	Электрообор.	5	15	300	
20	Станина,	12	10	300	12
	Корп. детали	12	10	250	
	Кор. подач	6	50	100	
	Кор. скоростей	6	50	150	
	Шпинд. группа	6	30	100	
	Электрообор.	6	25	100	

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Оценка рыночной стоимости машин и оборудования. Серия «Оценочная деятельность». Учебно-практическое пособие. М.: Дело, 1998. 240 с.
- 2. Ковалев А.П. Оценка стоимости активной части основных фондов: Учебно-методическое пособие М.: Финстатинформ, 1997. 175 с.