Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Андронов Владимир Германович

МИНОБРНАУКИ РОССИИ Должность: Заведующий кафедрой

Дата подписания: 01.09.2024 19:11:33 Юго-Западный государственный университет

Уникальный программный ключ:

a483efa659e7ad657516da1b78e295d4f08e5fd9

УТВЕРЖДАЮ:

Заведующий кафедрой

космического приборостроения и

систем связы

В.Г. Андронов

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Пространственный анализ в геоинформационных системах

(наименование дисциплины)

11.03.02 Инфокоммуникационные технологии и системы связи,

направленность (профиль) «Системы мобильной связи»

(код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ И ЗАДАНИЯ В ТЕСТОВОЙ ФОРМЕ

	Раздел	1.	Основные	принципы	картографическо	го представления
прост	ранственн	ных даг	нных в ГИС			_
-	Вопросы	в закрі	ытой форме.			
	1.1. Какая из перечисленных областей не относится к применению ГИС?					
			іриродными ре		1	
	· -		анирование) p omitte		
			е исследования	I		
			ские наблюден			
	1) Acipon	омиче	ские паотоде	IIIA		
	1.2 Karoi	й исто	NIII ACICILIX HANII	OH CHUTTAGTCE	началом развития Г	ИС?
	a) 1960-e	-	рический пери	од считастся	пачалом развития г	nc:
	<i>а)</i> 1900-е б) 1940-е					
	*					
	в) 1980-е					
	г) 1920-е	годы				
	1.0 10	J			EHOO	
			онент являетс	я ключевым в	структуре ГИС?	
	а) База да					
			ский интерфе	йс		
	в) Сетевы					
	г) Аппара	тное о	беспечение			
	1.4. Что о	значае	т термин "атр	ибутивный ан	ализ" в контексте Г	ИС?
			трических фор	•		
			ранственного		ия объектов	
					анных с их местопол	южением
			ений объекто			
	1) 1111111111	11311101		s so spenienn		
	1.5. Какс	ой тип	картографич	еской проек	ции обеспечивает	равные площади на
карте?)					
	а) Конфор	рмная				
	б) Эквиди	_	ная			
	в) Эквива					
	г) Азимут					
	, ,					
	Вопросы	в откр	ытой форме.			
				ны в 1960-х г	олах лля решения з	адач и
картог	графии.	DI U 1 11	е овин создан	121 2 1700 111	одал доп решения з	иди 1 11
картог	рафии.					
	17 B	OCHOR	- ГИС пежи	ит	кото п ая	представляет собой
COBOKY	ипиость па	UULIV (о пространства	HULIV OFLEKT	ах и их атрибутах.	предетавляет сооби
COBOR	уппость да	IIIIDIA (пространство	ZIIIBIX OOBERT	ax n nx aipnoyiax.	
	1 8 Прос	TOULO	rnautuu ja jost ai	сти в ГИС м	OFER STATE TRAJECTO	влены в виде точек,
	T.o. Tipoc	прансі	пороруностой		ъ различные	влены в виде точек,
линии	, полигонс	в или	поверхностеи,	а также имет	ь различные	·
	19 Лиат	i n eπere	авления прост	панственных	панных в ГИС испо	ользуются различные
СИСТАЗ						
MecTo	лы коорди попожение	шат, 16 2 обт ет	кие как тов на поверх	пости Земпи	, KOTOPBIC HOSBONAI	от точно определить

1.10. Масштаб	карты	определяет	 объектов	на	карте,	a
проекция – их форму и	размері	ol.				

Вопросы на установление последовательности.

- 1.11. Установите последовательность расположения функциональных возможностей ГИС по решению поисковых задач с точки зрения их сложности.
- а) ГИС должна уметь выделять каждую категорию точечных объектов отдельно от других и создавать отдельное тематическое покрытие из этих выделенных объектов.
- б) Должна обеспечиваться возможность выделения любых вариантов интересующих нас точечных объектов различных типов и последующей переклассификации полученной выборки.
- в) ГИС должна обеспечивать возможность анализа пространственных отношений между различными объектами одного и того же класса.
- г) ГИС должна показывать пространственные отношения между точечными объектами различных типов. Кроме этого, она должна уметь сравнивать численности и пространственные положения одной группы точечных объектов и другой, а также показывать отношения между объектами разных размерностей.
- 1.12. Установите последовательность расположения функций линейных объектов на основе их атрибутов в ГИС, расположите их в порядке усложнения.
- а) ГИС должна обеспечивать возможность идентификации, выборки, определения положения каждого отдельного линейного объекта, сведения их в таблицу и раздельного отображения.
- б) Линейные объекты должны разделяться на основе атрибутивных шкал измерений.
- в) ГИС должна обеспечивать поиск и идентификацию как всех линий целиком, так и их частей, сегментов.
- г) ГИС должна обеспечивать сравнение того, что находится по сторонам линии или её сегментов.
- д) При поиске и идентификации линий и их сегментов ГИС должна уметь использовать, кроме их координат, три их других параметра: длину, ориентацию и форму.
- 1.13. Установите последовательность расположения функций площадных объектов на основе их атрибутов в ГИС, расположите их в порядке усложнения.
- а) ГИС должна уметь использовать при поиске и идентификации площадных объектов такие параметры как меры их формы и вытянутости.
- б) Важными атрибутами полигонов, которые должна уметь учитывать ГИС, являются их площадь и периметр.
- в) Наиболее специфичными параметрами полигонов, которые должны использоваться при анализе, являются их целостность.
- 1.14. Установите последовательность действий при проведении пространственного анализа в географической информационной системе.
 - а) Сбор данных
 - б) Подготовка данных
 - в) Ввод данных в систему
 - г) Выбор метода анализа
 - д) Выполнение анализа
 - е) Интерпретация результатов
 - ж) Визуализация
- 1.15 Упорядочите следование методов пространственного анализа по возрастанию сложности:

- а) Геостатистика
- б) Геоинформационная система
- в) Картография
- г) Математическое моделирование

Вопросы на установление соответствия.

1.16. Установить соответствие между масштабом листа карты и сокращенным обозначением.

Обозначение	Масштаб
1) C-37-A	a) 1:500 000
2) M-39-124	б) 1:100 000
3) P-41-134-B-a-2	в) 1:10 000
	г) 1:1000 000
	д) 1:200 000

1.17. Указать какой по порядку элемент в обозначении номенклатуры листа карты

содержат нарушение правил разграфки карт.

Обозначение	Ошибочный элемент
1) Υ-59-10-Γ-Γ	а) элемент 1
2) N-13-145-A-б	б) элемент 2
3) V-19-105-Д-г	в) элемент 3
	г) элемент 4
	д) элемент 5

1.18. Установить соответствие между масштабом листа карты и сокращенным обозначением.

Обозначение	Масштаб
1) В-3-12-А-в	a) 1:500 000
2) M-39-XXI	б) 1:100 000
3) M-39-124	в) 1:25 000
	г) 1:1000 000
	д) 1:200 000

1.19. Установить соответствие между масштабом листа карты и сокращенным обозначением.

Обозначение	Масштаб
1) M-39-XXI	a) 1:500 000
2) P-41-134-B-a-2	б) 1:100 000
3) В-3-12-А-в	в) 1:25 000
	г) 1:10 000
	д) 1:200 000

1.20 Установить соответствие между термином и определением.

Термин	Понятие
1) ГИС	а) Выявление причинно-следственных
	связей между взаимным расположением
	различных объектов в исследуемом
	пространстве и проявляющимися вследствие
	этого в этом пространстве закономерностями в
	различных сферах

	жизнедеятельности общества.
2) Пространственный анализ	б) Выделение, классификация и
	вычисление качественных характеристик
	изображения.
3) Геоинформационный анализ	в) Интеллектуальные компьютерные системы
	формирования и ведения сопряжённых между
	собой баз картографических и атрибутивных
	данных об объектах и явлениях окружающей
	действительности, позволяющие собирать и
	интегрировать разнородную информацию о
	них с целью её пространственного анализа.
	г) Анализ размещения, структуры взаимосвязей
	объектов и явлений с использованием методов
	пространственного анализа и
	геомоделирования.

Раздел 2. Структуры и модели компьютерного представления пространственных и атрибутивных данных в ГИС

Вопросы в закрытой форме.

- 2.1. Что такое неупорядоченные файлы атрибутивных данных?
- а) Файлы, в которых данные не имеют определённого порядка.
- б) Файлы с данными, упорядоченными по времени.
- в) Файлы с данными, отсортированными по алфавиту.
- г) Файлы с данными, расположенными в соответствии с географическими координатами.
 - 2.2. Какие типы файлов атрибутивных данных существуют?
 - а) Неупорядоченные, последовательно упорядоченные и индексированные.
 - б) Растровые и векторные.
 - в) Иерархические, сетевые и реляционные.
 - г) Картографические и геоинформационные.
- 2.3. В чём особенность последовательно упорядоченных файлов атрибутивных данных?
 - а) Данные в файле расположены в порядке возрастания или убывания значений.
 - б) Файл содержит информацию о местоположении объектов на карте.
 - в) Файл имеет структуру, аналогичную структуре иерархической модели данных.
 - г) Файл представляет собой набор точек, линий и полигонов.
 - 2.4. Что такое индексированные файлы атрибутивных данных?
 - а) Файлы с информацией о характеристиках объектов.
 - б) Файлы, содержащие данные о географических координатах объектов.
 - в) Файлы, которые позволяют быстро находить нужные записи.
 - г) Файлы, представляющие собой графические изображения.
 - 2.5. Какие структуры атрибутивных данных используются в ГИС?
 - а) Иерархическая, сетевая и реляционная.
 - б) Векторная и растровая.
 - в) Точечная, линейная и полигональная.
 - г) Все вышеперечисленные.

Вопросы в открытой форме.

2.6. ГИС использует различные структуры и модели для представления

пространственных данных, такие как, которые позволяют точно определить местоположение объектов на поверхности Земли.
2.7. Векторные модели представляют пространственные данные в виде, которые могут быть точками, линиями или полигонами.
2.8. Растровые модели представляют пространственные данные в виде сетки пикселей, где каждый пиксель имеет
2.9. Топологические модели используют для описания отношений между объектами, такими как смежность, пересечение и включение.
2.10. Атрибутивные данные описывают объектов, таких как их название, тип, размер, цвет и т. д.
Вопросы на установление последовательности. 2.11. Установите правильный порядок выполнения при анализе пространственных данных на карте: а) Выделение объектов по атрибутам б) Применение пространственных операций в) Поиск пространственных зависимостей г) Создание тематической карты.
2.12. Каков порядок действий при геометрическом представлении пространственных объектов в ГИС? а) Задание системы координат б) Выбор картографической проекции в) Установление пространственных отношений между объектами.
2.13. Упорядочите этапы использования систем координат и картографических проекций: а) Выбор подходящей проекции б) Определение точного местоположения в системе координат в) Представление пространственных данных на плоскости.
2.14. Составьте этапы геометрического представления пространственных объектов в ГИС в правильной последовательности: а) Определение координат объектов б) Преобразование пространственных данных в) Разделение пространственных объектов г) Представление объектов на карте.
 2.15. Расставьте этапы создания системы координат в порядке их появления: а) Определение точки начала координат б) Устранение погрешностей и ошибок измерений в) Определение шкалы и единиц измерения г) Проведение геодезических измерений

Вопросы на установление соответствия. 2.16. Установить соответствие между название вида региона и его описание.		
Вид региона	Описание	
А) Сплошной регион	а) Составлен из двух или более полигональных	
	фигур, разделенных пространством, которое не	

	относится к этому региону.
Б) Фрагментированный регион	б) Образует одну сплошную область, при этом
	атрибуты входящих в него полигонов могут
	быть одинаковыми или различными.
В) Перфорированный регион	в) представляет собой связную область, из
	которой исключены некоторые внутренние
	полигоны, называемые отверстиями или
	островами.

2.17. Установить соответствие между видом картографической проекции и его схемой.

Вид картографической	Схема
проекции	
А) Цилиндрическая	a)
Б) Коническая	→ → → (i)
В) Плоскостная	B)
Г) Сферическая	

2.18. Установить соответствие между термином и определением.

2.10. У становить соответствие между термином и определением.		
Термин	Понятие	
А) Разрешение	а) Угол между направлением на север и	
	положением колонок растра.	
Б) Ориентация	б)Задается упорядоченной парой	
	координат (номер строки и номер столбца).	
В) Положение	в) Соседствующие друг с другом	
	ячейки, имеющие одинаковые значения. Зоной	
	могут быть отдельные объекты, геологические	
	тела, элементы гидрографии	
Г) Зона	г)Минимальный линейный размер	
	наименьшего участка пространства	
	(поверхности), отображаемый одним пикселом.	

2.19 Установите соответствие.

А) Геоинформационные технологии	а) метод оцифровки изображений, при котором пользователь ГИС создает векторные объекты путем постановки отметок (трассировки) на фоне растровой подложки
Б) Координатная сетка	б)системы, в которых представление, хранение

	и обработка информации осуществляется с помощью вычислительной техники
В) Трассировка	в)технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности
Г) Управленческие информационные системы	г) это совокупность горизонтальных (широта) и вертикальных (долгота) линий, располагаемых на мировых картах через равные промежутки
Д) Автоматизированные информационные системы	д) системы, которые используют для поддержки принятия решений на уровне контроля за операциями

2.20. Сопоставьте уровни атрибутивного анализа и его описание.

А) Описательный уровень	а) На этом уровне проводится описание пространственных объектов и их атрибутов без использования статистических методов.
Б) Классификационный уровень	б) На этом уровне объекты группируются по категориям на основе их атрибутов.
В) Количественный уровень	в) На этом уровне проводится анализ атрибутов объектов, таких как площадь, объем, население и другие числовые значения. Это позволяет проводить математический анализ и оценку свойств объектов.
Г) Пространственно-статистический уровень	г) Этот уровень включает в себя пространственный анализ статистических данных, такой как анализ пространственного распределения явлений, корреляции между пространственными объектами и другие статистические методы, применяемые к пространственным данным.

Шкала оценивания тестов: 8 балльная.

Критерии оценивания:

Тест состоит из 12 вопросов (по 3 вопроса в открытой и закрытой формах, на установление соответствия и на установление последовательности). Процент правильных ответов переводится в баллы БРС и 5-балльной шкалу следующим образом:

- **85-100% 8** баллов соответствует оценке «отлично»;
- 76-84% 7 баллов оценке «хорошо»;
- 70-75% 6 баллов оценке «хорошо»;
- -60-69% 5 баллов оценке «удовлетворительно»;
- 50-59% 4 балла оценке «удовлетворительно»;
- 0-49% 0-3 балла оценке «неудовлетворительно».

1.2 ВОПРОСЫ И ЗАДАНИЯ ДЛЯ ЗАЩИТЫ ПРАКТИЧЕСКИХ РАБОТ

Раздел 1. Основные принципы картографического представления пространственных данных в ГИС

Практическая работа №1 «Метод анализа ближайшего соседства в распределениях точечных и линейных пространственных объектов»

- 1.1. Какие слои, как вы думаете, могут быть логически объединены?
- 1.2. Если вы решите объединить несколько слоев, будет ли новый комбинированный слой иметь тип геометрии объектов, отличный от исходных?
- 1.3. Чтобы надлежащим образом удовлетворять требованиям ваших операций, какой масштаб вы бы выбрали для всей базы данных?
- 1.4. Нужно ли вам будет хранить данные, полученные при цифровании карт разного масштаба?
 - 1.5. Какие моменты вам нужно будет учесть, если вы сделаете это?
- 1.6. Какие важные данные, заявленные в оценке требований, уже включены в Redlands.gdbl
 - 1.7. Какая проекция используется для набора классов объектов Census?
 - 1.8. Каких существенных данных сейчас не хватает в базе геоданных Redlands.gdb?
- 1.9. Определите, какие файлы будут использованы для создания будущих классов пространственных объектов базы геоданных Redlands.gdb, перечисленных ниже: улицы, железные дороги, автомобильный тур.
- 1.10. Является ли набор классов объектов Census завершенным или он будет продолжать обновляться?

Раздел 2. Структуры и модели компьютерного представления пространственных и атрибутивных данных в ГИС

Практическая работа №2 «Представление поверхностей методом изолиний. Цифровые модели рельефа и дискретные матрицы высот»

- 2.1. Как называется обновленная Пространственная привязка?
- 2.2. В какой Системе координат (Coordinate System) хранится по-крытие redcityliml
 - 2.3. Что такое изолинии и какие они бывают?
 - 2.4. Как строится дискретная матрица высот для представления рельефа?
 - 2.5. Какие источники данных используются для построения ЦМР?
 - 2.6. Каковы области применения ЦМР и дискретных матриц высот?
- 2.7. Как осуществляется интерполяция высот для построения ЦМР по дискретным точкам?
 - 2.8. В чем заключаются преимущества и недостатки разных типов ЦМР?
 - 2.9. Какие виды ошибок и неопределенностей могут содержаться в ЦМР?
- 2.10. Как можно визуализировать и анализировать ЦМР с помощью ГИСтехнологий?

Шкала оценивания защиты лабораторных работ: 10 балльная. **Критерии оценивания:**

- 10 баллов (или оценка «отлично») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила более 90% заданий.
- 9 баллов (или оценка «отлично») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила 85-89% заданий.
- 8 баллов (или оценка «хорошо») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила 77-84% заданий.
- 7 баллов (или оценка «хорошо») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила 70-76% заданий.

- 6 баллов (или оценка «удовлетворительно») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила 60-69% заданий.
- 5 балла (или оценка «удовлетворительно») выставляется обучающемуся, если работа правильно выполнена, и доля правильных ответов на «защите» составила 50-59% заданий.
- 0-4 балла (или оценка «неудовлетворительно») выставляется обучающемуся, если работа выполнена не полностью или доля правильных ответов на «защите» составила менее 50% заданий.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1 Вопросы в закрытой форме.
- 1.1. Какая из перечисленных областей не относится к применению ГИС?
- а) Управление природными ресурсами
- б) Городское планирование
- в) Медицинские исследования
- г) Астрономические наблюдения
- 1.2. Какой исторический период считается началом развития ГИС?
- а) 1960-е годы
- б) 1940-е годы
- в) 1980-е годы
- г) 1920-е годы
- 1.3. Какой компонент является ключевым в структуре ГИС?
- а) База данных
- б) Пользовательский интерфейс
- в) Сетевые технологии
- г) Аппаратное обеспечение
- 1.4. Что означает термин "атрибутивный анализ" в контексте ГИС?
- а) Анализ геометрических форм объектов
- б) Анализ пространственного распределения объектов
- в) Анализ характеристик объектов, не связанных с их местоположением
- г) Анализ изменений объектов во времени
- 1.5. Какой тип картографической проекции обеспечивает равные площади на карте?
 - а) Конформная
 - б) Эквидистантная
 - в) Эквивалентная
 - г) Азимутальная
- 1.6. Какой уровень атрибутивного анализа в ГИС позволяет сравнивать данные по различным категориям?
 - а) Описательный
 - б) Сравнительный
 - в) Корреляционный
 - г) Регрессионный
 - 1.7. Как называется процесс упрощения деталей карты для адаптации к масштабу?
 - а) Генерализация
 - б) Интерполяция
 - в) Экстраполяция
 - г) Дискретизация
 - 1.8. Какой элемент карты показывает направление севера?
 - а) Легенда
 - б) Масштаб

- в) Роза ветров
- г) Грид
- 1.9. Какое пространственное отношение описывает, что объект А находится внутри объекта В?
 - а) Смежность
 - б) Пересечение
 - в) Включение
 - г) Примыкание
- 1.10. Какой аспект геометрического представления пространственных объектов в ГИС позволяет определить их точное местоположение?
 - а) Топология
 - б) Масштаб
 - в) Координаты
 - г) Проекция
- 1.11. Какой принцип картографического представления обеспечивает, что каждый объект на карте можно идентифицировать без неоднозначности?
 - а) Принцип масштаба
 - б) Принцип визуализации
 - в) Принцип легенды
 - г) Принцип уникальности
- 1.12. Какой элемент картографического представления отвечает за передачу типа и природы пространственных данных?
 - а) Цвет
 - б) Текстура
 - в) Символика
 - г) Масштаб
- 1.13. Какой принцип картографирования помогает избежать перегрузки карты излишней информацией?
 - а) Принцип обобщения
 - б) Принцип детализации
 - в) Принцип акцентирования
 - г) Принцип баланса
- 1.14. Что является основной целью использования масштаба в картографическом представлении?
 - а) Показать детали карты
 - б) Указать направление на карте
 - в) Определить пропорциональные размеры объектов
 - г) Представить географические координаты
- 1.15. Какой аспект картографического представления важен для понимания топологических отношений между объектами?
 - а) Ориентация
 - б) Проекция
 - в) Масштабирование
 - г) Соседство

- 1.16. Что такое неупорядоченные файлы атрибутивных данных?
- а) Файлы, в которых данные не имеют определённого порядка.
- б) Файлы с данными, упорядоченными по времени.
- в) Файлы с данными, отсортированными по алфавиту.
- г) Файлы с данными, расположенными в соответствии с географическими координатами.
 - 1.17. Какие типы файлов атрибутивных данных существуют?
 - а) Неупорядоченные, последовательно упорядоченные и индексированные.
 - б) Растровые и векторные.
 - в) Иерархические, сетевые и реляционные.
 - г) Картографические и геоинформационные.
- 1.18. В чём особенность последовательно упорядоченных файлов атрибутивных данных?
 - а) Данные в файле расположены в порядке возрастания или убывания значений.
 - б) Файл содержит информацию о местоположении объектов на карте.
 - в) Файл имеет структуру, аналогичную структуре иерархической модели данных.
 - г) Файл представляет собой набор точек, линий и полигонов.
 - 1.19. Что такое индексированные файлы атрибутивных данных?
 - а) Файлы с информацией о характеристиках объектов.
 - б) Файлы, содержащие данные о географических координатах объектов.
 - в) Файлы, которые позволяют быстро находить нужные записи.
 - г) Файлы, представляющие собой графические изображения.
 - 1.20. Какие структуры атрибутивных данных используются в ГИС?
 - а) Иерархическая, сетевая и реляционная.
 - б) Векторная и растровая.
 - в) Точечная, линейная и полигональная.
 - г) Все вышеперечисленные.
 - 1.21. Что такое иерархическая структура атрибутивных данных?
 - а) Структура, в которой данные организованы в виде дерева.
 - б) Структура, которая позволяет быстро находить нужную информацию.
 - в) Структура, используемая для представления пространственных данных.
 - г) Структура, основанная на отношениях между объектами.
 - 1.22. Что такое сетевая структура атрибутивных данных?
- a) Структура, в которой каждый элемент может быть связан с любым другим элементом.
 - б) Структура, позволяющая быстро находить нужную запись.
 - в) Структура, представляющая собой совокупность точек, линий и полигонов.
 - г) Структура, предназначенная для хранения
 - 1.23 Что такое реляционная структура атрибутивных данных?
- а) Структура, в которой данные представлены в виде таблиц с определёнными связями между ними.
 - б) Структура, позволяющая быстро находить нужную запись.
 - в) Структура, представляющая собой совокупность точек, линий и полигонов.
 - г) Структура, предназначенная для хранения пространственных данных.

1.24. Какие картографические структуры пространственных данных существуют? а) Растровые и векторные.
б) Иерархические, сетевые и реляционные. в) Точечная, линейная и полигональная. г) Все вышеперечисленные.
1.25. В чём особенность растровых картографических структур пространственных данных?
 а) Данные представлены в виде сетки пикселей. б) Данные организованы в виде дерева. в) Каждый элемент может быть связан с любым другим элементом. г) Данные хранятся в таблицах с определёнными связями.
2 Вопросы в открытой форме. 2.1. Заполните пропуск: Первые ГИС были созданы в 1960-х годах для решения задач и картографии.
2.2. Заполните пропуск: В основе ГИС лежит, которая представляет собой совокупность данных о пространственных объектах и их атрибутах.
2.3. Заполните пропуск: Пространственные объекты в ГИС могут быть представлены в виде точек, линий, полигонов или поверхностей, а также иметь различные
2.4. Заполните пропуск: Для представления пространственных данных в ГИС используются различные системы координат, такие как, которые позволяют точно определить местоположение объектов на поверхности Земли.
2.5. Заполните пропуск: Масштаб карты определяет объектов на карте, а проекция — их форму и размеры.
2.6. Заполните пропуск: Объекты в ГИС могут находиться в различных отношениях друг с другом, таких как, что позволяет анализировать их взаимодействие и взаиморасположение.
2.7. Заполните пропуск: Процесс отбора и обобщения пространственных данных называется
2.8. Заполните пропуск: Картографическое представление пространственных данных основано на использовании для отображения объектов и явлений на карте.
2.9. Заполните пропуск: Условные знаки могут быть, что позволяет отображать различные характеристики объектов, такие как их размер, форма, цвет и т. д.

2.10. Заполните пропуск: Для отображения пространственных данных на плоскости используются , которые позволяют преобразовать сферическую поверхность Земли в
плоскую карту.
2.11. Заполните пропуск: Основой для создания карт в ГИС являются, которые
содержат информацию о географических объектах и их характеристиках.
2.12. Заполните пропуск: С помощью ГИС можно проводить пространственных данных, который позволяет выявлять закономерности и тенденции развития различных процессов и явлений.
2.13. Заполните пропуск: Создание карт с использованием ГИС называется
2.14. Заполните пропуск: ГИС использует различные структуры и модели для представления пространственных данных, такие как, которые позволяют точно определить местоположение объектов на поверхности Земли.
2.15. Заполните пропуск: Векторные модели представляют пространственные данные в виде, которые могут быть точками, линиями или полигонами.
2.16. Заполните пропуск: Растровые модели представляют пространственные данные в виде сетки пикселей, где каждый пиксель имеет
2.17. Заполните пропуск: Топологические модели используют для описания отношений между объектами, такими как смежность, пересечение и включение.
2.18. Заполните пропуск: Атрибутивные данные описывают объектов, таких как их название, тип, размер, цвет и т. д.
2.19. Заполните пропуск: Моделирование пространственных отношений позволяет анализировать объектов, например, расстояние между ними, направление
движения и т. п.
2.20. Заполните пропуск: Картографические проекции используются для сферической поверхности Земли на плоскую карту.
2.21. Заполните пропуск: Геометрическое представление пространственных объектов включает в себя, такие как точки, линии, полигоны и поверхности.
2.22. Заполните пропуск: Пространственная индексация используется для ускорения

объектов по их местоположению.

2.23. Заполните пропуск: Генерализация используе данных при их отображении на кар			прост	ранственных
2.24. Заполните пропуск: Процесс отбора и о	бобщения	пространственных	данных	называется
2.25. Заполните пропуск: Линейные объекты, такие, которые состоят из после	-	•	но предста	влены в виде

- 3. Вопросы на установление последовательности.
- 3.1 Установите последовательность расположения функциональных возможностей ГИС по решению поисковых задач с точки зрения их сложности.
- а) ГИС должна уметь выделять каждую категорию точечных объектов отдельно от других и создавать отдельное тематическое покрытие из этих выделенных объектов.
- б) Должна обеспечиваться возможность выделения любых вариантов интересующих нас точечных объектов различных типов и последующей переклассификации полученной выборки.
- в) ГИС должна обеспечивать возможность анализа пространственных отношений между различными объектами одного и того же класса.
- г) ГИС должна показывать пространственные отношения между точечными объектами различных типов. Кроме этого, она должна уметь сравнивать численности и пространственные положения одной группы точечных объектов и другой, а также показывать отношения между объектами разных размерностей.
- 3.2 Установите последовательность расположения функций линейных объектов на основе их атрибутов в ГИС, расположите их в порядке усложнения.
- а) ГИС должна обеспечивать возможность идентификации, выборки, определения положения каждого отдельного линейного объекта, сведения их в таблицу и раздельного отображения.
- б) Линейные объекты должны разделяться на основе атрибутивных шкал измерений.
- в) ГИС должна обеспечивать поиск и идентификацию как всех линий целиком, так и их частей, сегментов.
- г) ГИС должна обеспечивать сравнение того, что находится по сторонам линии или её сегментов.
- д) При поиске и идентификации линий и их сегментов ГИС должна уметь использовать, кроме их координат, три их других параметра: длину, ориентацию и форму.
- 3.3 Установите последовательность расположения функций площадных объектов на основе их атрибутов в ГИС, расположите их в порядке усложнения.
- а) ГИС должна уметь использовать при поиске и идентификации площадных объектов такие параметры как меры их формы и вытянутости.
- б) Важными атрибутами полигонов, которые должна уметь учитывать ГИС, являются их площадь и периметр.
- в) Наиболее специфичными параметрами полигонов, которые должны использоваться при анализе, являются их целостность.

- 3.4 Установите последовательность действий при проведении пространственного анализа в географической информационной системе.
 - а) Сбор данных
 - б) Подготовка данных
 - в) Ввод данных в систему
 - г) Выбор метода анализа
 - д) Выполнение анализа
 - е) Интерпретация результатов
 - ж) Визуализация
- 3.5 Упорядочите следование методов пространственного анализа по возрастанию сложности:
 - а) Геостатистика
 - б) Геоинформационная система
 - в) Картография
 - г) Математическое моделирование
- 3.6 Установите правильный порядок выполнения при анализе пространственных данных на карте:
 - а) Выделение объектов по атрибутам
 - б) Применение пространственных операций
 - в) Поиск пространственных зависимостей
 - г) Создание тематической карты.
- 3.7 Каков порядок действий при геометрическом представлении пространственных объектов в ГИС?
 - А) Задание системы координат
 - Б) Выбор картографической проекции
 - В) Установление пространственных отношений между объектами.
- 3.8 Упорядочите этапы использования систем координат и картографических проекций:
 - А) Выбор подходящей проекции
 - Б) Определение точного местоположения в системе координат
 - В) Представление пространственных данных на плоскости.
- 3.9 Составьте этапы геометрического представления пространственных объектов в ГИС в правильной последовательности:
 - А) Определение координат объектов
 - Б) Преобразование пространственных данных
 - В) Разделение пространственных объектов
 - Г) Представление объектов на карте.
 - 3.10 Расставьте этапы создания системы координат в порядке их появления:
 - а) Определение точки начала координат
 - б) Устранение погрешностей и ошибок измерений
 - в) Определение шкалы и единиц измерения
 - г) Проведение геодезических измерений
- 3.11 Расположите этапы создания географической цифровой карты в правильном порядке:
 - а) Оцифровка и внесение атрибутивной информации
 - б) Подготовка и обработка сырых геоданных

- в) Создание слоя рельефа и уровней высот
- г) Образование слоя растровой информации
- 3.12 Установите последовательность процессов создания карты с учетом основных характеристик:
 - а) Определение масштаба карты
 - б) Создание легенды для картографического представления
 - в) Геодезическая съемка местности
 - г) Классификация пространственных данных для включения на карту
 - д) Разработка проекции для корректного представления пространственных данных
- 3.13 Упорядочите этапы методов отбора пространственных объектов по возрастанию сложности:
 - а) Простой случайный отбор
 - б) Стратификация
 - в) Кластеризация
 - г) Систематический отбор.
- 3.14 Отметьте порядок следования этапов при применении метода кластеризации для отбора пространственных объектов:
 - а) Определение количества кластеров
 - б) Выбор признаков для кластеризации
 - в) Формирование кластеров
 - г) Оценка качества кластеризации.
- 3.15 Распределите в правильной последовательности шаги метода обобщения полигонов в ГИС:
 - а) Выделение репрезентативных фигур
 - б) Оценка важности атрибутов
 - в) Выделение ключевых объектов
 - г) Объединение смежных полигонов.
- 3.16 Расположите типы файлов атрибутивных данных в порядке возрастания их упорядоченности:
 - а) Индексированные
 - б) Неупорядоченные
 - в) Последовательно упорядоченные.
- 3.17 Упорядочите структуры атрибутивных данных по их организации от наименее связанной к наиболее связанной:
 - а) Иерархические
 - б) Сетевые
 - в) Реляционные.
- 3.18 Упорядочите этапы создания векторной структуры пространственных данных по возрастанию сложности:
 - а) Задание геометрических примитивов
 - б) Соединение примитивов в геометрические объекты
 - в) Создание топологических отношений
 - г) Добавление атрибутивных данных.
- 3.19 Отметьте порядок следования основных этапов формирования растровых структур пространственных данных:

- а) Задание размеров пикселей
- б) Определение пространственной привязки
- в) Хранение атрибутивных данных
- г) Создание растровых слоёв.
- 3.20 Распределите в правильной последовательности этапы формирования топологических структур для векторных данных:
 - а) Создание связей между геометрическими объектами
 - б) Установление топологических правил
 - в) Построение топологической модели
 - г) Проверка топологической бес противоречивости.
- 3.21 Установите правильный порядок выполнения этапов добавления атрибутивных данных к векторной структуре:
 - а) Определение атрибутов объектов
 - б) Сопоставление атрибутов с соответствующими геометрическими объектами
 - в) Создание таблицы атрибутов
 - г) Сохранение соответствия между геометрией и атрибутами.
 - 3.22 Упорядочите этапы создания гибридной геоинформационной структуры:
 - а) Задание геометрических примитивов в векторной форме
 - б) Разбиение пространства на равномерные ячейки для растровой части
 - в) Определение топологических связей между объектами в векторной форме
- г) Соотнесение атрибутивной информации с геометрическими объектами в векторной форме.
- 3.23 Расставьте в правильной последовательности этапы объединения векторных и растровых данных в гибридной геоинформационной структуре:
 - а) Сохранение геометрических данных в векторной форме
 - б) Разбиение пространства на растровые ячейки
 - в) Интеграция атрибутивных данных в растровую структуру
 - г) Сохранение атрибутивной информации в табличной форме.
- 3.24 Распределите в правильной последовательности этапы формирования топологических связей в гибридной геоинформационной структуре:
 - а) Установление топологических связей между растровыми пикселями
- б) Создание топологических связей между геометрическими объектами в векторной форме
 - в) Формирование пространственной привязки для растровых пикселей
 - г) Построение топологической модели.
- 3.25 Распределите в правильной последовательности этапы создания геоинформационной векторной модели данных:
 - а) Определение пространственной области модели
 - б) Сбор геометрических и атрибутивных данных о географических объектах
- в) Создание топологических связей между географическими объектами в векторной форме
 - г) Установление атрибутов географических объектов.

4 Вопросы на установление соответствия.

4.1 Установить соответствие между масштабом листа карты и сокращенным обозначением.

Обозначение	Масштаб
1. C-37-A	a) 1:500 000
2. M-39-124	6) 1:100 000
3. P-41-134-B-a-2	в) 1:10 000
	г) 1:1000 000
	д) 1:200 000

4.2 Установить соответствие между термином и определением

4.2 Установить соответствие между термином и определением	
Термин	Понятие
1. ГИС	а) Выявление причинно-следственных
	связей между взаимным расположением
	различных объектов в исследуемом
	пространстве и проявляющимися вследствие
	этого в этом пространстве закономерностями в
	различных сферах
	жизнедеятельности общества.
2. Пространственный анализ	б) Выделение, классификация и
	вычисление качественных характеристик
	изображения.
3. Геоинформационный анализ	в) Интеллектуальные компьютерные системы
	формирования и ведения сопряжённых между
	собой баз картографических и атрибутивных
	данных об объектах и явлениях окружающей
	действительности, позволяющие собирать и
	интегрировать разнородную информацию о
	них с целью её пространственного анализа.
	г) Анализ размещения, структуры взаимосвязей
	объектов и явлений с использованием методов
	пространственного анализа и
	геомоделирования.

4.3 Установить соответствие между название вида региона и его описание.

1.5 5 CTUHOBHTB COOTBETCTBHC MCXX	у название вида региона и его описание.	
Вид региона	Описание	
1. Сплошной регион	а) Составлен из двух или более полигональных	
	фигур, разделенных пространством, которое не	
	относится к этому региону.	
2. Фрагментированный регион	б) Образует одну сплошную область, при этом	
	атрибуты входящих в него полигонов могут	
	быть одинаковыми или различными.	
3. Перфорированный регион	в) представляет собой связную область, из	
	которой исключены некоторые внутренние	
	полигоны, называемые отверстиями или	
	островами.	

4.4 Установить соответствие между видом картографической проекции и его схемой.

Вид картографической	Схема
проекции	CACMU

1. Цилиндрическая	a)
2. Коническая	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c
3. Плоскостная	B)
4. Сферическая	

4.5 Установить соответствие между термином и определением.

4.5 3 становить соответствие межд	у терминем и определением.
Термин	Понятие
1. Разрешение	а) Угол между направлением на север и
	положением колонок растра.
2. Ориентация	б)Задается упорядоченной парой координат
	(номер строки и номер столбца).
3. Положение	в) Соседствующие друг с другом ячейки,
	имеющие одинаковые значения. Зоной могут
	быть отдельные объекты, геологические тела,
	элементы гидрографии
4. Зона	г)Минимальный линейный размер
	наименьшего участка пространства
	(поверхности), отображаемый одним пикселом.

4.6 Установите соответствие между термином и определением.

	j repininem n empedement.
Термин	Понятие
1. Геоинформационные технологии	а) метод оцифровки изображений, при котором пользователь ГИС создает векторные объекты путем постановки отметок (трассировки) на
	фоне растровой подложки
2. Координатная сетка	б)системы, в которых представление, хранение и обработка информации осуществляется с помощью вычислительной техники
3. Трассировка	в)технологическая основа создания географических информационных систем, позволяющая реализовать их функциональные возможности
4. Управленческие информационные	г) это совокупность горизонтальных (широта) и
системы	вертикальных (долгота) линий, располагаемых на мировых картах через равные промежутки
5. Автоматизированные	д) системы, которые используют для
информационные системы	поддержки принятия решений на уровне
	контроля за операциями

4.7 Сопоставьте уровни атрибутивного анализа и его описание.

V	
Уровни атрибутивного анализа	Описание
1. Описательный уровень	а) На этом уровне проводится описание
	пространственных объектов и их атрибутов без
	использования статистических методов.
2. Классификационный уровень	б) На этом уровне объекты группируются по
	категориям на основе их атрибутов.
3. Количественный уровень	в) На этом уровне проводится анализ атрибутов
	объектов, таких как площадь, объем, население
	и другие числовые значения. Это позволяет
	проводить математический анализ и оценку
	свойств объектов.
4. Пространственно-статистический	г) Этот уровень включает в себя
уровень	пространственный анализ статистических
	данных, такой как анализ пространственного
	распределения явлений, корреляции между
	пространственными объектами и другие
	статистические методы, применяемые к
	пространственным данным.

4.8 Сопоставьте уровни атрибутивного анализа и их характеристики.

4.8 Сопоставьте уровни атриоути.	вного анализа и их характеристики.
Уровни атрибутивного анализа	Характеристики
1. Описательный уровень	а) Включает в себя качественные
	характеристики объектов, такие как названия,
	цвета, формы и другие визуальные атрибуты.
2. Классификационный уровень	б) Часто используется для создания
	тематических карт и анализа схожих объектов
	с целью упрощения данных и улучшения
	понимания пространственной информации.
3. Количественный уровень	в) Включает в себя обработку и анализ
	количественных данных, таких как площадь,
	объем, население и другие числовые значения.
4. Пространственно-статистический	г) Включает в себя применение статистических
уровень	методов к пространственным данным для
	выявления закономерностей и корреляций
	между объектами на географической карте.

4.9 Соотнесите характеристики и описание.

1. Проекция	а) Способ отображения на карте
2. Единицы измерения	б) Система измерений для геоданных
3. Начало координат	в) Точка отсчета для измерений
4. Ориентация осей	г) Направление основных измерений

4.10 Сопоставьте основные пространственные отношения, существующие между объектами в ГИС и их описание.

Observation Bille in the office time.	
Пространственные	Описание
отношения	
1. Соседство	а) Отношение близости объектов
2. Вложенность	б) Отношение включения одного объекта в другой
3. Пересечение	в) Место, где объекты пересекаются
4. Смежность	г) Граничащие друг с другом объекты

4.11 Установить соответствие между термином и определением.

1. Системы координат	а) система, используемая для определения местоположения
	точек на Земле или других пространственных объектах.
2. Картографические	б) Метод проецирования трехмерной поверхности Земли на
проекции	плоскость для создания карт.
3. Пространственные	в) Отношения между пространственными объектами, такие
отношения объектов	как соседство, включение и пересечение.
4. Пространственные	г) Сведения, связанные с местоположением и
данные	пространственными характеристиками, такие как точки,
	линии, полигоны и изображения, которые могут быть
	представлены в географическом контексте.

4.12 Сопоставьте различные виды картографических проекций с их описанием.

1. Меркаторская проекция	а) Используется для представления плоских карт мирового
	масштаба с сохранением углов между линиями, что удобно
	для навигации, но искажает размеры при широких широтах.
2. Прямоугольная	б) Используется для представления местности с сохранением
(плоская) проекция	линейных измерений в небольших областях, но сильно
	искажает формы и размеры вдали от центральной точки.
3. Коническая проекция	в) Проекция, при которой поверхность сфероида
	отображается на конус, который затем развертывается на
	плоскость. Обеспечивает равномерное искажение масштаба
	в пределах умеренных широт, но увеличивает искажение на
	северных и южных полярных областях.
4. Сферическая	

4.13 Установить соответствие между масштабом карты и нормальной высотой сечения горизонталей, принятой на топографических картах горной местности карты такого масштаба?

Масштаб	Нормальная высота сечения горизонталей
1. 1:50 000	а)10 м
2. 1:25 000	б)2,5 м
	в)5 м
	г)7,5 м
	д)15 м

4.14 Соотнести вид данных, используемых в ГИС и соответствующее определение.

тт соотпости вид	definible, hence by emble by the in econbete by tome empedemente.
Вид данных	Определение
1. Метаданные	а) Данные, описывающие качественные или количественные
	параметры пространственно соотнесенных объектов
2. Пространственная	б) «Данные о данных"
информация	
3. Атрибутивные данные	в) Находятся в цифровой форме и служат для визуализации
	изображения в растровой и векторной модели данных

4.15 Сопоставьте типы файлов атрибутивных данных с их характеристиками.

1.13 Concerabble Timbi quillob alpi	тоў тивных данных с на карактернетиками:
1. Неупорядоченные	а) Типы файлов, которые не имеют
	определенного порядка размещения данных.
2. Последовательно упорядоченные	б) Файлы, в которых данные упорядочены по
	определенному признаку или полю.
3. Индексированные	в) Файлы, в которых данные организованы с

использованием индексов для быстрого
доступа.

4.16 Соотнесите систему атрибутивных данных и их описание

	y urprio y mismism gumism in mit o mioumio
1. Иерархические:	а) Структуры данных, организованные в виде
	дерева, где каждый элемент имеет 0 или более
	предшественников и 0 или более преемников.
2. Сетевые	б) Структуры данных, организованные как
	граф, где каждый элемент имеет одного
	предшественника и может иметь несколько
	преемников.
3. Реляционные	в) Структуры данных, представленные в виде
	таблиц, где данные организованы в строки и
	столбцы.

4.17 Соотнеси вид пространственных данных и его описание.

	7 1
1. Растровые	а) Структуры данных, которые описывают пространственные объекты как набор ячеек с
	определенными значениями, аналогично
	пикселям на изображении.
2. Векторные	б) Структуры данных, которые используют
	пространственные объекты, представленные
	как точки, линии или полигоны.
3. Линейные	

4.18 Установите соответствие между гибридными растровыми и векторными

геоинформационными структурами, и их характеристиками

1. Гибридные растровые и векторные	а) Комбинация сетевого растрового и
геоинформационные структуры	векторного представления данных для более
	полного описания объектов.
2. Геоинформационные векторные	б) Описание пространственных данных с
модели данных	помощью точек, линий и полигонов.
3. Геоинформационная объектно-	в) В данной модели каждый объект в
ориентированная модель данных	пространстве рассматривается как отдельная
	сущность, имеющая свои собственные
	атрибуты и географическое местоположение.

4.19 Соотнесите пример и объекты, к которым они относиться.

1. Точечные	а) Географические координаты городов
2. Линейные	б) Вулкан
3. Полигональные	в) Дорожная сеть
4. Растровые	г) Река
	д) Страна
	е) Лесные массивы
	ж) Снимки Земли
	з) Инфракрасные изображения

4.20 Сопоставьте типы пространственных объектов с их хранением в векторной модели данных.

1. Точки	а) Хранятся как координаты (х, у) в таблице
	атрибутов.
2. Линии	б) Представлены последовательностью точек

	или узлов с координатами.
3. Полигоны	в) Определяются как замкнутые области,
	состоящие из узлов линий с соответствующими
	координатами.

4.21 Соотнесите пространственные отношения в ГИС и пример.

1. Топологические отношения	а) Пересечение
2. Метрические отношения	б) Расстояние между объектами
3. Отношения направления	в) Движение под углом

4.22 Соотнесите пространственные индексы и их описание.

1. R-деревья	а) Структура данных для быстрого поиска объектов, основанная на древовидной организации.
2. Quadtree	б) Древовидная структура, разбивающая пространство на квадранты для эффективного хранения и поиска данных.
3. Grid-индексы	в) Разделение пространства на сетку для ускорения поиска в ГИС.

4.23 Соотнесите понятия и их описание, для чего они применяются.

4.25 Cootheente honzinz u uz onne	ание, для тего они применяютея.
1. Методический подход используется	а) Метод изолиний
для визуализации изменений высот на	
поверхности земли	
2. Технология позволяет создавать	б) Цифровые модели рельефа
цифровые модели рельефа	
3. Технология дискретной матрицы	в) Изомерные массивы
высот	
4. Линия, связывающая точки с	г) Эквидистанты
одинаковым значением высоты на	
поверхности	
	д) Векторные модели

4.24 Соотнесите понятия и их описание, для чего они применяются.

1. Метод используется для визуализации высотных изменений в цифровом формате 2. Метод позволяет визуализировать высотные данные с использованием линий одинаковой высоты 3. Представление высот каждой точки поверхности земли в виде значений, где каждый элемент соответствует	4.24 Cootheente holizitzi ii nx oline	7.7
формате 2. Метод позволяет визуализировать высотные данные с использованием линий одинаковой высоты 3. Представление высот каждой точки поверхности земли в виде значений, где	1. Метод используется для визуализации	а) Цифровая топография
Метод позволяет визуализировать высотные данные с использованием линий одинаковой высоты Представление высот каждой точки поверхности земли в виде значений, где	высотных изменений в цифровом	
высотные данные с использованием линий одинаковой высоты 3. Представление высот каждой точки поверхности земли в виде значений, где	формате	
линий одинаковой высоты 3. Представление высот каждой точки поверхности земли в виде значений, где	2. Метод позволяет визуализировать	б) Линии уровня
3. Представление высот каждой точки поверхности земли в виде значений, где	высотные данные с использованием	
поверхности земли в виде значений, где	линий одинаковой высоты	
	3. Представление высот каждой точки	в) Дискретная матрица высот
каждый элемент соответствует	поверхности земли в виде значений, где	
	каждый элемент соответствует	
определенной высоте.	определенной высоте.	
4. Линия, соединяющая точки с г) Контурные линии	4. Линия, соединяющая точки с	г) Контурные линии
одинаковыми значениями высот в	одинаковыми значениями высот в	
географических картах	географических картах	

4.25 Указать какой по порядку элемент в обозначении номенклатуры листа карты

содержат нарушение правил разграфки карт.

Обозначение	Ошибочный элемент
1. N-13-145-A-6	а) элемент 1

2. V-19-105-Д-г	б) элемент 2
3. Ү-59-10-Г-г	в) элемент 3
	г) элемент 4
	д) элемент 5

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по заочной форме обучения составляет 60 баллов (установлено положением П 02.016).

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале
100-50	зачтено
49 и менее	незачтено

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -3 балла, не выполнено -0 баллов.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № 1

Используя ресурс GoogleEarth выберите территорию для создания цифровой карты. Настройте изображение картографической сети и проекции. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 2

Найти в сети Интернете интерактивную карту города Курск и на ней район, в котором расположены учебные корпуса ЮЗГУ на ул. Челюскинцев.

Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 3

Запустить программу-навигатор Google Earth и с помощью системы управления найти ваш город Курск. Найти и приблизить определенный район города (например, учебные корпуса ЮЗГУ на ул. Челюскинцев). Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 4

Используя один из стандартных файлов изображений поверхности земли в среде MapInfo выполните пространственную привязку изображения. Выполните векторизацию полученного фрагмента территории. Создайте слои: Дороги, Строения, объекты инфраструктуры. Заполните атрибутивную информацию. Оформите векторную карту в виде адресного плана, содержащую подписи объектов и соответствующие объектам стили оформления графических объектов цифровой карты.

Компетентностно-ориентированная задача № 5

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести ул. 50 лет Октября. Изменяя масштаб, найти наш университет. Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину университетского городка. С помощью инструмента полигон определить примерную площадь городка.

Компетентностно-ориентированная задача № 6

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести ул. Челюскинцев. Изменяя масштаб, найти наш университет. Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину территории университета. С помощью инструмента полигон определить примерную площадь территории.

Компетентностно-ориентированная задача № 7

Найти в сети Интернете интерактивную карту города Курск и на ней район, в котором расположен Главный учебный корпус ЮЗГУ. Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 8

Запустить программу-навигатор Google Earth и с помощью системы управления найти ваш город Курск. Найти и приблизить определенный район города (например, Главный учебный корпус ЮЗГУ). Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 9

Используя один из стандартных файлов изображений поверхности земли в среде MapInfo выполните пространственную привязку изображения. Выполните векторизацию полученного фрагмента территории. Создайте слои: Дороги, Строения, объекты инфраструктуры. Заполните атрибутивную информацию. Оформите векторную карту в виде адресного плана, содержащую подписи объектов и соответствующие объектам стили оформления графических объектов цифровой карты.

Компетентностно-ориентированная задача № 10

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести ул. 50 лет Октября. Изменяя масштаб, найти наш университет. Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину университетского городка. С помощью инструмента полигон определить примерную площадь городка.

Компетентностно-ориентированная задача № 11

Найти в сети Интернете интерактивную карту города Курск и на ней район, в котором расположен проспект А. Дериглазова. Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 12

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести проспект А. Дериглазова. Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину проспекта. С помощью инструмента полигон определить примерную площадь проспекта.

Компетентностно-ориентированная задача № 13

Найти в сети Интернете интерактивную карту города Железногорск и на ней район, в котором расположена улица Ленина. Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 14

Найти в сети Интернете интерактивную карту города Курск и на ней район, в котором расположен Курский техникум связи. Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 15

Найти в сети Интернете интерактивную карту города Курск и на ней район, в котором расположен Курский политехнический техникум. Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 16

На территории парка размещены три точки: А, В и С. Координаты точки А: (450, 320), В: (680, 250), С: (550, 410). Необходимо определить тип системы координат, в которой представлены эти точки, и объяснить, как они соотносятся с картографическими принципами ГИС.

Компетентностно-ориентированная задача № 17

Расстояние между двумя точками на карте с масштабом в 1:75000 10 см. Найдите расстояние между точками на картах 1)с масштабом в 1:25000 2)1:200000

Компетентностно-ориентированная задача № 18

Найти в сети Интернете интерактивную карту города Курчатов и на ней район, в котором расположены Парк "Теплый берег".

Запустить браузер и ввести адрес сайта с интерактивными картами (например, http://www.eatlas.ru). Выбрать интерактивную карту города. С помощью системы управления найти определенный район города. Экспортируйте изображение поверхности земли в графический файл (tiff).

Компетентностно-ориентированная задача № 19

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести ул. Карла Маркса. Изменяя масштаб, найти Курский государственный аграрный университет. Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину университетского городка. С помощью инструмента полигон определить примерную площадь городка.

Компетентностно-ориентированная задача № 20

Открыть ресурс http://kosmosnimki.ru. В строку поиска ввести г. Курчатов. Изменяя масштаб, найти парк "Теплый берег". Найти географические координаты. Используя инструмент, ЛИНИЯ определить длину и ширину университетского городка. С помощью инструмента полигон определить примерную площадь городка.

Компетентностно-ориентированная задача № 21

Используя методы пространственного анализа, необходимо определить оптимальное местоположение для нового парка в городе Курск. Они должны учитывать доступность, плотность населения, а также максимизировать охват обслуживаемой территории новым парком.

Компетентностно-ориентированная задача № 22

Воспользуйтесь специализированной программой и преобразуйте векторные данные о дорожной сети в растровый слой, чтобы оценить плотность дорожной сети в различных частях города. После этого проведите анализ соотношения плотности дорожной сети и плотности населения.

Компетентностно-ориентированная задача № 23

Необходимо с помощью программы преобразовать растровые карты с изолиниями, представленными в виде линий одного цвета, в векторные данные для дальнейшего анализа топографии территории с использованием ГИС.

Компетентностно-ориентированная задача № 24

Требуется преобразовать растровую высотную карту в векторные данные с целью определения зон опасности схода лавины на основе анализа наклона и экспозиции склонов на горных склонах с помощью ГИС.

Компетентностно-ориентированная задача № 25

Преобразуйте векторные данные, содержащие дорожную сеть города, в растровый формат для последующего выделения участков с наибольшей интенсивностью движения и оценки нагрузки на дорожную инфраструктуру в ГИС.

Компетентностно-ориентированная задача № 26

Разработать оптимальную схему размещения сельскохозяйственных угодий с учетом рельефа, влажности почвы и климатических условий для повышения урожайности.

Компетентностно-ориентированная задача № 27

Создать полигоны для картографирования зон затопления, использовать растровые данные для моделирования изменения уровня воды, изучить изолинии для оценки высоты затопления в различных точках.

Компетентностно-ориентированная задача № 28

Необходимо выбрать наиболее эффективный метод интерполяции для создания изолиний на карте, опираясь на предоставленные данные о высоте на определенной территории. После выбора метода, обоснуйте ваш выбор и опишите возможные применения данной техники интерполяции.

Компетентностно-ориентированная задача № 29

Необходимо построить изолинии на основе данных о высотах на карте с использованием метода Кригинга и метода скользящего среднего. Проведите расчеты и постройте изолинии на карте с использованием метода Кригинга и метода скользящего среднего. Оцените результаты и определите, какой метод позволяет более точно отобразить изменения высот на территории.

Компетентностно-ориентированная задача № 30

Необходимо провести пространственный анализ для выявления связей между полигонами и изолиниями с использованием метода соседства. Постройте и оцените пространственные связи между определенными полигонами и изолиниями на карте с

использованием метода соседства. Проанализируйте результаты и определите, какие закономерности и взаимосвязи могут быть выявлены с помощью данного метода пространственного анализа.

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по заочной форме обучения составляет 60 баллов (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи — 15 баллов. Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомический шкале следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале
100-50	зачтено
49 и менее	незачтено

Критерии оценивания решения компетентностно-ориентированной задачи

- 15-12 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **11-8 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **7-4 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0-3 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.