Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 27.09.2024 08:05:48

МИНОБРНАУКИ РОССИИ

Уникальный программный клюу:
0b817ca911e6668abb13a5d426d39e5f1c11eabbi73e943d4a4851ida56d089 бтоджетное образовательное учреждение
выешего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра охраны труда и окружающей среды

УТВЕРЖДАЮ
Проректор по учебной работе
О.Г. Локтионова

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ РАБОЧИХ МЕСТ

методические указания по проведению лабораторной работы по дисциплине «Безопасность жизнедеятельности» для студентов очной и заочной формы обучения всех специальностей и направлений

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра охраны труда и окружающей среды

	УТВЕРЖДАЮ
Проректор	по учебной работе
	О.Г.Локтионова
« »	2021 г.

ГИГИЕНИЧЕСКАЯ ОЦЕНКА ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ РАБОЧИХ МЕСТ

методические указания по проведению лабораторной работы по дисциплине «Безопасность жизнедеятельности» для студентов очной и заочной формы обучения всех специальностей и направлений

Составители: Л.В. Шульга, Г.П.Тимофеев

Рецензент: кандидат технических наук, доцент А.Н.Барков

Гигиеническая оценка естественной освещенности рабочих мест: методические указания по проведению лабораторной работы по дисциплине «Безопасность жизнедеятельности» / Юго-Зап. гос. ун-т; сост.: Л.В.Шульга, Г.П.Тимофеев. Курск, 2021, 16 с.

Излагаются методические рекомендации по изучению исследованию и измерению основных показателей естественной освещённости рабочих мест.

Предназначены для студентов очной и заочной формы обучения всех специальностей и направлений.

Текст печатается в авторской редакции

Подписано в печать формат 60×841/16. Усл. печ. 0,93 л., Уч.- изд.л.0,84.Тираж 30 экз. Заказ___.Бесплатно, Юго-Западный государственный университет 305040, Г.Курск, Ул. 50 лет Октября, 94 Цель лабораторной работы: ознакомится с гигиеническими требованиями и правилами оценки состояния естественной освещенности рабочих помещений, показателями для их оценки; освоить расчетные методы оценки освещенности; научиться определять состояние освещенности рабочих мест и её соответствие санитарным нормам.

общие положения

Видимая часть солнечного спектра играет важную роль в жизни человека. Дневной свет оказывает благоприятное влияние на психическое состояние человека. Под его воздействием усиливается обмен веществ в организме, осуществляется синтез некоторых витаминов, улучаются процессы кроветворения, работа желез внутренней секреции и т.д. Режим освещенности играет существенную роль в регуляции биологических ритмов. Нерациональное освещение вызывает утомление зрительного анализатора, ухудшает координации движений, снимает производительность труда и может привести к развитию близорукости.

Освещенность рабочих поверхностей представляет собой поверхностную плотность светового потока в данной точке. За единицу освещённости принят люкс (лк), равный освещённости, создаваемой световым потоком в 1 лм (люмен), равномерно распределенным по площади в 1 м 2 .

В зависимости от источника света различаются естественное, искусственное и совмещенное освещения, нормирование которых осуществляется в соответствии с СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95* (с Изменением N 1).

В соответствии с общепринятыми подходами к организации освещения производственных помещений естественное освещение может быть:

- боковым, при котором освещение помещения естественным светом осуществляется через световые проемы в наружных стенах;
- верхние естественное освещение помещения через фонари, световые проемы в стенах в местах перепада высот здания;
 - комбинированным сочетание верхнего и бокового естественного освещения.

Система естественного освещения (боковое, верхнее или комбинированное) выбирается с учетом следующих факторов:

- назначения и принятого архитектурно-планировочного, объемнопространственного и конструктивного решения зданий;
- требований к естественному освещению помещений, учитывающих особенности технологии и характера зрительной работы;
 - климатических и светоклиматических особенностей места строительства;
 - экономичности естественного освещения.

Верхнее и комбинированное естественное освещение в основном применяется в производственных одноэтажных многопролетных зданиях, в одноэтажных общественных зданиях большой площади (крытые рынки, стадионы и т.п.), а также в зданиях п крупногабаритными технологическими объемами, в частности, производственных транспортных предприятиях, предназначенных для ввода подвижного состава.

Боковое естественное освещение применяется в многоэтажных производственных, общественных и жилых зданиях, а также в одноэтажных общественных и производственных зданиях, в которых отношение глубины помещения к высоте окон над условной ра-

бочей поверхностью (горизонтальная поверхность, расположенная на высоте 0,8 м от пола) не превышает 8 м.

Естественное освещение помещений зависит от светового климата, который состоит из общих климатических условий местности, степени прозрачности атмосферы, а также отражающих способностей окружающей среды. Важное значение имеет также ориентация окон по сторонам света, определяющая инсоляционный режим помещений. В зависимости от ориентации различают три типа инсоляционного режима, представлена в таблице 1.

Таблица 1 – Типы инсоляционного режима помещения

7	1	1	
Инсоляционный	Ориентация по сто-	Время инсоляции, ч	Интонируемая пло-
режим	ронам света		щадь пола помеще-
			ния, %
Максимальный	ЮВ, ЮЗ	5-6	80
Умеренный	Ю, В	3-5	40-50
Максимальный	CB, C3	Менее 3	Менее 30

При западной ориентации создается смешанный инсоляционный режим. По продолжительности он соответствует умеренному, по нагреванию воздуха — максимальному инсоляционному режиму. Инсоляционный режим помещений следует учитывать при строительстве производственных, учебных и других зданий, а также при размещении производственного оборудования.

Состояние естественного освещения зависит от расстояния между зданиями, их высоты и близости зеленых насаждений. Для гигиенической оценки достаточности естественного освещения помещений служат геометрический и светотехнический методы исследований.

Существенными факторами, влияющими на интенсивность и продолжительность естественного освещения помещений, являются величина и форма расположения окон, что и учитывается в таких геометрических показателях, как световой коэффициент (СК) и коэффициент заглубления (КЗ).

Световой коэффициент – это отношение площади застекленной части окон к площади пола данного помещения. Вычисляется СК путем деления величины застекленной поверхности на площадь пола. При этом числитель дроби приводится к единице, для чего поверхности на площадь пола. при этом местителя, и числитель, и знаменатель делят на величину числителя. $\mathsf{CK} = \frac{S_{\mathsf{окон}(\mathsf{m}^2)}}{S_{\mathsf{пола}(\mathsf{m}^2)}}.$

$$c\kappa = \frac{S_{\text{OKOH}(M^2)}}{S_{\text{IIO,DA}(M^2)}}.$$
 (1)

Световой коэффициент в детских дошкольных учреждениях должен составлять 1 : 5 -1:6, в учебных помещениях -1:4-1:5.

Коэффициент заглубления — это отношение расстояния от пола до верхнего края окна к глубине помещения, т.е. к расстоянию от светонесущей до противоположной стены. При вычислении КЗ и числитель, и знаменатель тоже делят на величину числителя. Коэффициент заглубления не должен превышать 2,5, что обеспечивается шириной притолоки (20 - 30 см) и глубиной помещения (6 м).

$$K3 = \frac{h_{\text{(высота от пода до верхнего края окна)(м)}}{H_{\text{(глубина помещения)(м)}}}$$
 (2)

Однако ни световой коэффициент, ни коэффициент заглубления не учитывают затемнение окон противостоящими зданиями, поэтому дополнительно определяют угол падения и угол отверстия.

Угол падения показывает, под таким углом лучи света падают на горизонтальную

рабочую поверхность. Он должен быть равен не менее 27°. Угол падения образуется исходящими из точки измерения (рабочего места) двумя линиями, одна из которых направлена от рабочего места горизонтально в направлении к окну (ВС), и линией, проведенной от рабочего места к верхнему краю окна (ВА), представлено на рисунке 1.

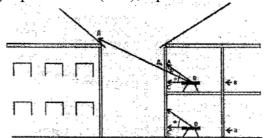


Рисунок 1 — Углы освещенности (угол падения — α , угол отверстия β)

Угол отверстия даёт представление о величине видимой части небосвода, освещающего рабочее место. Он должен быть равен не менее 5°.

Угол отверстия – это угол между двумя линиями): линией, проведенной от рабочего места к верхнему краю окна (ВА), и воображаемой линией, проведенной от рабочего места к верхней точке противоположного здания (ВД), видимого через окно.

Оценка углов падения и отверстия должна проводиться по отношению к самым удаленным от окна рабочим местам.

При светотехническом методе оценки освещения определяют коэффициент естественной освещенности (КЕО) это выраженное в процентах отношение величине естественной освещенности горизонтальной рабочей поверхности внутри помещения к определенной в тот же самый момент освещенности под открытым небосводом при рассеянном освещении. Освещенность определяется с помощью люксметра (люксметр Ю-116).

Нормируемое значение КЕО устанавливается в зависимости от разряда зрительных работ и вида освещения (Приложение 1).

Достаточность естественного освещения в помещении регламентируется: минимальным значением КЕО при системе бокового освещения; средним значеним КЕО при системах верхнего и комбинированного освещения.

Для зрительных работ I–III разрядов СП 52.13330.2016допускает устраивать только совмещенное освещение.

В России в ряде пунктов ведутся систематические измерения наружной освещенности. На основании многолетних наблюдений составлены таблицы и рисунки светового климата для разных светоклиматических районов.

$$e = (E_{\rm RH}/E_{\rm Han}). \tag{3}$$

 $e = \left(E_{\text{вн}}/E_{\text{нар}}\right).$ где $E_{\text{вн}}$ –значение естественной освещенности внутри помещения,лк; $E_{\text{нар}}$ – значение естественной освещенности вне помещения, лк.

Естественное освещение помещений соответствует норме, если в точке нормирования коэффициент естественной освещенности $e \ge e_{\scriptscriptstyle H}$, где $e_{\scriptscriptstyle H}$ – нормированное значение KEO.

ПРАВИЛА ПРОВЕДЕНИЯ ИЗМЕРЕНИЙ ЕСТЕСТВЕННОЙ ОСВЕЩЕННОСТИ

Для измерения освещенности следует использовать люксметр с измерительными преобразователями излучения, имеющими спектральную погрешность не более $10\,\%$, определяемую как интегральное отклонение относительной кривой спектральной чувствительности измерительного преобразователя излучения от кривой относительной спектральной световой эффективности монохроматического излучения для дневного зрения $V(\lambda)$ по Γ OCT 8.332-2013.

Люксметры должны иметь свидетельства о метрологической аттестации и поверке. Аттестуюция люксметров проводится в соответствии с ГОСТ Р 8.000-2015, поверка – в соответствии с ГОСТ 8.014- 72 и ГОСТ 8.023-2014.

Измерение КЕО проводят в помещениях, свободных от мебели и оборудования, не затеняемых озеленением и деревьями, при вымытых и исправных светопрозрачных заполнениях в светопроемах. Измерение КЕО может также производиться при наличии мебели, затенении деревьями и неисправных или невымытых светопрозрачных заполнениях, что должно быть зафиксировано при оформлении результатов измерений.

Для измерения КЕО выбирают дни со сплошной равномерной десятибалльной облачностью, покрывающей весь небосвод. В районах, расположенных южнее 48° с. ш., измерения КЕО допускается проводить без учета балльности в дни сплошной облачности, покрывающей весь небосвод. Электрический свет в помещениях на период измерений выключается.

Перед измерениями выбирают и наносят контрольные точки для измерения освещенности па план помещения, сооружения или освещаемого участка.

Контрольные точки размещают на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (или пола). Первую и последнюю точки принимают на расстоянии 1 м от поверхности наружных стен и внутренних перегородок (или оси колонн).

Число контрольных точек должно быть не менее 5. В число контрольных точек должна входить точка, в которой нормируется освещенность согласно действующим нормам.

При определении коэффициента естественной освещенности проводят одновременные измерения освещенности в контрольных точках внутри помещений $E_{\text{вн}}$ и наружной освещенности $E_{\text{нар}}$ на горизонтальной площадке, освещаемой всем светом небосвода (например, снаружи на кроле здания или на другом возвышенном месте). При этом фото-элемент люксметра следует располагать не ближе $10\,$ м от здания. Результаты измерений заносят в протокол.

Коэффициент естественной освещенности е, %, определяют по формуле:

ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

Задание 1. Исследование естественной освещенности в лаборатории

Исследование естественной освещенности в лаборатории проводится с целью определения величины KEO в зависимости от расстояния до светового проема в наружной стене здания.

Для исключения влияния на KEO изменения во времени наружной освещенности исследования целесообразно проводить с помощью двух люксметров. Один люксметр устанавливается снаружи здания для измерения $E_{\text{н}}$, а другой — внутри помещения для измерения $E_{\text{вн}}$. Одновременность измерений в каждой точке достигается по сверенным часам.

При наличии одного люксметра измерение освещённости следует проводить в следующей последовательности:

- выключить искусственное освещение в помещении;
- установить люксметр снаружи здания и измерить освещенность, создаваемую небосводом ($E_{\rm H}$);
- измерять освещенность внутри помещения (E_{вн}) в нескольких топках, начиная с расстояния 1 м от внутренней стены комнаты. Результаты занести в таблицу 2;
 - рассчитать КЕО для каждой точки измерения.

На основании полученных значений КЕО построить график зависимости e = f(R).

Таблица 2 – Результаты исследования естественной освещенности

$N_{\underline{0}}$	Расстояние от	Е _{нар} , ЛК	Евн, ЛК	КЕО,%	Разряд	Нормируемое
$\Pi \backslash \Pi$	светового проема,				зрительной	значение
	M				работы	KEO
1						
2						
3						
•••						

По СП 52.13330.2016 определить разряд работы и наименьший размер объекта различения, который приходится наблюдать студенту в ходе учебных занятий. Оценить соответствие установленных значений естественной освещенности в тоыках контроля предъявляемым требованиям (Приложение 2).

Сделать общий вывод о соответствии уровня естественной освещенности учебной аудитории предъявляемым гигиеническим требованиям. В случае её несоответствия требованиям сформулировать предложения по оптимизации условий учебной деятельности.

Задание 2. Определение расчетных показателей естественной освещённости аудитории

Определить следующие косвенные показатели естественной освещённости, сравнить полученные величины с нормативами н сделать вывод о характере освещённости в аудитории:

- световой коэффициент (СК);
- коэффициент заложения (КЗ);
- угол падения;
- угол отверстия.

Для определения светового коэффициента при помощи мерной ленты измерять площадь остекленной части всех окон (без оконных переплетов) и суммировать полученные величины (s). Затем измерить площадь пола (S) и рассчитать СК.

С помощью рулетки измерить расстояние от своего рабочего места горизонтально до окна и расстояние от рабочего места до верхнего края окна, т. е. определить стороны треугольника ABC (рисунок) и с помощью таблицы натуральных значений тангенсов

определить угол падения света (α, или ABC).

Для определения угла отверстия на каждом рабочем месте с помощью рулетка измерить расстояния:

- ВС от исследуемой точи рабочего места до окна;
- $BД_1$ от исследуемой точки рабочего места до точки пересечения на стекле линии, мысленно проведенной от той же точки рабочего места до наивысшей точки противоположного здания;
- A extstyle extstyle

Затем, по таблице натуральных значений тангенсов (Приложение 3), определяется угол $_{\text{ДIBC}}$ и рассчитывается угол отверстия $AB \beth_1$ (β).

СОДЕРЖАНИЕ ОТЧЕТА

- 1. Название работы.
- 2. Цель работы.
- 3. краткое описание методики исследований.
- 4. Результаты экспериментальных данных и их обработку.
- 5. Вывод.

КОНТРОЛЬНЫЕ ВПРОСЫ

- 1. Какая ориентация окон является наиболее неблагоприятной для учебных помещений? почему?
- 2. Какие показатели дают возможность оценить условия естественного освещения в целом?
- 3. Какие показатели характеризуют уровень естественного освещения на рабочем месте?
- 4. Дайте определение светотехнического показателя естественного освещения помешения?
 - 5. каким прибором измеряют уровень освещения?
 - 6. Понятие светового коэффициента?
 - 7. Понятия коэффициента заложения?
 - 8. Понятие угла падения?
 - 9. Понятие угла отверстия?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. СП 52.13330.2016 Естественное и искусственное освещение. Актуализированная редакция СНиП 23-05-95 (с Изменением N 1).
- 2. ГОСТ 8.332-2013 Государственная система обеспечения единства измерений (ГСИ). Световые измерения. Значения относительной спектральной световой эффективности монохроматического излучения для дневного зрения. Общие положения (с Поправками).
- 3. ГОСТ Р 8.000-2015 Государственная система обеспечения единства измерений (ГСИ). Основные положения.

- 4. ГОСТ 8.014-72 Государственная система обеспечения единства измерений (ГСИ). Методы и средства поверки фотоэлектрических люксметров.
- 5. ГОСТ 8.023-2014 Государственная система обеспечения единства измерений (ГСИ). Государственная поверочная схема для средств измерений световых величин непрерывного и импульсного излучений (с Поправками).
- 6. Глебова Е.В. Производственная санитария и гигиена труда: Учеб. Пособие для вузов./ Е.П. Глебова. М.: Высш. Шк., 2005. 383 с.
- 7. Занько Н.Г, Медико-биологические основы безопасности жизнедеятельности: Лабораторный практикум: Учеб. Пособие для студ. Высш. Учеб. Заведений / Н.Г. Занько, В.М. Ретнев. М.: Изд. Центр «Академия», 2005. —. 256 с.
- 8. Пивоваров Ю.П. Руководство к лабораторным занятиям по гигиене и основам экологии человека: Учеб. Пособие для студ. Высш. Учеб. Заведений / Ю.П. Пивоваров, В.В. Королик. М.: Изд. Центр «Академия», 2006. 512 с.

ПРИЛОЖЕНИЕ 1

Требования к освещению помещений промышленных предприятий (СП 52.13330.2016)

V	TT					Т	и промыц			Римтин			· ·	
Характери-	Наиме	Раз-	Подр	Кон-	Харак-		Искусстве	енное осн	вещение		Естест		Совмещ	
стика	НЬ	ряд	аз	траст							ное		освеще	ение
зрительной	ший	зри-	ряд	объек-	стика	_						ение		
работы	или	тель	зри-	та с	фона	Осв	ещенность	, лк				KEC	O e _H , %	_
	экви-	ной	тель	фоном		_	системе	при		руемых	при	пр	при	при
	вален	рабо-	ной			комби	нирован-	си-	величи	ин объ-	верх-	И	верх-	бо-
	тный	ТЫ	рабо-			ногоос	вещения	стеме	едине	нного	нем	бо-	нем	ков
	размер		ТЫ					обще-	показ	вателя	или	ко	или	OM
	объек-							го	диског	ифорта	ком-	во	комби-	осве
	та раз-							осве-	UGRи	коэф-	бини	M	нир	Щ
	личени							щения	фиці	иента	po-	осв	ован-	ении
	я, мм								пуль	сации	ванно	e	НОМ	
						Всего	В том		UGR,	$K_{n,\%}$,	M	ще	осве-	
							числе от		не	не	осве-	ни	щении	
							общего		более	более	щении	И		
Наивысшей	Менее			Малый	Тем-	5000	500		19	10			6,0	2,0
	0,15	I	a	Малыи		3000	300		19	10			0,0	2,0
точности	0,13		б	M	ный	4000	400	1250	19	10	_			
			0	Малый	Сред-	4000	400	1230	19	10				
				Сред-	ний									
				ний	Тем-									
				3.5 11	ный	2700	200		1.0	1.0				
			В	Малый	Свет-	2500	300	750	19	10				
				Сред-	лый									
				ний	Сред-									
				Боль-	ний									
				шой	Тем-									
					ный									
			Γ	Сред-	Свет-	1500	200	500	19	10				
				ний	лый									
				Боль-										
				шой	Сред-									
					ний									
Очень высо-	От 0,15	II	a	Малый	Тем-	4000	400		22	10			4,2	1,5
кой	до				ный									

точности	0,30		6	Малый Сред- ний	Сред- ний Тем- ный	3000	300	750	22	10				
			В	Малый Сред- ний Боль- шой	Свет- лый Сред- ний Тем- ный	2000	200	500	22	10				
			Γ	Сред- ний Боль- шой	Свет- лый Сред- ний	1000	200	400	22	10				
Высокой точ-	От 0,30 до	III	a	Малый	Тем- ный	2000	200	500	25	15			3,0	1,2
	0,50		б	Малый Сред- ний	Сред- ний Тем- ный	1000	200	400	25	15				
			В	Малый Сред- ний Боль- шой	Свет- лый Сред- ний Тем- ный	750	200	300	25	15				
			Γ	Сред- ний Боль- шой	Свет- лый " Сред- ний	400	200	200	25	15				
Средней точ- ности	Св. 0,5 до	IV	a	Малый	Тем- ный	750	200	400	25	20	4,0	1,5	2,4	0,9
	1,0		6	Малый Сред- ний	Сред- ний Тем- ный	500	200	300	25	20				

			Г	Малый Сред- ний Боль- шой Сред- ний Боль- шой	Свет- лый Сред- ний Тем- ный Свет- лый "	400	200	200	25	20				
Малой точно- сти	Св. 1 до 5	V	a	Малый	Тем- ный	400	200	300	25	20	3,0	1,0	1,8	0,6
			б	Малый Сред- ний	Сред- ний Тем- ный			200	25	20				
			В	Малый Сред- ний Боль- шой	Свет- лый Сред- ний Тем- ный			200	25	20				
				Сред- ний Боль- шой	Свет- лый " Сред- ний			200	25	20				
Грубая (очень малой точно- сти)	Более 5	VI		Неза- висимо от харак- тери- стик фона и кон- траста объек- та с			200	25	20	3,0	1,0	1,8	0,6	

				фоном									
Работа со	Более	VII		То же		200	25	20	3,0	1,0	1,8	0,6	
светящимися	0,5												
материалами													
иизделиями в													
горячих цехах													
Общее		VIII	a	Неза-		200	28	20	3,0	1,0	1,8	0,6	
наблюдение				висимо									
за				ОТ									
КОДОМ				харак-									
производ-				тери-									
ственного				стик									
процесса: по-				фона и									
стоянное; пе-				кон-									
риодическое				траста									
при				объек-									
ПОСТОЯН				та с									
HOM				фоном									
пребывании				1									
людейв по-													
мещении;													
то же, при													
периодиче-													
ском; общее													
наблюдение													
за инженер-													
ными комму-													
никациями													
			б	То же	 	75	28		1,0	0,3	0,7	0,2	
			В			50			0,7	0,2	0,5	0,2	
			Γ			20			0,3	0,1	0,2	0,1	

Примечания

- 1 Освещенность следует принимать с учетом 7.2.2 и 7.2.3.
- 2 Наименьшие размеры объекта различения и соответствующие им разряды зрительной работы установлены при расположении объектов различения на расстоянии не более 0,5 м от глаз работающего. При увеличении этого расстояния разряд зрительной работы следует устанавливать в соответствии с приложением А. Для протяженных объектов различения при определении нормы освещенности принимается эквивалентный размер по приложению Б.
- з Освещенность при работах со светящимися объектами размером 0,5 мм и менее следует выбирать в соответствии с размером объекта различения и относить их кподразряду "в".

- 4 Коэффициент пульсации K указан в графе K0, %, не более" для системы общего освещения или для светильников местного освещения при системе комбинированного освещения. "0 от общего освещения в системе комбинированного не должен превышать 20%.
- 5 Предусматривать систему общего освещения для разрядов I-III, IVa, IVb, IVb, Va разрешается только при технической невозможности применения системы комбинированного освещения.
- 6 В районах с температурой наиболее холодной пятидневки по СП 131.13330.2012 минус 28°C и ниже нормированные значения КЕО при совмещенном освещении следует принимать по таблице 6.1.

В помещениях, специально предназначенных для работы или производственного обучения подростков, нормированное значение КЕО повышается на один разряд, но должно быть не менее 1,0%.

ПРИЛОЖЕНИЕ 2 Нормируемы показатели освещения основных помещений общественных, жилых и вспомогательных зданий

Помещения	Плоскость	Разряд	,		венное ос		,		венное	Совмещенное	
	(Г – гори-	И			1		1		цение	освен	•
	зонталь-	подраз	Освеще		Цилин-	Показа-	Коэф-	КЕО	e _K , %	КЕО	e_{κ} , %
	ная, В –	ряд	рабочих	-	дриче-	тель	фици-				
	верти-	зри-	носте	ей, лк	ская	дис-	ент		T		
	кальная)	тель-	при	при	осве-	ком-	пульса-	при	при бо-	при	при бо-
	нормиро-	ной	комби-	общем	щен-	форта,	ции	верхнем	ковом	верхнем	КОВОМ
	вания	работы	ниро-	осве-	ность,	не бо-	осве-	или	осве-	или	осве-
	освещен-		ванном	щении	ЛК	лее	щенно-	комби-	щении	комби-	щении
	ности и		осве-				сти %,	ниро-		ниро-	
	КЕО, вы-		щении				не бо-	ванном		ванном	
	сота плос-						лее	осве-		освеще-	
	кости над							щении		нии	
	полом, м										
1	2	2	4	~		7	0	0	1.0	1.1	10
1	2	3	4	5	6	7	8	9	10	11	12
Аудитории,	Г – 0,8 на	A-2	_	400	_	40	10	3,5	1,2	2,1	0,7
учебные	рабочих										
кабинеты,	столах и										
лаборато-	пратах										
рии в тех-											
никумах и											
высших											
учебных											
заведениях											
Кабинеты	В-1,0 (на	Б–2	_	200	_	_	_	_	_	_	_
информа-	экране										
тики и вы-	дисплея)										
числитель-											
ной техние											

Натуральные значения тангенсов

Градусы	Тангенсы	Градусы	Тангенсы	Градусы	Тангенсы
1	0,01	16	0,287	31	0,601
2	0,035	17	0,306	32	0,625
3	0,052	18	0,325	33	0,649
4	0,07	19	0,344	34	0,675
5	0,087	20	0,364	35	0,7
6	0,105	21	0,384	36	027,
7	0,123	22	0,404	37	0,734
8	0,141	23	0,424	38	0,781
9	0,158	24	0,445	39	0,81
10	0,176	25	0,466	40	0,839
11	0,194	26	0,488	41	0,869
12	0,213	27	0,51	42	0,9
13	0,231	28	0,532	43	0,933
14	0,249	29	0,554	44	0,966
15	0,268	30	0,577	45	1

Тангенсом острого угла в прямоугольном треугольнике называется отношение катета этого треугольника, лежащего против угла, к катету треугольника, прилежащего к углу.