Документ подписан простой электронной подписью Информация о владельце: ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 20.09.2024 13:53:29

МИНОБРНАУКИ РОССИИ

Уникальный программный ключ: 0b817ca911e6668abb13a **Федеральноезгосударственн**ое бюджетное образовательное учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехники

МОДЕЛИРОВАНИЕ МЕХАТРОННЫХ СИСТЕМ И РОБОТОВ

Методические указания по выполнению лабораторных работ для студентов направления 15.03.06 Мехатроника и робототехника

Курск 2022

УДК 681.323 Составитель: Лушников Б.В.

Рецензент:

Кандидат технических наук, доцент Юго-Западного государственного университета П.А.Безмен

Моделирование мехатронных систем и роботов: методические указания по выполнению лабораторных работ для студентов направления 15.03.06 Мехатроника и робототехника / Юго-Зап. гос. ун-т; сост.: Б.В. Лушников. - Курск, 2022. 103 с.

Изложены теоретические предпосылки, задания и примеры выполнения лабораторных работ по дисциплине «Моделирование мехатронных систем».

Методические указания предназначены для студентов направления 15.03.06 «Мехатроника и робототехника» всех форм обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л. Уч.-изд.л. Тираж 30 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

1. Лабораторная работа №1 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ ОДНОЗВЕННОГО И ДВУХЗВЕННОГО ФИЗИЧЕСКИХ МАЯТНИКОВ С ПОМОЩЬЮ ПАКЕТА РАСШИРЕНИЯ SIMMECHANICS СРЕДЫ МАТЕМАТИЧЕСКОГО ИМИТАЦИОННОГО БЛОЧНОГО МОДЕЛИРОВАНИЯ SIMULINK/MATLAB

Цель работы:

Ознакомиться с пакетом расширения *SimMechanics* программы *Simulink/MATLAB* для моделирования механических систем. Освоить основные принципы компьютерного моделирования движения однозвенного и двухзвенного физических маятников.

1.1 ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Модель однозвенного маятника с вязким сопротивлением представлена на рис.1.1, а модель двухзвенного маятника – на рис. 1.2.

Рис. 1.1 Схема однозвенного маятника с вязким сопротивлением: 1 – стойка; 2 – жёсткий стержень; *l* – длина стержня; φ₀ – начальный угол отклонения маятника; μ – коэффициент вязкого трения

Уравнение, описывающие динамику рассматриваемого маятника, имеет вид:

$$I\ddot{\varphi} + \mu\dot{\varphi} + mglsin\varphi = 0,$$

где

 $I_0 = m l^2$ – момент инерции тела относительно оси вращения;

 $n = \frac{\mu}{2ml^2}$ — коэффициент затухания; $p = \sqrt{\frac{g}{l}}$ — собственная частота.

С учётом замены уравнение примет следующий вид: $\ddot{\varphi} + 2n\dot{\varphi} + p^2 sin\varphi = 0.$

Рис. 1.2. Схема двухзвенного маятника: 1 – стойка; 2 – жёсткий стержень 1; 3 – жёсткий стержень 2; *l* – длина стержней; φ_{10} , φ_{20} – начальные углы отклонения маятника

Для моделирования маятников будут использованы следующие виды блоков:

- 1. Ground;
- 2. Revolute;

3. Joint Sensor;

4. Joint Initial Condition;

5. Joint Actuator;

- 6. Body;
- 7. Machine Environment;
- 8. Gain;
- 9. Scope;
- 10.Mux.

Также, как все остальные библиотеки пакета Simulink, библиотека SimMechanics представляет собой набор блоков в виде графических пиктограмм с оригинальными названиями на английском языке. Для их просмотра, выбора и перетаскивания мышью в окно создаваемой Simulink-модели служит окно браузера библиотек пакета Simulink (рис. 1.3).

Как видно на рис. 1.3, в библиотеке SimMechanics (в MATLAB2013b) всего семь разделов:

- 1.1. Bodies;
- 1.2. Constraints & Drivers;
- 1.3. Force Elements;
- 1.4. Interface Elements;
- 1.5. Joints;
- 1.6. Sensors & Actuators;
- 1.7. Utilities.

Каждый раздел содержит блоки определенной группы. Рассмотрим подробнее те блоки, которые будут использоваться в данной работе.

Рис. 1.3. Окно браузера библиотек Simulink, разделы пакета

SimMechanics

1.1.1 Блоки твердых тел («Bodies»)

Данный раздел библиотеки SimMechanics можно считать основополагающим. С него необходимо начинать при создании любой механической модели, хотя он содержит четыре блока:

Body;

Ground;

Machine Environment;

Machine Env Environment

Shared Environment.

Shared Environment

Рассмотрим подробнее три из них.

Блок «Body» представляет собой твердое жесткое тело (отдельное звено механизма, движения которого моделируются) с определенными пользователем параметрами.

В качестве задаваемых параметров выступают:

- масса тела (Mass), которая может быть выражена в различных единицах (имеется выпадающий список, по умолчанию стоят килограммы);

- тензор инерции тела относительно его центра масс (Inertia), представляющий собой матрицу размером 3х3:

$$H = \begin{bmatrix} J_{ix} & 0 & 0 \\ 0 & J_{iy} & 0 \\ 0 & 0 & J_{iz} \end{bmatrix},$$

где Jix, Jiy, Jiz, – осевые моменты инерции тела относительно осей собственной локальной системы координат, связанной с его центром масс. Для ряда наиболее распространенных симметричных тел простой геометрической формы формулы для вычисления элементов тензора инерции приведены в табл. 1;

- декартовы координаты характерных точек, связанных с телом (Origin position vector [x y z]). В частности, обязательно должны быть указаны координаты центра тяжести тела CG и, при необходимости, координаты произвольного числа других характерных точек CS1, CS2, CS3, ... CSN, таких как центры шарниров, связанных с данным телом, или точки приложения внешних сил и моментов.

7

(homus roza	Формулы для вычисления				
Форма тела	J_{ix}	J_{iy}	J_{iz}		
Тонкий стержень длиной L вдоль оси Z	$1/12(m \cdot L^2)$	$1/12(m \cdot L^2)$	0		
Сфера радиусом R	$2/5(m \cdot R^2)$	$2/5(m \cdot R^2)$	$2/5(m \cdot R^2)$		
Цилиндр радиусом R и высо- той h с осью вращения Z	$\frac{1}{4}m\left(R^2+\frac{1}{3}h^2\right)$	$\frac{1}{4}m\left(R^2+\frac{1}{3}h^2\right)$	$1/2(m \cdot R^2)$		
Прямоугольный параллелепи- пед со сторонами <i>a</i> , <i>b</i> и <i>c</i> вдоль осей <i>X</i> , <i>Y</i> и <i>Z</i> соответст- венно	$\frac{1}{12}m(b^2+c^2)$	$\frac{1}{12}m\left(a^2+c^2\right)$	$\frac{1}{12}m(a^2+b^2)$		
Конус базового радиуса <i>R</i> и высоты <i>h</i> с осью вращения <i>Z</i>	$\frac{1}{4}m\left(\frac{3}{5}R^2 + h^2\right)$	$\frac{1}{4}m\left(\frac{3}{5}R^2 + h^2\right)$	$3/10(m \cdot R^2)$		
Эллипсоид с размерами <i>a</i> , <i>b</i> и <i>c</i> вдоль осей <i>X</i> , <i>Y</i> и <i>Z</i> соответ- ственно	$\frac{1}{5}m(b^2+c^2)$	$\frac{1}{5}m\left(a^2+c^2\right)$	$\frac{1}{5}m\left(a^2+b^2\right)$		

Табл.1 - Элементы тензора инерции ряда тел простой формы

Для того, чтобы добавить или убрать изображение входа/выхода определенной точки на пиктограмме блока «Body» в окне модели, используется установка или сброс флажка в колонке Show port.

В колонке Translated from origin of указывается имя системы координат (характерной точки), от начала которой отсчитываются координаты текущей характерной точки. Как минимум одна характерная точка (любая, в том числе это может быть и центр тяжести тела CG) должна быть задана в системе координат WORLD либо в системе координат ADJOINING. Это необходимо, чтобы связать данное тело с соседними неподвижными или подвижными телами.

Система координат WORLD – это инерциальная неподвижная система, связанная с Землей, а система координат ADJOINING связана с шарниром, присоединенным к телу (с той частью шарнирного сочленения, которая жестко связана с рассматриваемым телом).

1			Block	c Paramete	ers: Body		×
Body							
Represe center o orientati customiz	ents a user-d of gravity (CG ion, unless B zed body geo	efined rig) and ot ody and/ ometry a	gid body. Body defined b her user-specified Body 'or connected Joints are nd color.	y mass m, i coordinate s actuated se	nertia tensor I, and coord systems. This dialog sets parately. This dialog also	linate origins a Body initial pos provides optio	nd axes for ition and nal settings for
Mass pr	operties						
Mass:	1						kg 👻
Inertia:	eye(3)						kg*m^2 ▼
Position	Orientat	ion V	isualization				
Show Port	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Componer Axes	nts in of
	Left 🔹	CG	[0 0 0]	m 🔻	World 🔻	World	▼ 3
✓	Left 🔹	CS1	[0 0 0]	m 💌	CG 🗸	CG	- ×
-	Right 🔹 🔻	CS2	[0 0 0]	m 🔻	CG 🔹	CG	
							Ⅲ
					OK Canc	el Help	Apply

Рис. 1.4 Настройка параметров блока «Body»

Каждой точке, где тело через шарнир соединяется с другим телом, должна быть поставлена в соответствие своя отдельная система координат CS. Это же касается и точек приложения к телу внешних сил и моментов (при их наличии).

- векторы углов поворота систем координат (на вкладке Orientation). По умолчанию все углы поворота всех систем приняты нулевыми. Изменение их в большинстве случаев не требуется.

Координатные оси любой системы координат в SimMechanics по умолчанию расположены так, как показано на рис.1.5, что соответствует правой Эйлеровой системе координат (Euler X-Y-Z).

Рис. 1.5 Расположение осей координат

Блок «Ground» представляет собой неподвижную стойку (основание), жестко связанную с абсолютной инерциальной системой координат Земли. Наличие хотя бы одного этого блока обязательно в любой механической модели отдельного механизма (иначе при запуске моделирования будет выдана ошибка). В окне настройки этого блока задается вектор координат одной неподвижной точки механизма относительно глобальной инерциальной системы координат WORLD. К механическому входу/выходу блока Ground, соответствующему заданной неподвижной точке, должен быть присоединен в окне модели блок шарнирного сочленения (из раздела Joints), а затем блок «Body», опять блок из раздела Joint, блок «Body» и т.д., для того, чтобы стало возможным движение последующих тел Body.

▶	Block Parameters: Ground	×
Ground		
Grounds one side coordinate system	of a Joint to a fixed location in the World n.	
Parameters		
Location [x,y,z]:	[0 0 0] m	•
Show Machine	e Environment port	
	OK Cancel Help App	oly

Рис.1.6. Настройка параметров блока Ground

Блок «Machine Environment» представляет собой настроечный блок параметров механической среды моделирования для машины (механизма). Блок «Machine Environment» связан с механическим блоком «Ground».

При двойном щелчке мышью по данному блоку открывается окно установки параметров механического моделирования (рис. 1.7).

Среди задаваемых параметров на четырех вкладках данного блока имеются: вектор сил тяжести вида [X Y Z], размерность механизма (2-мерная либо 3-мерная схема), способ анализа, тип решающего устройства ограничения, допуски линеаризации, установка/снятие визуального наблюдения.

По умолчанию вектор сил тяжести установлен как для механизма, расположенного на горизонтальной опорной поверхности с нулевыми углами наклона относительно гравитационной вертикали, и имеет вид [0 –9.81 0].

🛅 B	lock Parame	ters: Machine E	nvironment	×			
Description							
Defines the mechanical simulation environment for the machine to which the block is connected: gravity, dimensionality, analysis mode, constraint solver type, tolerances, linearization, and visualization.							
Parameters	Constraints	Linearization	Visualizatio	n			
Analysis mode: Type of solution for machine's motion. Tolerances: Maximum permissible misalignment of machine's joints.							
Gravity vector:		[0 -9.81 0]		m/s^2 ▼			
🗌 🗌 Input gravity	/ as signal						
Machine dimen	sionality:	Auto-detect		-			
Analysis mode:		Forward dynami	cs	-			
Linear assembl	y tolerance:	1e-3		m 🔻			
Angular assem	bly tolerance:	1e-3		rad 🔻			
Configuration P	arameters						
	ОК	Cancel	Help	Apply			

Рис. 1.7 Настройка параметров блока Machine Environment

Предполагается, что к каждому блоку «Ground», связанному с отдельным механизмом модели, должен быть присоединен свой собственный блок «Machine Environment». Для того, чтобы блок «Machine Environment» можно было присоединить к блоку Ground, в окне настройки последнего должен стоять флажок в поле Show Machine Environment port.

1.1.2 Блоки шарнирных сочленений (Joints)

Раздел Joints (рис. 1.8) библиотеки SimMechanics- второй по значимости после раздела Bodies. Он содержит блоки шарнирных сочленений с различным числом степеней свободы, которые соединяют между собой отдельные блоки «Body» (а также блок «Ground» с блоком Body). Благодаря этому, тела (звенья механизма) получают возможность относительного движения.

Раздел Joints содержит пятнадцать основных блоков, имитирующих всевозможные виды шарнирных сочленений: 1. Prismatic; 2. Revolute; 3. Inplane; 4. Universal; 5. Gimbal; 6. Spherical; 7. Planar; 8. Cylindrical; 9. Bearing; 10. Telescoping; 11. Bushing; 12. Six-DoF; 13. Screw; 14. Weld; 15. Custom Joint. Пиктограммы на блоках раздела Joints дают наглядную информацию об их назначении даже без описания.

Кроме того, в разделе Joints присутствуют два дополнительных подраздела: Disassembled Joints (разобранные сочленения) и Massless Connectors (безинерционные соединители),

Рис. 1.8 Блоки шарнирных сочленений Joints

Т.к. в данной работе будет использоваться только блок «Revolute», то рассмотрим подробнее только этот блок.

Блок «Revolute» обеспечивает одну вращательную степень свободы тела, следующего за блоком «Revolute» вокруг оси, заданной на вкладке Axes окна настройки блока (рис. 1.9) в виде вектора [X Y Z], аналогично блоку «Prismatic».

2		Block Parameters: Revolu	ite 💌
Revolute			
Represen (B) Body a Sensor ar sign of fo	ts one rotational o about a single rota nd actuator ports rward motion by t	legree of freedom. The follower (I ational axis going through collocate can be added. Base-follower seque he right-hand rule.	F) Body rotates relative to the base ad Body coordinate system origins. ence and axis direction determine
Connecti	on parameters		
Current l	base:	GND@Groun	d
Current f	follower:	CS1@Body	
Number	of sensor / actuat	or ports:	
Paramete	ers		
Axes	Advanced		
Name	Primitive	Axis of Action [x y z]	Reference CS
R1	revolute	[0 0 1]	World 🔻
		ОК	ancel Help Apply

Рис. 1.9 Настройка параметров блока «Revolute»

Вектор оси вращения также может быть задан в инерциальной системе координат WORLD, в системе координат, связанной с первым телом Base (рекомендуется), либо в системе координат, связанной с последующим телом Follower.

В отличие от блока «Prismati»c, у которого ось прямолинейного движения и связанная с ней степень свободы названа именем P1, в окне настройки параметров блока «Revolute» ось вращения автоматически названа именем R1, и это не случайно. В SimMechanics все поступательные степени свободы любых блоков раздела Joints обозначаются символом P с порядковым номером после него, а все вращательные степени свободы – аналогично символом R.

Блоки связи механических блоков SimMechanics с обычными S-блоками Simulink (виртуальные регистраторы и возбудители движения Sensors & Actuators).

Для того, чтобы можно было измерить относительные движения тел при моделировании машин и механизмов, а также сообщить звеньям механизмов относительные движения, недостаточно блоков тел из раздела Bodies и блоков шарниров из раздела Joints. Эти блоки описывают только структуру механизма, но не сообщают ему никаких движений. Следовательно, необходимо подключение к данным блокам других, моделирующих какие-либо воздействия и снимающих показания.

Однако подключение механических блоков SimMechanics из разделов Bodies и Joints к обычным S-блокам Simulink возможно только через специальные связующие блоки механических виртуальных регистраторов тел и шарниров (Sensors) и возбудителей тел и шарниров (Actuators).

Рис. 1.10 Блоки виртуальных регистраторов и возбудителей

движения Sensors & Actuators

Причины для этого следующие. Входы (и они же одновременно выходы) механических блоков тел и шарниров служат для двухсторонней передачи силовых взаимодействий между звеньями механизма, которые имеют место при пространственных движениях твердых тел согласно законам классической механики. Однако обычные S-блоки Simulink являются либо источниками, либо получателями, либо преобразователями однонаправленных сигналов, и

поэтому не могут быть непосредственно подсоединены к входам/выходам механических блоков. Не случайно в блок-схемах SimMechanics на линиях соединения механических блоков нет изображений стрелок, указывающих направление воздействия, а графические изображения «входов/выходов» механических блоков имеют вид не стрелок, а квадратов с диагоналями.

Как уже было отмечено ранее, блоки типа Body и Joint, а также описанные ниже блоки из раздела Constraints & Drivers могут быть снабжены дополнительными портами для подсоединения к ним блоков Actuator и Sensor. Благодаря этому, становится возможным использовать все остальные библиотеки Simulink для формирования сигналов и перевода получаемой информации обратно в рабочее пространство Simulink.

Все блоки раздела Sensors & Actuators можно разделить на три группы по типу блоков, к которым они подключаются.

Группа 1. Блоки измерителей и возбудителей движения тел: 1.1. Body Actuator; 1.2. Body Sensor; 1.3. Variable Mass & Inertia Actuator.

Группа 2. Блоки измерителей и возбудителей движения шарнирных сочленений: 2.1. Joint Actuator; 2.2. Joint Sensor; 2.3. Joint Initial Condition; 2.4. Joint Stiction Actuator.

Группа 3. Блоки измерителей и возбудителей движения ограничителей и нестационарных связей: 3.1. Driver Actuator; 3.2. Constraint & Driver Sensor.

Рассмотрим подробнее блоки «Joint Sensor» и «Joint Initial Condition».

🔁 Block	Parame	ters: Join	t Sensor	×			
Joint Sensor							
Measures linear/angular position, velocity, acceleration, computed force/torque and/or reaction force/torque of a Joint primitive. Spherical measured by quaternion. Base-follower sequence and joint axis determine sign of forward motion. Outputs are Simulink signals. Multiple output signals can be bundled into one signal. Connect to Joint block to see Connected to primitive list.							
Measurements							
Primitive Outputs							
Connected to primitive:	R1			•			
✓ Angle		Units:	deg	•			
 Angular velocity 		Units:	deg/s	•			
Angular acceleration	on	Units:	deg/s^2	•			
Computed torque		Units:	N*m	Ŧ			
Joint Reactions							
Reaction torque		Units:	N*m	-			
Reaction force		Units:	Ν	-			
Reaction measured on:	Base			•			
With respect to CS:	Absolute	e (World)		•			
Output selected parameters as one signal.							
OK		Cancel	Help	Apply			

Рис. 1.11 Настройка параметров блока Joint Sensor

Блок «Joint Sensor» позволяет в общем случае измерить следующие характеристики относительного движения частей примитива, выбранного из выпадающего списка в верхнем поле Connected to primitive (рис. 11):

- угол (Angle) – угол поворота части примитива, соединенной с телом Follower, относительно его части, соединенной с телом Base;

- относительную угловую скорость (Angular velocity);

- относительное угловое ускорение (Angular acceleration);

- вычисленный момент (Computed torque) – полный момент сил, вызывающий относительное угловое ускорение;

- момент реакции (Reaction torque) – момент реакции относительно оси примитива;

- реакция (Reaction force) – сила реакции вдоль оси примитива.

Для выбора необходимых измеряемых параметров служит простановка флажков в соответствующих полях. Поскольку примитив, выбранный в поле Connected to primitive, может быть одного из трех типов (поступательного P, вращательного R или сферического S), не все перечисленные характеристики могут быть измерены для конкретного примитива.

Блок Joint Initial Condition занимает особое положение среди других блоков раздела Sensors & Actuators. Он задает начальное относительное положение и начальную относительную скорость двух частей элементарных примитивов R-типа (Revolute) или P-типа (Prismatic) какого-либо шарнира. При помощи одного блока Joint Initial Condition могут быть заданы начальные условия положения и скорости для всех примитивов шарнира, к которому он подключен, либо только для части примитивов шарнира. Выбор примитивов осуществляется простановкой флажков в полях колонки Enable окна настройки блока. То есть начальные условия задаются по отдельным степеням свободы шарнира. Начальное положение – в полях колонки Position, начальная скорость – в полях колонки Velocity. Сферические примитивы S-типа не могут быть инициализированы при помощи блока «Joint Initial Condition».

3		Block Paramet	ters: Joint Ini	tial Co	ondition		
Joint Initia	l Condition						
Sets the ir see a list o	nitial linear/angu of its primitives.	Ilar position and velocity	of some or a	ll of the	primitives in a J	oint. Connect	to a Joint to
Actuation							
Enable	Primitive	Position	Units		Velocity	Units	
√	R1	30	deg 🔹	0		deg/s	-
				ОК	Cancel	Help	Apply

Рис. 1.12 Настройка параметров блока «Joint Initial Condition»

1.2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

В данной работе будет рассмотрено несколько моделей маятников, а именно:

- Однозвенный физический маятник с демпфером;
- Двухзвенный физический маятник.

Начнём с однозвенного физического маятника с демпфером, блок-схема имитационной модели которого представлена на рис. 1.13.

Рис. 1.13. Модель однозвенного маятника с демпфером

Стойка в модели представляется в виде блока «Ground». Вращательная пара стойка-стержень представлена блоком «Revolute». Сам же стержень задаётся блоком «Body». Для задания начальных условий используется блок «Joint Initial Condition». Для получения анимации используется блок «Machine Environment». С помощью блока «Joint Sensor» будут получены данные об угле поворота, угловой скорости и угловом ускорении. Они будут подаваться на блок «Мих», а с него сигналы будут поступать на осциллограф. Настройки всех блоков представлены на рис. 1.14 – 1.23.

1	Block Parameters: Ground1	×				
Ground		_				
Grounds one side coordinate system	of a Joint to a fixed location in the World n.					
Parameters						
Location [x,y,z]:	[0 0 0] m	•				
Show Machine Environment port						
	OK Cancel Help App	ly				

Рис. 1.14 Настройки блока «Ground»

4	Block Pa	arameters:	Joint Initi	al Conditio	on	×
– Joint Initial	Condition					
Sets the in primitives i	itial linear/a n a Joint. C	angular posi Connect to a	tion and ve Joint to se	locity of sor e a list of its	ne or all of th primitives.	ne
Actuation						
Enable	Primitive	Position	Units	Velocity	Units	
✓	R1	30	deg 🔻	0	deg/s 🔻	
		ОК	Cancel	Help	Apply	/

Рис. 1.15 Настройки блока «Joint Initial Condition»

		Block Parameters: Revolute	
Revolute			
tepresent ase (B) E origins. So determine	ts one rotational Body about a sing ensor and actuat e sign of forward	degree of freedom. The follower (F) gle rotational axis going through collo or ports can be added. Base-follower motion by the right-hand rule.	Body rotates relative to the cated Body coordinate system sequence and axis direction
Connectio	on parameters		
Current b	oase:	GND@Ground1	
Current f	ollower:	CS1@Body	
			\
Number (of sensor / actua	tor ports:	2
aramete	rs		
Axes	Advanced		
Axes Name	Advanced Primitive	Axis of Action [x y z]	Reference CS
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z] [0 0 1]	Reference CS World •
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World •
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes Name R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes R1	Advanced Primitive revolute	Axis of Action [x y z]	Reference CS World
Axes R1	Advanced Primitive revolute	Axis of Action [x y z] [0 0 1]	Reference CS World

Рис. 1.16 Настройки блока «Revolute»

Body Represe of gravit unless B body ge	ents a user-d ty (CG) and c 3ody and/or c ometry and (efined rij other use connecte color.	gid body. Body define r-specified Body coo d Joints are actuated	Block Paran ed by mass i rdinate syst i separately.	meters: Body m, inertia tensor I, and co ems. This dialog sets Boo This dialog also provides	oordinate origins and a ly initial position and d s optional settings for	axes for cente prientation, customized	er
Mass pr Mass: Inertia:	0.2 0 0 0;0 0	0;0 0 0.0	00392]				kg · · · · · · · · · · · · · · · · · · ·	•
Position Show Port	Orientat Port Side	ion V Name	Visualization	Units	Translated from Origin of	Components in Axes of		
	Left	CG CS1	[0 -0.14 0] [0 0 0]	m •	World	World	•	
	Kignt 🔻	0.52	[0 0 0]	m	<u></u> Lts ▼	LG Y		•
					ОК	Cancel Help	Appl	у

Рис. 1.17. Настройки блока Body

В окне Mass задаётся масса объекта, а в окне Inertia задаётся тензор инерции маятника. Т.к. в данном случае рассматривается однозвенный механизм, то галочка должна стоять только у порта CS1. В окнах Origin Position Vector задаются координаты звеньев. CG – координаты центра масс. CS1 и CS2 – координаты крайних положений звена.

Bloc	k Para	meters: Joi	int Sensor		<
Joint Sensor					^
Measures linear/angu force/torque and/or rr Spherical measured b joint axis determine si signals. Multiple outpu Connect to Joint block	lar pos eaction y quate gn of f it signa to see	ition, velocity force/torque ernion. Base- orward motion ls can be bu Connected t	y, acceleration, e of a Joint prim follower sequer on. Outputs are ndled into one s o primitive list.	computed litive. nce and Simulink signal.	
Measurements					
Primitive Outputs					
Connected to primitive:	R1			•	
✓ Angle		Units:	deg	•	
Angular velocity		Units:	rad/s	•	
✓ Angular acceleration	tion	Units:	rad/s^2	•	
Computed torqu	е	Units:	N*m	Ŧ	
Joint Reactions					
Reaction torque		Units:	N*m	Ŧ	
Reaction force		Units:	Ν	~	
Reaction measured on:	Base	9		•	
With respect to CS:	Abso	olute (World)		•	
Output selected p	arame	ters as one s	signal.		
	v	Cancel	Holp	Annh	ľ

Рис. 1.18 Настройки блока «Joint Sensor»

Для получения графиков не только угла, но и угловой скорости и углового ускорения нужно поставить галочки возле Angular velocity и Angular acceleration.

🔁 Block	Parameters: Joint Actuator	
Joint Actuator		
Actuates a Joint primiti linear/angular position, Base-follower sequence motion. Inputs are Sim bundled into one signal primitive list.	ve with generalized force/torque or velocity, and acceleration motion signals. e and joint axis determines sign of forward ulink signals. Motion input signals must be . Connect to Joint block to see Connected to	
Actuation		
Connected to primitive:	R1	
Actuate with:	Generalized Forces	
Applied torque units:	N*m •	
Ok	Cancel Help Apply	,

Рис. 1.19 Настройки блока Joint Actuator

2	Function Block Parameters: Mux	×
Mux		
Multiplex scalar or v	vector signals.	
Parameters		
Number of inputs:		
3		
Display option: ba	r	•
0	OK Cancel Help Appl	у

Рис. 1.20 Настройки блока Мих

1	Function Block Parameters: Gain	×
Gain		
Elemen	t-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).	
Main	Signal Attributes Parameter Attributes	
Gain:		
-0.003		
Multiplic	ation: Element-wise(K.*u)	•
Sample	time (-1 for inherited):	
-1		
0	OK Cancel Help App	oly

Рис. 1.21 Настройки блока Мих

🛅 B	lock Parame	ters: Machine E	nvironment	×	
Description					
Defines the mechanical simulation environment for the machine to which the block is connected: gravity, dimensionality, analysis mode, constraint solver type, tolerances, linearization, and visualization.					
Parameters	Constraints	Linearization	Visualizatio	n	
Analysis mode: Type of solution for machine's motion. Tolerances: Maximum permissible misalignment of machine's joints.					
Gravity vector:		[0 -9.81 0]	m/s^2 ▼		
Input gravity	y as signal				
Machine dimensionality:		Auto-detect 👻			
Analysis mode:		Forward dynamics 👻			
Linear assembl	y tolerance:	1e-3	m 🔻		
Angular assem	bly tolerance:	1e-3		rad 🔻	
Configuration P	arameters				
	OK	Cancel	Help	Apply	

6	Configuration Parameters: untitled111/Configuration (Active
Select: Solver Data Import/Export > Optimization > Diagnostics Hardware Implementation Model Referencing > Simulation Target > Code Generation > HDL Code Generation Simscape SimMechanics 1G > SimMechanics 2G	SimMechanics First Generation (1G) configuration parameters: Diagnostics Warn if machine contains redundant constraints Warn if number of initial constraints is unstable Mark automatically cut joints Visualization Display machines after updating diagram Show animation during simulation Show only port coordinate systems Default body color (RGB): [1 0 0] Default body geometries: Convex hull from body CS locations

Рис. 1.22 Настройки блока Machine Environment

На рис.1.23 представлены графики зависимостей угла поворота, угловой скорости и углового ускорения маятника от времени, а на рис.1.24 – фрагмент анимации движения маятника.

Рис. 1.23.Графики зависимостей угла поворота, угловой скорости и углового ускорения маятника от времени

Рис. 1.24 Фрагмент анимации маятника

1.3 МОДЕЛИРОВАНИЕ ДВУХЗВЕННОГО МАЯТНИКА

Блок-схема модели представлена на рисунке1.25.

Рис.1.25 Модель двухзвенного маятника

Для построения схемы необходимо из предыдущей схемы убрать блоки «Joint Actuator», «Gain» и «Mux» и добавить по одному блоку «Revolute»,

«Body» и «Joint Sensor». На рис.1.26-1.35 представлены окна настроек блоков, пример получаемых графиков и фрагмент анимации двухзвенного маятника.

2		Block Parameter	s: Joint Initia	l Condition	
– Joint Initia	l Condition				
Sets the in Joint to se	nitial linear/angu e a list of its pri	Ilar position and velocity mitives.	/ of some or a	ll of the primitives in a	Joint. Connect to a
Actuation					
Enable	Primitive	Position	Units	Velocity	Units
-	R1	45	deg 🔹	0	deg/s ▼
			ОК	Cancel	Help Apply

Рис. 1.26 Окно настройки блока «Joint Initial Condition»

ets the i pint to se	nitial linear/angu ee a list of its pri	ular position and velocity mitives.	y of some or all of t	he primitives in a	Joint. Connect to a
Enable	Primitive	Position	Units	Velocity	Units
/	R1	45	deg 🔻 0		deg/s ▼

Рис. 1.27 Окно настройки блока "Joint Initial Condition»

20					
				k	a
2 0 0;0 1/12	0;0 0 0]			k	g*m^2
rientation	Visualization				
ort Nam	e Origin Position Vector [x y z]	Units	Translated from Origin of	Components i Axes of	n
▼ CG	[0 -0.5 0]	m 🗖	World	▼ World	• (j
▼ CS1	[0 0 0]	m 🗖	World	▼ World	-
m 🔻 CS2	[0 -1 0]	m 🔹	World	▼ World	•
	2 0 0;0 1/12 rientation ide Name • CG • CS1 m • CS2	2 0 0;0 1/12 0;0 0 0] rientation Visualization ide Name Origin Position vector [x y z] CG [0 -0.5 0] CG [0 -0.5 0] CS2 [0 -1 0]	2 0 0;0 1/12 0;0 0 0] rientation Visualization ide Name Origin Position vector [x y z] Units CG [0 -0.5 0] m CS1 [0 0 0] m m ▼ CS2 [0 -1 0] m ▼	2 0 0;0 1/12 0;0 0 0] rientation Visualization vector [x y z] CG [0 -0.5 0] m vector [x y z] (CG [0 -0.5 0] m vector [m vecto	Image: Name Origin Position Vector [x y z] Units Translated from Origin of Components i Axes of • CG [0 -0.5 0] m World World • CG [0 -0.5 0] m World World • CS1 [0 -0.0] m World World

Рис. 1.28 Окно настройки блока «Body»

🔁 Block	Parameters: Jo	int Sensor	
Joint Sensor			^
Measures linear/angula force/torque and/or rea Spherical measured by joint axis determine sig signals. Multiple output Connect to Joint block to	r position, velocity action force/torque quaternion. Base- n of forward moti signals can be bu o see Connected t	, acceleration, computed e of a Joint primitive. follower sequence and on. Outputs are Simulink ndled into one signal. o primitive list.	
Measurements			
Primitive Outputs			
Connected to primitive:	R1	•	
✓ Angle	Units:	deg 🔻	
Angular velocity	Units:	deg/s 👻	
Angular accelerati	ion Units:	deg/s^2 👻	
Computed torque	Units:	N*m 🔻	
Joint Reactions			
Reaction torque	Units:	N*m 🔻	
Reaction force	Units:	N -	
Reaction measured on:	Base	•	
With respect to CS:	Absolute (World)	•	
Output selected pa	rameters as one :	signal.	
			~
ОК	Cancel	Help Appl	у

Рис. 1.29 Окно настройки блока «Joint Sensor/Joint Sensor1»

lower:			
	CS1@Bo	dv1	
			_
sensor / actuato	or ports:	1	
		-	
1			
Advanced			
Primitive	Axis of Action [x y	/ z] Referen	nce CS
evolute	[0 0 1]	World	•
	sensor / actuato	sensor / actuator ports: Advanced Axis of Action [x y evolute [0 0 1]	sensor / actuator ports: 1 Advanced Primitive Axis of Action [x y z] Reference evolute [0 0 1] World

Рис. 1.30 Окно настройки блока «Revolute/Revolute1»

*			Blog	ck Paramete	ers: Body1			×
Body Represe of gravit unless B body ge	ents a user-d ty (CG) and d lody and/or d ometry and d	efined ri other use connecte color.	gid body. Body defined r-specified Body coord d Joints are actuated s	by mass m, i inate systems eparately. Th	nertia tensor I, and coord s. This dialog sets Body ir is dialog also provides op	dinate origins and itial position and tional settings for	axes for cer orientation, r customized	nter I
Mass pr	operties							
Mass:	1						kg	•
Inertia:	[1/12 0 0;	0 1/12 0	;0 0 0]				kg*m^2	•
Show	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components Axes o	sin f	
	Тор 🔻	CG	[0 -1.5 0]	m 🔻	World 🔻	World	-	;;;
v	Тор 🔻	CS1	[0 -1 0]	m 🔻	World 🔻	World	-	\times
	Bottom 🔻	CS2	[0 -2 0]	m 🔻	World •	World	•	
								ц.
					OK Car	ncel Help	Арр	oly

Рис. 1.31 Окно настройки блока «Body1»

🥵 'Scope' parameters – 🗆 🗙
General History Style
Axes
Number of axes: 2 Floating Scope
Time range: auto
Tick labels: bottom axis only 👻
Sampling
Decimation V 1
OK Cancel Help Apply

Рис. 1.32 Настройки блока «Scope/Scope1»

Настройки блоков «Machine Environment» и «Ground» идентичны настройкам при однозвенном маятнике и показаны на рис.1.14 и 1.22.

На рис.1.33-1.34 представлены графики зависимостей угла поворота и угловой скорости звеньев двухзвенного маятника от времени, а на рис.1.35 – фрагмент анимации движения маятника.

Рис. 1.33 Угол поворота и скорость первого звена маятника

Рис. 1.34 Угол поворота и скорость второго звена маятника

Рис. 1.35 Фрагмент анимации маятника

1.4 ВАРИАНТЫ ИСХОДНЫХ ДАННЫХ

		Коэффициент
№ варианта	Начальный угол	сопротивления
	отклонения,	демпфера,
	градусы	Н∙м∙с
		рад
1	30	0,001
2	35	0,0012
3	40	0,0017
4	45	0,0023
5	50	0,0028
6	55	0,0031
7	60	0,0034
8	65	0,0036
9	70	0,004
10	75	0,0042
11	31	0,0045
12	36	0,0049
13	41	0,0053
14	46	0,0058
15	51	0,006
16	56	0,0064
17	61	0,0068
18	66	0,0075
19	71	0,0081
20	76	0,0086

Однозвенный маятник с сопротивлением

	Начальный угол	Начальный угол	
N⁰	отклонения	отклонения	
варианта	первого звена,	второго звена,	
	градусы	градусы	
1	30	75	
2	35	70	
3	40	65	
4	45	-60	
5	50	55	
6	55	50	
7	60	-45	
8	65	40	
9	70	35	
10	75	30	
11	31	-76	
12	36	71	
13	41	-66	
14	46	61	
15	51	56	
16	56	-51	
17	61	46	
18	66	41	
19	71	-36	
20	76	31	

Двухзвенный маятник

1.5 СОДЕРЖАНИЕ ОТЧЁТА

В отчёте о проделанной работе должно содержаться следующая информация.

• Название лабораторной работы и её цель.

• Расчетная схема объекта моделирования – однозвенного или двухзвенного маятников;

• Имитационная модель механизмов, схемы которых представлены на рис. 1.1 и 1.2.

- Интерфейсы блоков, используемых в модели;
- Графики движения объектов моделирования;
- Фрагменты анимации движения исследуемых объектов;

• Проверка адекватности разработанной модели путем анализа получаемых результатов, выводы по работе;

• Список использованной литературы.

1.6 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каков состав библиотеки пакета SimMechanics.

2. Каковы особенности имитационного моделирования механизмов в SimMechanics/MATLAB.

3. Что такое глобальные и локальные системы координат механизмов?

4. Задание законов движения звеньям механизмов и их исследование.

5. Как проверить адекватность построенной модели на примере физических маятников?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

2. Моделирование и визуализация движений механических систем в MATLAB: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

3. Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов В.М., Г.Б. Заморуев, И.И. Калапышина и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в МАТLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

2. Лабораторная работа №2 МОДЕЛИРОВАНИЕ ПРОЦЕССА УРАВНОВЕШИВАНИЯ ОБРАЩЕННОГО МАЯТНИКА В ВЕРТИКАЛЬНОМ ПОЛОЖЕНИИ ЗА СЧЕТ УПРАВЛЯЕМОГО ДВИЖЕНИЯ ПОЛЗУНА В ПАКЕТЕ SIMMECHANICS СРЕДЫ МАТЕМАТИЧЕСКОГО ИМИТАЦИОННОГО БЛОЧНОГО МОДЕЛИРОВАНИЯ SIMULINK/MATLAB

Цель работы: Ознакомиться с возможностями пакета *SimMechanics* для компьютерного моделирования процесса уравновешивания обращенного маятника в вертикальном положении за счет управляемого движения ползуна. Освоить основные принципы создания имитационных математических моделей подобных механических систем.

2.1 ЗАДАНИЕ НА ЛАБОРАТОРНУЮ РАБОТУ

На рис.2.1 приставлена расчетная схема исследуемого объекта – горизонтальный подвижный корпус (ползун) с прикрепленным к нему обращенным маятником. Задача заключается в стабилизации вертикального положения обращённого маятника, установленного на ползуне. Построим схему механизма, задачей которого будет за счёт перемещения ползуна удерживать маятник в вертикальном положении.

Исходные данные:

масса маятника m = 0.2 кг;

длина маятника l = 0.02 м

начальный угол отклонения маятника от положения равновесия $\phi_0=175^\circ$.

Рис.2.1 Схема исследуемого механизма: 1-ползун, 2-невесомый стержень, 3-груз

Имеется невесомый стержень (2) с грузом (3), который крепится и вращается вокруг горизонтальной оси, проходящей через середину вехней грани ползуна (1), который может совершать поступательное движение вдоль оси Х. Известны начальный угол положения маятника, масса груза маятника и длина маятника.

2.2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Создайте новую Simulink-модель.

2. Для задания стойки используем блок «Ground», который находится в разделе Bodies пакета SimMechanics. В параметрах блока указываются координаты [0 0 0], которые будут соответствовать координатам начала отчета.

Далее присоединяем к блоку «Ground» блок «Joint Initial Condition».
 В параметрах блока укажите позицию Position = 0 м (рис. 2.2).

Рис.2.2 Блок «Joint Initial Condition»: а)-расположение в библиотеке, б)-параметры настройки

4. Так как корпус может совершать только поступательное движение по оси x, то возьмем в качестве блока сопряжения блок «Prismatic». В параметрах блока необходимо указать [1 0 0], что будет означать возможность движения по оси x.

5. К одному из входов данного блока подключайте блок «Joint Sensor», который позволяет измерить характеристики относительного движения частей примитива. В данном случае выбираем примитив-«поступательный Р» и выбираем следующие параметры измерения (рис.2.4):

-позицию (Position) – перемещение части примитива, соединенной с телом Follower, относительно его части, соединенной с телом Base;

-скорость (Velocity) – относительная скорость;

-ускорение (Acceleration) – относительное ускорение;

-реакция (Reaction force) – сила реакции вдоль оси примитива.

Measurements			
Primitive Outputs			
Connected to primitive:	P1		•
 Position 	Units:	m	•
✓ Velocity	Units:	m/s	-
 Acceleration 	Units:	m/s^2	-
Computed force	Units:	Ν	-
Joint Reactions			
Reaction torque	Units:	N*m	Y
 Reaction force 	Units:	Ν	• •
ОК	Cancel	Help	Apply

Рис.2.3 Настройки блока «Joint Sensor»

6. Моделирование корпуса (ползуна) данного механизма реализуется при помощи блока «Body» (рис.2.4), который представляет собой твердое тело (отдельное звено механизма, движения которого моделируются) с определенными пользователем параметрами. Данный блок находится в разделе Bodies пакета SimMechanics.

В качестве задаваемых параметров выступают:

- масса тела (Mass), которая может быть выражена в различных единицах;

- тензор инерции тела относительно его центра масс (Inertia), представляющий собой матрицу размером 3х3:

$$H = \begin{bmatrix} J_{ix} & 0 & 0 \\ 0 & J_{iy} & 0 \\ 0 & 0 & J_{iz} \end{bmatrix},$$

где Jix, Jiy, Jiz, – осевые моменты инерции тела относительно осей собственной локальной системы координат, связанной с его центром масс.

Для того, чтобы добавить или убрать изображение входа/выхода определенной точки на пиктограмме блока «Body» в окне модели, используется установка или сброс флажка в колонке Show port.

В колонке Translated from origin of указывается имя системы координат, от начала которой отсчитываются координаты текущей характерной точки. Как минимум одна характерная точка должна быть задана в системе координат WORLD либо в системе координат ADJOINING. Это необходимо, чтобы связать данное тело с соседними неподвижными или подвижными телами. Система координат WORLD – это инерциальная неподвижная система, связанная с Землей, а система координат ADJOINING связана с шарниром.

		Body						
Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.								
Mass pro	Mass properties							
Mass:	Mass: 1 kg -							
Inertia: [0.001 0 0;0 0.001 0;0 0 0]								
Position Orientation Visualization								
Show Port	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of		
✓ [Right 🔹	CG	[0 0 0]	m 🔹	World 🔻	World 🔹		
V	Left 🔹	CS1	[-0.1 0 0]	m 🔻	World 🔻	World 🔻		
	Right 🔹	CS2	[0.1 0 0]	m 🔻	World	World		

Рис. 2.4 Настройка параметров блока «Body»

7. Так как стержень может совершать только вращение вокруг оси OZ, то возьмем в качестве блока сопряжения блок «Revolute» (рис. 12.5). В параметрах блока необходимо указать [0 0 1], что будет означать возможность вращения вокруг оси OZ.

			📲 🛛 🕹 Block Parameters: Revolute		
ibraries	hanics/First Generation/Joints	Found: 'Revolute'	Revolute		
BSP System Toolbox BSP System Toolbox Benbedded Coder Sa Fuzzy Logic Toolbox Benbedded Coder Sa HDL Verifier Image Acquisition Toolbox Benberget Control Toolbox	Simscape Revolute - Rota- tional Interface de t p Disassembled	ę	Represents one rotational degree of freedom. The follower (F) Body rotates relative to the base (B) Body about a single rotational axis going through collocated Body coordinate system origins. Sensor and actuator ports can be added. Base-follower sequence and axis direction determine sign of forward motion by the right- hand rule.		
Model Predictive Control Toolbox Meural Network Toolbox A Paral Network Toolbox A Real-Time Windows Target Real-Time Windows Target Robust Control Toolbox Magnetic Section 2010 Similar Section 2010 Similar Section 2010 Similar Section 2010	ریل و کور مراجع کور مراجع کور مراجع کور براجع کور براج کور براجع کور براجع کور براجع کور براج کور برام کور برام کور براج کور برام می		Connection parameters Current base: CG@Body Current follower: CS1@Body1 Number of sensor / actuator ports: 2		
 SimRF Simscape Foundation Library SimDriveline SimElectronics SimHydraulics SimMydraulics First Generation Bodies Constraints & Drivers Force Elements Interface Elements Joints 	e e Revolute		Parameters Axes Advanced Name Primitive Axis of Action [x y z] R1 revolute [0 0 1] OK Cancel Help Apply		
а Рис.2.5 Блок Joint Калоlute: а)-расположение в библиотеке,					
	б)-парам	етры нас	тройки		

8. На вход блока «Revolute» подключается блок «Joint Initial Condition», где указываем начальный угол $\phi = 175^{\circ}$.
| b | Block Parameters: Joint Initial Condition1 | | | | | | | | | |
|--|--|-------------|-------|---|--|--|--|--|--|--|
| Joint Initial Condition | | | | | | | | | | |
| Sets the initial linear/angular position and velocity of some or all
of the primitives in a Joint. Connect to a Joint to see a list of its
primitives. | | | | | | | | | | |
| Actuation | | | | | | | | | | |
| Enable | Primitive | Position | Units | | | | | | | |
| ✓ | R1 | 175 | deg 💌 | | | | | | | |
| | | | | ~ | | | | | | |
| | ОК | Cancel Help | Apply | , | | | | | | |

Рис. 2.6 Настройки блока «Joint Initial Condition»

9. К блоку «Revolute» подключается блок «Body1», который моделирует стержень с грузом. Поскольку сила инерции задается относительно центра масс тела, в блоке Body1 делается соответствующая рис.2.7 запись тензора инерции.

Body	Body										
Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.											
Mass pr	operties										
Mass:	5					kg	•	=			
Inertia:	[0.05 0 0;0	0.05 0;	0 0 0]			kg*m^2	2 -				
Position	Orientat	ion V	'isualization								
Show Port	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of					
	Left 🔹	CG	[0 -1 0]	m 🔻	World 👻	World					
V	Left 🔹	CS1	[0 0 0]	m 🔻	World 🔻	World 👻					
	Right -	CS2	[0 -1 0]	m 🔹	World 🔻	World		-			
					ОК Са	ncel Help	Apply				

Рис. 2.7 Настройка параметров блока «Body1»

10. К выходу блока «Revolute» подключается блок «Joint Sensor1» (рис.2.8).

Параметры для измерения, следующие:

- угол (Angle) – угол поворота части примитива, соединенной с телом Follower, относительно его части, соединенной с телом Base;

- относительную угловую скорость (Angular velocity);

- относительное угловое ускорение (Angular acceleration);

Помимо этого, вставляем галочку на флажок «Output selected parameters as one signal» для того, чтобы можно было измерить все 3 параметра в одном сигнале.

Block	Parameters: Joi	nt Sensor1	×					
Primitive Outputs			- ^					
Connected to primitive:	R1	•						
✓ Angle	Units:	rad 🔻						
Angular velocity	Units:	rad/s 🔹						
 Angular accelerat 	ion Units:	rad/s^2 🔹						
Computed torque	Units:	N*m 🔻						
Joint Reactions								
Reaction torque	Units:	N*m 👻						
Reaction force	Units:	N *						
Reaction measured on:	Base	•						
With respect to CS:	Absolute (World)) •						
☑ Output selected parameters as one signal.								
OK	Cancel	Help Ap	ply					

Рис. 2.8 Настройки блока «Joint Sensor1»

11. Через элемент «Demux» разбиваем измеренные параметры на 3 части. Кроме блоков «Scope» еще присутствует блок «Continuous Angle» (рис. 2.9, в), который позволяет получить правильное значение относительного угла поворота.

В

Рис. 2.9 Измерение параметров: a)-расположение в библиотеке, б)-настройки Continuous Angle, в)-схема подключения

12. Значение измеренного угла сравниваем с значением φ=180°, ошибка подается в PID-регулятор (рис.2.10), откуда сигнал поступает в качестве ускорения, скорости и перемещения ползуна, за счет движения которого и удерживается обращенный маятник в вертикальном состоянии.

🔚 Function Block Parameters: PID Controller (with Appro 💌	
PID(2) Controller (mask) (link)	
Enter Proportional(P), Integral(I), and Derivative(D) and divisor (N) terms. P+I/s+Ds/(1/Ns+1)	
Parameters	
Proportional:	
300	
Integral:	
10	
Derivative:	
70	
Derivative divisor(N):	
100	
	1
OK Cancel Help Apply	

Рис.2.10 Настройка блока PID-регулятор

13. Чтобы задать движение, два раза интегрируется сигнал с PIDрегулятора. Далее сигналы объединяются в один с помощью блока Мих и подаются на «Joint Actuator». Сигнал от «Joint Actuator» подается на «Prismatic» (рис.2.11).

Рис. 2.11 Блок-схема задания движения ползуна

Коэффициенты настройки ПИД-регулятора представлены на рис. 2.12.

Controller parameters	
Source:	internal 🔹
Proportional (P):	300
Integral (I):	50
Derivative (D):	100

Рис. 2.12 Коэффициенты ПИД-регулятора

Добавим в модель вязкое трение (рис. 2.13). К сигналу Reaction force на оси у присоединяется блок Gain. Далее присоединяется блок «Joint Actuator1», выход которого присоединяется ко входу блока «Prismatic».

Рис.2.13 Моделирование вязкого трения

Имитационная модель рассматриваемого объекта в среде SimMechanics представлена на рис 2.14.

Рис. 2.14 Схема модели ползуна с обращенным маятником

Полученные результаты:

Результаты в виде графиков перемещения, скорости и ускорения ползуна (рис.2.15) в процессе приведения обращенного маятника в вертикальное положение показаны в блоке «Scope».

Рис. 2.15 Графики: а) -перемещения, б) -скорости, в) -ускорения ползуна

График сил реакции, возникающих при движении ползуна (рис.2.16) показан в блоке «Scope 5».

Рис. 2.16 График сил реакции, возникающих при движении ползуна

График угла поворота маятника (рис.2.17) показан в блоке «Scope1».

Рис. 2.17 График угла поворота обращенного маятника

График углового ускорения маятника (рис.2.18) показан в блоке «Scope2».

Рис. 2.18 График углового ускорения маятника

График «ошибки» угла поворота маятника (рис.2.19) показан в блоке Scope 6.

Рис. 2.19 График «ошибки» угла поворота маятника

Вывод: При выполнении данной работы было проведено компьютерное моделирование процесса приведения обращенного маятника в вертикальное положение за управляемого движения ползуна счет В среде С MATLAB/Simulink/SimMechanics. Были получены графики перемещения скорости и ускорения ползуна и маятника, а также графики сил реакции, возникающих при движении ползуна. Также был получен график ошибки угла Представленные результаты показывают, поворота маятника. что при соответствующей настройке ПИД-регулятора представляется возможным привести маятник в вертикальное положение примерно за 4 секунды.

2.3 ВАРИАНТЫ ЗАДАНИЯ

Таблица 2.1 – Варианты задания

№ варианта	1	2	3	4	5	6	7	8	9	10
Macca	6	7	3	5,5	6	5	4,5	7	6,5	4
деоаланса, кг										
Длина	1,2	1,1	1	1,5	1,7	1,2	1,3	1	1,4	1,1
маятника, <i>l</i> , м										
Начальный	170	165	140	135	175	161	130	150	155	172
угол										
положения										
маятника, фо										

2.4 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. За счёт чего удается привести обращенный маятник в вертикальное положение?

2. Как формируется необходимое перемещение ползуна для приведения обращенного маятника в вертикальное положение?

3. Какой максимальный начальный угол может иметь обращенный маятник, из которого его можно было бы привести к вертикальному положению?

4. Как можно уменьшить время процесса приведения маятника к вертикальному положению?

5. Какую роль играет вязкое сопротивление в оси обращенного маятника?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в MATLAB: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

44

3. Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов В.М., Г.Б. Заморуев, И.И. Калапышина, и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в MATLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

3. Лабораторная работа №3 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ДВИЖЕНИЯ МЕХАНИЗМА С ЗУБЧАТЫМ ЗАЦЕПЛЕНИЕМ В ПАКЕТЕ РАСШИРЕНИЯ SIMMECHANICS СРЕДЫ МАТЕМАТИЧЕСКОГО ИМИТАЦИОННОГО БЛОЧНОГО МОДЕЛИРОВАНИЯ SIMULINK/MATLAB

Цель работы:

- Ознакомиться с пакетом расширения SimMechanics среды математического имитационного блочного моделирования Simulink/Matlab на примере моделирования движения зубчатого механизма.
- Провести компьютерное моделирование движения механизма с зубчатым зацеплением. Проверить правильность полученной модели.

3.1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В данной работе проводится моделирование движения механизма с зубчатым зацеплением, а именно двухступенчатого редуктора.

Кинематическая схема рассматриваемого механизма упрощенно представлена на рис. 3.1.

Рис. 3.1 Кинематическая схема двухступенчатого редуктора

Для моделирования зубчатого зацепления в SimMechanics необходимо рассчитать некоторые из основных геометрических параметров зубчатых колес. Искомые параметры приведены в табл.3.1.

Табл. 3.1 Основные параметры, необходимые для построения зубчатого зацепления в структурной модели SimMechanics

Число зубьев	Z_1, Z_2, Z_3, Z_4
m – модуль расчетный	Стандартные значения модуля, мм
	Ряд 1: 0.3, 0.4, 0.5, 0.6, 0.8, 1.0, 1.25, 1.5, 2.0, 2.5
	Ряд 2: 0.35, 0.45, 0.55, 0.7, 0.9, 1.125, 1.375, 1.75, 2.25,
	2.75
U _{nk} – передаточное отношение	$Z_k Z_{\text{веломого}}$
зубчатой пары	$u_{nk} = \frac{1}{Z_n} = \frac{1}{Z_{\text{ведущего}}}$
<i>d</i> -диаметр делительной	$m \cdot Z_n$
окружности зубчатого колеса	$d = \frac{1}{\cos \beta}$
	β– угол наклона зубьев для прямозубой передачи равен
	нулю
a_{ω} - межосевое расстояние	$a = \frac{d_n + d_k}{d_n + d_k} - \frac{m \cdot Z_n + m \cdot Z_k}{d_n + m \cdot Z_k}$
	$u_{\omega} = \frac{1}{2} = \frac{1}{2}$

На рис.3.2 представлена блок-схема модели исследуемого объекта в SimMechanics.

Рис. 3.2 Блок-схема модели последовательного зубчатого соединения

На рисунке 3.2:

• блок «Machine Environment» задает гравитационные силы для модели;

• блоки «Ground», «Revolute», «Body», «Joint Sensor», «Scope», «Joint Initial Condition» формируют геометрию зубчатого колеса Z₁, обеспечивают вращательную степень свободы первого вала, задают начальные условия, формируют выходной сигнал;

• блоки «Ground1», «Revolute1», «Body1», «Joint Sensor1», «Scope1» формируют геометрию зубчатых колес Z₂ и Z₃, обеспечивают вращательную степень свободы второго вала, формируют выходной сигнал;

• блоки «Ground2», «Revolute2», «Body2», «JointSensor2», «Scope2» формируют геометрию зубчатого колеса Z₄, обеспечивают вращательную степень свободы третьего вала, формируют выходной сигнал;

• блоки «*Gear Constraint* Z₂/Z₁» и «*Gear Constraint* Z₄/Z₃» моделируют зацепление зубьев в паре колёс с помощью передаточного отношения;

• блоки «Joint Actuator», «Constant», «Integrator» и «Integrator1» имитируют идеальный двигатель.

3.2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

В качестве примера рассмотрим механизм со следующими исходными данными (см. табл.3.2)

Модуль расчетный, мм	Число зубьев					
m	Z.1	<i>Z</i> .2	<i>Z.3</i>	<i>Z.</i> 4		
1	20	60	20	42		

Табл. 3.2 - Исходные данные исследуемого механизма

Соберем схему, приведенную на рис. 3.2. Запишем параметры и выполним настройку каждого блока согласно Приложению 3.1.

Как уже было сказано выше, для проектирования зубчатого зацепления в SimMechanics необходимо рассчитать некоторые из основных геометрических

параметров зубчатых колес.

Для того, чтобы не выполнять все вычисления вручную, запишем необходимые формулы в командное окно (Command Window) MATLAB'a:

```
% Число зубьев
z1=20;
z2=60;
z3=20:
z4=42;
% модуль расчетный
m=1;
% диаметры делительных окружностей
d1=m*z1;
d2=m*z2:
d3=m*z3;
d4=m*z4:
% межосевые расстояния
a12=0.5*(d1+d2)/10^3;
a34=0.5*(d3+d4)/10^3;
a14=a12+a34;
% ширина зубчатого венца
b=3:
% плотность материала колеса(сталь)
gm=7.8e-6;
% массы колес (плотность*объем)
m1 = gm*pi/4*b*d1^2;
m2=gm*pi/4*b*d2^2;
m3=gm*pi/4*b*d3^2;
m4=gm*pi/4*b*d4^2;
% моменты инерции
I1=m1*d1^{2}/8*1e-6;
I2=m2*d2^2/8*1e-6;
I3=m3*d3^2/8*1e-6:
I4=m4*d4^2/8*1e-6;
% матрииы моментов инерции
J1=[0\ 0\ 0;0\ 0\ 0;0\ 0\ 11];
J2=[0\ 0\ 0;0\ 0\ 0;0\ 0\ I2+I3];
J3=[0\ 0\ 0;0\ 0\ 0;0\ 0\ I4];
```

После ввода указанных выше данных запустим симуляцию. Результаты работы анимированной модели зубчатого механизма представлены на рис.3.3.

Рис. 3.3 Результаты работы анимированной модели зубчатого зацепления в SimMechanics

На рис. 3.4-3.6 приведены полученные графики угловых скоростей (рад/с) валов редуктора.

Рис. 3.4 График угловой скорости І вала редуктора

-0.3333		 							
0.0000									
-0.3333		 							
-0.3333		 							· · · · · · · · -
-0.3333		 							· · · · · · · -
-0.3333		 							· · · · · · · · -
-0.3333		 							· · · · · · · -
0 0000									
-0.3333		 			:				
.0 2222									
-0.0000									
-0.3333	L	 							
0.0000									
-0.3333	L	 							
-0.3333							i		
	J 1	2 3	3 4	4 5	5 6	5 7	/ {	3 9	9 10

Рис. 3.5 График угловой скорости ІІ вала редуктора

Рис. 3.6 График угловой скорости III вала редуктора

Проверка правильности

Для того чтобы удостоверится в правильности полученной модели, нужно сделать проверочный расчет, определив угловые скорости валов редуктора с помощью передаточного отношения.

Передаточные отношения:

$$U_{12} = \frac{-Z_2}{Z_1} = \frac{-60}{20} = -3;$$

$$U_{34} = \frac{Z_4}{-Z_3} = \frac{43}{-20} = -2.15;$$

$$U_{06III} = U_{12} \cdot U_{34} = -3 \cdot (-2.15) = 6.45;$$

$$U_{12} = \frac{\omega_I}{\omega_{II}}; \ U_{06III} = \frac{\omega_I}{\omega_{III}}$$

Следовательно, при $\omega_I = 1$ рад/*с* угловые скорости II и III валов равны:

$$\omega_{II} = \frac{\omega_I}{U_{12}} = \frac{1}{-3} = -0.33 \frac{\text{pag}}{c};$$
$$\omega_{III} = \frac{\omega_I}{U_{\text{oby}}} = \frac{1}{6.45} = 0.15 \frac{\text{pag}}{c};$$

Посчитанные результаты совпадают с результатами, полученными на графиках (рис. 3.4-3.6). Значит, модель выполнена правильно.

3.3 СОДЕРЖАНИЕ ОТЧЁТА

Отчет должен содержать следующие разделы:

- Название лабораторной работы и её цель;
- Исходные данные
- Кинематическая схема механизма;
- Схема модели механизма в пакете SimMechanics с настройками блоков;
- Результаты моделирования в виде анимированной модели;
- Графики угловых скоростей валов редуктора;
- Проверка модели на правильность;
- Вывод

3.4 ВАРИАНТЫ ЗАДАНИЙ

Табл. 3.3 – Варианты заданий

Вариант	Модуль, мм	τ	Число зубьев Вариант Модуль, Число з мм				Вариант Модуль, мм		э зубь	ев	
N⁰	m	Z 1	Z ₂	Z 3	Z 4	N⁰	m	z_1	Z ₂	Z3	\mathbf{Z}_4
1	0.3	25	60	40	70	11	0.3	30	66	20	44
2	0.4	20	60	30	72	12	0.4	40	60	25	50
3	0.5	30	90	20	42	13	0.5	25	55	40	56
4	0.6	40	80	25	90	14	0.6	20	78	30	66
5	0.8	25	50	40	70	15	0.8	30	54	20	54
6	1.0	20	50	30	60	16	1.0	40	84	25	50
7	1.25	30	60	20	56	17	1.25	25	15	40	88
8	1.5	40	70	25	75	18	1.5	20	36	30	66
9	2.0	25	30	40	64	19	2.0	30	72	20	42
10	2.5	20	45	30	48	20	2.5	40	56	25	70

3.5 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Каким блоком моделируется цилиндрическое зубчатое зацепление в пакете SimMechanikcs/MATLAB? Каковы настройки этого блока?

2. Как проверить адекватность модели зубчатого механизма?

3. Как экспериментально проверить фактическое передаточное отношение моделируемой зубчатой передачи?

4. Как изменить направление вращения валов моделируемого механизма?

5. Как рассчитываются радиусы делительных окружностей цилиндрических зубчатых колес?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

Теория механизмов / Артоболевский И.И. - М.: Наука, 1965. – 776
 с.

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в МАТLАВ: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

4. Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов В.М., Г.Б. Заморуев, И.И. Калапышина, и др. – СПб: НИУ ИТМО, 2013. – 114 с.

5. Моделирование процессов и систем в МАТLAB. Учебный курс / Лазарев Ю. - СПб.: Питер, 2005, 511с

Приложение 3.1. Настройка блоков

Настройки блока MachineEnvironment

Env 🗇	Machine Environme	Machine Environment								
Machine	Вектор	[0 -9.81 0]	m/s^2							
Environment	гравитации									

Настройки блоков Body

	Body1									
	Массовые характеристики									
	Macca	m1	kg							
	Инерция	J1	kg*m^2							
	Положение									
acs Scs2 a	Порт	Вектор происхождения позиции [x y z]								
Body1	CG	[0 0 0]	m							
00072	CS1	[0 0 0]	m							
	CS2	[0 0 0]	m							
	Визуализация									
	Геометрия тела	Use machine default body geometry								
	Подключение	CS1-CS2								
	Body2									
	Массовые характер	истики	-							
	Macca	m2+m3	kg							
	Инерция	J2	kg*m^2							
acs (CS2 8- CS3 8-	Положение									
	Порт	Вектор происхождения позиции [x y z]								
	CG	[a12 0 0]	m							
Biody2	CS1	[a12 0 0]	m							
	CS2	[a12 0 0]	m							
	CS3	[a12 0 0]	m							
	Визуализация	•	-							
	Геометрия тела	Use machine default body geometry								
	Подключение	CS1-CS3								
	Body3									
	Массовые характеристики									
	Macca	m4	kg							
	Инерция	J3	kg*m^2							
	Положение									
CS1OCS2	Порт	Вектор происхождения позиции [x y z]								
Body3	CG	[a14 0 0]	m							
	CS1	[a14 0 0]	m							
	CS2	[a14 0 0]	m							
	Визуализация									
	Геометрия тела	Use machine default body geometry								
	Подключение	CS1-CS2								

Настройки блоков Ground

E E	Ground1					
a	Положение	[0 0 0]	m			
Ground 1	Show Machine Environment port					
la L	Ground2					
Ground2	Положение	[a12 0 0]	m			
a _	Ground3					
Ground3	Положение	[a14 0 0]	m			

Настройки блоков Joints

• B	Revolute1					
Revolute1	Ось движения	[0 0 1]	Referens CS1	World		
• B +	Revolute2					
Revolute 2	Ось движения	[0 0 1]	Referens CS1	World		
• B + F •	Revolute3					
Revolute 3	Ось движения	[0 0 1]	Referens CS1	World		

Настройка блока Joint Actuator

Actuation	
Connected to primitive:	R1 -
Actuate with:	Motion
Angular units:	rad 💌
Angular velocity units:	rad/s 🔹
Angular acceleration u	inits: rad/s^2

Настройки блоков GearConstraint

	Gear Constraint z2/z1		
	Радиус делительной окружности ведущего колеса	d1/2000	m
Gear Constraint z2/z1	Радиус делительной окружности ведомого колеса	d2/2000	m
	Gear Constraint z4/z3		
	Радиус делительной окружности ведущего колеса	d3./2000	m
Gear Constraint z4/z3	Радиус делительной окружности ведомого колеса	d4/2000	m

Настройки блоков Joint Sensor

Angle	Units:	deg 🔹
Angular velocity	Units:	rad/s ▼
Angular acceleration	Units:	deg/s^2 🔹

4. Лабораторная работа №4 КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ РОБОТА-МАНИПУЛЯТОРА С ПРОСТЕЙШИМ ЗАХВАТНЫМ МЕХАНИЗМОМ В ПАКЕТЕ MATLAB/SIMULINK/SIMMECHANICS

Цель работы:

- ознакомиться с пакетом расширения SimMechanics среды математического имитационного блочного моделирования Simulink/MATLAB.
- провести компьютерное моделирование робота-манипулятора с простейшим захватным механизмом. Проверить правильность полученной модели.

4.1 КРАТКИЕ ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

В данной работе проводится моделирование робота-манипулятора с простейшим захватным механизмом.

Кинематическая схема рассматриваемого механизма упрощенно представлена на рис. 4.1.

Рис. 4.1 Кинематическая схема робота-манипулятора с захватом: 1 – стойка; 2, 3, 4 – звенья робота; 5 – основание захвата; 6 – губки захвата На рис.4.2 представлена блок-схема SimMechanics-модели роботаманипулятора с захватом.

Рис. 4.2 Блок-схема модели робота-манипулятора с захватом

На рис.4.2:

• блок «MachineEnvironment» задает гравитационные силы и стойку;

• блоки «*Column»*, «*Podjem»*,» *Rychag 1-3*» – определяют геометрию звеньев робота;

• блок «*Weld*» задает неразъемное соединение направляющей со стойкой;

• блок «*Cylindrical»* – моделирует цилиндрическую кинематическую пару 4-го класса с поступательным и вращательным движением;

• блоки «*Revolute»*, «*Revolute1,2*» – вращательные кинематические пары 5-го класса, соединяющие звенья робота между собой;

• блоки «Schvat», «Palec1-2» моделируют звенья захвата;

• блоки «*Revolute 4-5*» – определяют воащательные шарниры 5-го класса;

• блок «*Gear Constrain»t* – дополнительная передача между губками захвата;

• блоки «JointActuator», «Ramp», «Constant», «Constant»1 имитируют идеальный двигатель.

4.2 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

В качестве примера рассмотрим механизм с исходными данными, представленными в табл.4.2.

Обозначение звена	Длина звена, мм
L1	800
L2	300
L3	300
L4	200
L5	50
L6	80

Табл.4. 2 Исходные данные исследуемого механизма

Соберем схему, приведенную на рис. 4.2. Выполним настройку каждого блока согласно Приложению 4.1. После запустим симуляцию. Результаты работы анимированной модели робота-манипулятора представлены на рис.4.3.

Рис. 4.3 Результаты работы анимированной модели робота-манипулятора с захватом в SimMechanics

4.3 СОДЕРЖАНИЕ ОТЧЁТА

Отчет должен содержать следующие разделы:

- Название лабораторной работы и её цель;
- Кинематическая схема механизма;
- Схема модели механизма в пакете SimMechanics;
- Настройки блоков SimMechanics;
- Результаты моделирования;
- Графики изменений координат и проекций скоростей центра тяжести схвата на координатные оси;
- проекции траектории центра тяжести схвата на плоскости XY, XZ, YZ;
- Выводы.

4.4 ВАРИАНТЫ ЗАДАНИЙ

Табл. 4.3 Варианты заданий

Номер	р Длины звеньев, мм					
варианта	L ₁ , мм	L ₂ , мм	L ₃ , мм	L4, мм	L ₅ , мм	L ₆ , мм
1	900	350	250	200	50	80
2	800	400	400	150	60	90
3	850	450	350	250	70	100
4	700	250	300	200	40	70
5	900	350	300	150	50	80
6	800	450	450	250	60	90
7	850	300	250	200	70	100
8	700	250	350	150	40	70
9	900	350	400	250	50	80
10	800	450	450	200	60	90
11	850	400	300	150	70	100
12	700	250	300	250	40	70
13	900	350	450	200	50	80
14	850	300	400	150	60	90
15	800	400	300	250	70	100
16	700	250	400	200	40	70
17	900	350	450	150	50	80
18	800	450	300	250	60	90
19	850	400	250	200	70	100
20	600	300	250	250	40	70

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Сколько степеней свободы имеет моделируемый манипулятор и сколько приводов для него необходимо использовать?

2. Каковы габариты зоны обслуживания моделируемого манипулятора?

3. Какие кинематические пары используются в моделируемом манипуляторе?

4.Как задаются матрицы инерции звеньев манипулятора?

5. Какие блоки используются для построения графиков и проекций траектории схвата?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в MATLAB: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

 Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов
 В.М., Г.Б. Заморуев, И.И. Калапышина и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в МАТLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

Приложение 4.1 Настройка блоков

Настройки блока Machine Environment

Env	Machine Environment				
Machine Environment	Вектор гравитации	[0 0 -9.81]	m/s^2		

Настройки блока Column

Mass:	1									kg	•
Inertia:	eye(3	3)							-	kg*m^2	. •
Positior	Or	ientat	tion \	/isualization							
Show Port	Po Sid	ort de	Name	Origin Pos Vector [x	ition yz]	Un	its	Translated from Origin of	Componen Axes	ts in of	
E	Left	•	CG	[0 0.4 0]		m	+	World	World	•	
V	Left	•	CS1	[0 0 0]		m	÷	World	World	•	$\overline{\nabla}$
V	Right	+	CS2	[0.8.0]		m	*	World	World	*]	~

Настройки блока Body

-

CS 1 CS 2	ž		
Mass:	1		kg ▼
Inertia:	eye(3)		kg*m^2 ▼
Position	Orientation	Visualization	

Show Port	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of
	Left	CG	[0 0.4 -0.15]	m 🔻	World 🔻	World 🔻
1	Left	CS1	[0 0.4 0]	m 🔻	World 🔻	World
1	Right	CS2	[0 0.4 -0.3]	m 🔻	World 🔻	World 🔻

Richagt

Mass:	1	kg 🔻
Inertia:	eye(3)	kg*m^2 ▼

Position Orientation Visualization

Show Port	Por Side	t e	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of
	Left	-	CG	[0.15 0.4 -0.3]	m 🔻	World 🔻	World 🔻
1	Left	•	CS1	[0 0.4 -0.3]	m 🔻	World 👻	World 🔻
1	Right	-	CS2	[0.3 0.4 -0.3]	m 🔻	World 👻	World

ass:	1								кд
nertia:	eye(3)								kg*m^2
osition	Orie	entat	ion \	/isualization					
Show Port	Por Sid	rt e	Name	Origin Position Vector [x y z	n] Uni	its	Translated from Origin of	Compo A	onents in Axes of
	Right	-	CG	[0.4 0.4 -0.3]	m	-	World	World	•
1	Right	•	CS1	[0.3 0.4 -0.3]	m	•	World 🔻	World	•
/	Left	•	CS2	[0.5 0.4 -0.3]	m	-	World	World	•

Position	Ori	ental	tion \	/isualization				
Show Port	Po	rt le	Name	Origin Position Vector [x y z]	Un	its	Translated from Origin of	Components in Axes of
	Right	•	CG	[0.5 0.4 -0.3]	m	-	World	▼ World ▼
v	Right	•	CS1	[0.5 0.4 -0.3]	m	•	World	▼ [World ▼]
1	Left	•	CS2	[0.5 0.4 -0.34]	m	-	World	▼ World ▼
V	Left	•	CS3	[0.5 0.4 -0.26]	m	-	World	▼ World ▼

Mass:	1	kg 👻
Inertia:	eye(3)	kg*m^2 ▼

Position	Ori	enta	tion	/isualization			
Show Port	Po Sid	rt le	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of
	Right	+	CG	[0.525 0.4 -0.34]	m 💌	World 🗸	World 👻
1	Left	•	CS3	[0.55 0.4 -0.34]	m 🔻	World 🔻	World
1	Right	•	CS1	[0.5 0.4 -0.34]	m 🔻	World 🗸	World
1	Left	•	CS2	[0.5 0.4 -0.34]	m 🔻	World 🗸	World 👻

PALEO	22								
Mass:	1	1							
Inertia:	eye(3)						kg*m^2	2 🔻	
Position	Orie	ental	tion V	/isualization					
Show Port	Por Side	t e	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of		
	Right	•	CG	[0.525 0.4 -0.26]	m 🔻	World 👻	World 👻	員	
	Left	•	CS3	[0.55 0.4 -0.26]	m 🔻	World 👻	World 👻		
V	Right	-	CS1	[0.5 0.4 -0.26]	m 🔻	Vorld 🗸	World 🔻	~	
V	Left	-	CS2	[0.5 0.4 -0.26]	m 🔻	World 🗸	World 👻	合	

E CS2 CS1 2

[0.5 0.4 -0.26]

Настройки блока Ground

а	Ground					
B	Положение	[0 0 0]	m			
Ground	Show Machine	Environment port	•			

Настройки блоков Joints

	Weld	Weld								
Weld	Ось движения	[0 0 0]	Referens CS	World						
	Weld1		2 ¹² 1							
Weld1	Ось движения	[0 1 0]	Referens CS	World						
B F	Cylindrical	2. 	50°							
	Ось движения	[0 1 0]	Referens CS	World						
Cylindrical	Ось движения	[0 1 0]	Referens CS	World						
	Revolute									
Revolute	Ось движения	[0 0 1]	Referens CS	World						
B●	Revolute1	i. N		2 2						
F C Revolute1	Ось движения	[0 0 1]	Referens CS	World						
_ в ∎-	Revolute2	-	•							
F Revolute2	Оси движения	[0 1 0]	Referens CS	World						

. в	Revolute3						
Revolute3	Ось движения	[0 1 0]	Referens CS	World			

Настройки блока Gear Constraint

	Gear Constraint 1	
Gear Constraint1	Радиус делительной окружности ведущего и ведомого колес	0,04 и 0,04

Настройка блоков Joint Actuator

Jo ht Actuator Podjem			
Actuation			
Connected to primitive:	P1		•
Actuate with:	Motio	on	•
Position units:		cm	•
Velocity units:		cm/s	•
Acceleration units:		cm/s^2	•
Joint Actuator poworoty pabev Actuation			
Connected to primitive:	R1		•
Actuate with:	Moti	on	•
Angular units:		rad	•
Angular velocity units	s:	rad/s	•
Angular acceleration	units:	rad/s^2	•

Настройки блоков Joint Sensor

Angle	Units:	deg 💌
Angular velocity	Units:	rad/s ▼
Angular acceleration	Units:	deg/s^2 🔹

5. Лабораторная работа №5

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ТЕЛА, БРОШЕННОГО ПОД УГЛОМ К ГОРИЗОНТУ, С ПОМОЩЬЮ ПАКЕТА SIMMECHANICS СРЕДЫ МАТЕМАТИЧЕСКОГО ИМИТАЦИОННОГО БЛОЧНОГО МОДЕЛИРОВАНИЯ SIMULINK/MATLAB

Цель работы: построение модели движения тела, брошенного под углом к горизонту с учетом сопротивления среды средствами пакета SimMechanics среды математического имитационного блочного моделирования Simulink/MATLAB

5.1 ЗАДАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

На рис. 5.1 представлена расчетная схема движения тела, брошенного под углом к горизонту.

Рис.5.1 Расчетная схема движения тела, брошенного под углом к горизонту Исходные данные:

- Macca тела m = 1(кг);
- Начальная скорость V₀ = 10 (м/с);
- Угол между вектором начальной скорости и горизонтальной плоскостью α = 45°;
- Угол между плоскостью бросания и осью X $\beta = 60^{\circ}$;
- Коэффициент сопротивления воздуха $\mu = 0.5 \frac{\text{H} \cdot \text{c}}{\mu}$.

Блок-схема программы для моделирования рассматриваемой системы представлена на рис.5.2.

Рис. 5.2 Блок-схема программы, моделирующей движение тела, брошенного под углом к горизонту, с учетом сопротивления среды

В блоке «Custom Joint», моделирующем настраиваемую кинематическую пару, задаем три поступательные степени свободы (рис. 5.3). А в блоке «Joint Initial Condition» зададим начальную скорость тела по трем координатным осям (рис.5.4).

	Custom Joint						
s f	Custom Joint Represents general user-defined joint with multiple degrees of freedom. Connects two Bodies with combination of prismatic, revolute, and/or spherical primitives. This Joint limited to maximum of six DoFs: up to three rotational DoFs and up to three translational DoFs. This primitive attached to base (B). Last primitive attached to follower (F). Listed order of primitives is order of motion during simulation. Sensor and actuator ports can be added. Spherical primitive cannot be actuated. Base- follower sequence and axes directions determine sign of forward motion. This joint becomes singular if two prismatics or two revolutes align.						
	Connection parar						
	Current base:			GND@Ground			=
	Current follower:			CG@Body			
	Number of sense	or / actuator	ports:		1		
	Parameters						
	Axes Advanced						
	Name - Pr	imitive	Axis of Act	tion [x y z]	Reference CS	F	
	P1 - Prismatic	•	[100]		World	×	
	P3 - Prismatic	•	[0 0 1]		World -		
)					-
				ОК	Cancel Help	Apply	
	Рис	53 U	итерфей	с блок	a "Custom Ioin	t vv	
Block Parame	I MC. eters: Joint Initia	al Conditic	п	C OHOK		())	×
int Initial Co	ondition						
ts the initia	l linear/angula	ar positior	and velocity o	f some or a	ll of the primitives in a Join	nt. Connec	t to a loint
see a list of	f its primitives		and velocity o	r some or a	in or the primaves in a soli	ia connee	
tuation							
tuation	Primitivo		Pocition	Unite	Volocity		Unite
tuation Enable	Primitive	0	Position	Units	Velocity) m/s	Units
tuation Enable	Primitive	0	Position	Units	Velocity 10*(cos(pi/4))*(cos(pi/3)) m/s	Units
Enable P1	Primitive	0	Position	Units m • m •	Velocity 10*(cos(pi/4))*(cos(pi/3) 10*(sin(pi/4))) m/s m/s	Units

Рис.5.4 Интерфейс блока «Joint Initial Condition»

С помощью блоков «Body Sensor» (рис. 5.5) измерим проекции скорости, которые затем используем для расчета силы сопротивления воздуха и построения проекции траектории на плоскости XY (рис.5.6), ZY (рис.5.7), ZX (рис.5.8).

Block Parameters: Body Sensor								
Body Sensor								
Measures the motion of the Body coord combination of translational position, ve angular acceleration. Choosing the coor represented. Output is a Simulink signa	inate syst locity, and rdinate syst I. Multiple	em to which the Sensor is connected. Sensor measures any d acceleration; and rotational orientation, angular velocity, and stem determines the axes in which the motion components are output signals can be bundled into one signal.						
Measurements								
With respect to CS:	\bsolute (World)						
Position [x;y;z]	Units:	m						
Velocity [x';y';z']	Units:	m/s 🔹						
Angular velocity [Rx';Ry';Rz']	Units:	deg/s 🔹						
Rotation matrix [3 x 3]:								
Acceleration [x";y";z"]	Units:							
Angular acceleration [Rx";Ry";Rz"]	Units:	deg/s^2 💌						
✓ Output selected parameters as one signal.								
1		OK Cancel Help Apply						

Рис.5.5 Интерфейс блока «Body Sensor»

Рис.5.7 Проекция траектории движения на плоскость ZY

Рис.5.8 Проекция траектории движения на плоскость XZ

На рис. 5.6 и 5.7 видно, что из-за сопротивления воздуха парабола имеет не симметричные ветви.

Построим проекции координат на оси X, Y и Z (рис.5.9).

Рис.5.9 Проекции координат на оси X, Y и Z

Построим проекции скоростей на оси X, Y и Z (рис.5.10).

Рис.5.10 Проекции скоростей на оси X, Y и Z

Проекции скоростей на оси X и Z имеют убывающую характеристику изза сопротивления воздуха. По оси Y график тоже убывает, но гораздо быстрее, чем по другим осям, так как в данном случае уменьшению скорости кроме сопротивления воздуха еще способствует сила тяжести

С помощью блоков «To Workspace» (рис.5.11) выведем в рабочее пространство программы переменные x, y и z.

Sink Block Parameters: To Workspace			
To Workspace			
Write input to specified timeseries, array, or structure in a workspace. For menu-based simulation, data is written in the MATLAB base workspace. Data is not available until the simulation is stopped or paused.			
To log a bus signal, use "Timeseries" save format.			
Parameters			
Variable name:			
x			
Limit data points to last:			
inf			
Decimation:			
1			
Save format: Array			
Save 2-D signals as: 3-D array (concatenate along third dimension)			
✓ Log fixed-point data as a fi object			
Sample time (-1 for inherited):			
-1			
OK Cancel Help Apply			

Рис.5.11 Интерфейс блока «To Workspace»

Построим трехмерную траекторию, присвоив переменным x, y и z в рабочем пространстве программы значения соответствующих координат

материальной точки и задав в командном окне MATLAB команду «plot3(z,x,y,'r-'),grid» (puc.5.12).

Рис.5.12 Трехмерная траектория материальной точки

Таким образом, в ходе лабораторной работы была разработана модель тела, брошенного под углом к горизонту. Также в модели учитывается сопротивление среды.

5.2 СОДЕРЖАНИЕ ОТЧЁТА

Отчет должен содержать следующие разделы:

- Название лабораторной работы и её цель;
- Расчетная схема объекта моделирования с указанием исходных значений и параметров;
- Схема модели механизма в пакете SimMechanics;
- Настройки блоков SimMechanics;
- Результаты моделирования в виде временных графиков кинематических характеристик моделируемого объекта;
- проекции траектории тела на плоскости XY, XZ, YZ;
- пространственная траектория полета тела;
- Выводы.

5.3 ВАРИАНТЫ ЗАДАНИЙ

Табл. 4.3 Варианты заданий

№ варианта	1	2	3	4	5	6	7	8	9
Модуль	10	20	30	15	25	35	40	45	5
начальной									
скорости тела,									
V₀, м/с									
Угол α	40	60	35	55	50	45	65	30	46
Угол β	45	30	40	35	60	30	55	60	50
Масса тела, т,	1.5	0.8	0.6	0.5	1.2	0.2	0.3	0.4	0.7
КГ									
Коэффициент	0.4	0.6	0.3	0.5	0.8	0.2	0.7	0.9	0.1
сопротивления									
среды, μ , <u>М</u>									

5.4 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как обеспечить возможность моделирования движения свободного тела в пространстве в пакете SimMechanics/MATLAB?

2. Как построить пространственную траекторию полета тела, брошенного под углом к горизонту?

3. Как определить максимальную высоту полета тела?

4. Как определить максимальную дальность полета тела?

5. Какое влияние оказывает сопротивление воздуха на полет тела, брошенного под углом к горизонту?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в MATLAB: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с. 3. Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов В.М., Г.Б. Заморуев, И.И. Калапышина, и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в MATLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

6. ЛАБОРАТОРНАЯ РАБОТА №6 МОДЕЛИРОВАНИЕ ФРИКЦИОННЫХ АВТОКОЛЕБАНИЙ В ПАКЕТЕ MATLAB/SIMMECHANICS

Цель работы: разработка программы для компьютерного имитационного моделирования фрикционных автоколебаний в среде SimMechanics/MATLAB.

Для возникновения фрикционных автоколебаний необходимы условия, присущие автоколебательным системам. Этим условиям соответствует наличие в системе источника энергии неколебательного характера, колебательной системы, клапанного механизма, подающего порциями энергию в колебательную систему, и обратной связи.

Расчетная схема исследуемой системы представлена на рис. 6.1.

Тело массой m находится на подвижной ленте, движущейся с постоянной скорость V, и удерживается пружиной жесткостью C. Между телом и лентой действует сила сухого трения.

Рис. 6.1 Расчетная схема

Исходные данные:

m = 0.5 кг - масса тела;

c = 10 Н/м - коэффициент жесткости пружины;

 $l_0 = 0.3$ м – начальная длина недеформированной пружины;

v = 1 м/с – скорость движения ленты;

f=0.5 коэффициент сухого трения.

6.1 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

На рис.6.2 представлена блок-схема программы для математического моделирования рассматриваемой механической системы, реализующей фрикционные автоколебания, в среде SimMechanics/MATLAB.

Рис.6.2 Блок-схема программы в среде SimMechanics/MATLAB

Настройки всех блоков, использованных в схеме моделирования рассматриваемой системы, представлены в Приложении 6.1.

Рассмотрим и проанализируем результаты моделирования в виде графиков зависимостей относительных и абсолютных кинематических характеристик ползуна.

На рис.6.3 представлен график абсолютного перемещения ползуна.

Рис.6.3 График абсолютного перемещения ползуна

Из-за действия пружины ползун перемещается по квазигармоническому закону в пределах одного и того же диапазона координат вдоль оси Х.

На рис.6.4 представлен график относительного перемещения ползуна.

Рис.6.4 График относительного перемещения ползуна

Относительно движущейся ленты ползун смещается влево, так как она движется вправо.

На рис.6.5 представлен график абсолютной скорости ползуна.

Рис.6.5 График абсолютной скорости ползуна

Абсолютная скорость ползуна колеблется относительно нуля, так как ползун сначала движется с направляющей вправо за счёт силы трения, а затем, после того, как сила натяжения пружины начинает превышать силу трения, он перемещается уже под действием пружины, которая возвращает его в исходное положение, влево.

На рис.6.6 представлен график относительной скорости ползуна.

Рис.6.6 График относительной скорости ползуна

Относительно движущейся вправо ленты скорость ползуна меняется от

нулевого значения до отрицательного по квазигармоническому закону.

Вывод: в ходе данной лабораторной работы разработана программу для математического моделирования фрикционных автоколебаний в среде SimMechanics/MATLAB, построены графики абсолютного перемещения, относительного перемещения, абсолютной скорости и относительной скорости данного тела.

6.2 СОДЕРЖАНИЕ ОТЧЁТА

Отчет должен содержать следующие разделы:

- Название лабораторной работы и её цель;
- Расчетная схема объекта моделирования с указанием исходных значений и параметров;
- Схема модели механизма в пакете SimMechanics;
- Настройки блоков SimMechanics;
- Результаты моделирования в виде временных графиков кинематических характеристик моделируемого объекта;
- Выводы.

6.3 ВАРИАНТЫ ЗАДАНИЙ

Табл. 6.3 Варианты заданий

№ варианта	1	2	3	4	5	6	7	8	9
Скорость	10	20	30	15	25	35	40	45	5
ленты, V, м/с									
Масса тела, т,	1.5	0.8	0.6	0.5	1.2	0.2	0.3	0.4	0.7
КГ									
Коэффициент	0.4	0.6	0.3	0.5	0.8	0.2	0.7	0.9	0.1
сухого трения									
f									

6.4 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Как обеспечить возможность моделирования сухого трения в пакете SimMechanics/MATLAB?

2.Что такое автоколебания? Какие примеры автоколебательных систем вы знаете?

3. Отчего возникают фрикционные автоколебания? Приведите примеры фрикционных автоколебаний.

4. Что является источником энергии неколебательного характера в моделируемой системе?

5. С какой частотой происходят фрикционные автоколебания?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в МАТLАВ: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

 Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов
 В.М., Г.Б. Заморуев, И.И. Калапышина, и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в MATLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

Приложение 6.1 Настройки блоков

Machine Environment

1	Block Parar	neters: Machine	e Environmen	t l	х
Description Defines the me the block is co solver type, to	echanical simu nnected: gravit lerances, linea	lation environmen ty, dimensionality, rization, and visua	t for the machi analysis mode alization.	ne to which , constraint	^
Parameters Constraints Linearization Visualization					
Analysis mode: Type of solution for machine's motion. Tolerances: Maximum permissible misalignment of machine's joints.					
Gravity vector:	Gravity vector:			m/s^2 ▼	
🗌 Input gravity	y as signal				
Machine dimensionality: Auto-detect				•	
Analysis mode:	:	Forward dynami	cs	•	
Linear assembl	y tolerance:	1e-3	m 🔻		
Angular assembly tolerance:		1e-3	rad 🔫		
Configuration F	arameters				~
		OK Canc	el Help	Apply	/

Ground

2	Block Parameters: Ground	×
Ground		
Grounds one side coordinate system	of a Joint to a fixed location in the World n.	
Parameters		
Location [x,y,z]:	[0 0 0] m	•
Show Machine	e Environment port	
	OK Cancel Help Appl	у

Ground1

2	Block Parameters: Ground1	×		
Ground				
Grounds one side of a Joint to a fixed location in the World coordinate system.				
Parameters				
Location [x,y,z]:	[-30 1 0] cn	1 🔻		
Show Machine	e Environment port			
	OK Cancel Help A	pply		

Prismatic1

Block Parameters: Prismatic1						
– Prismatio	:		^			
Represents one translational degree of freedom. The follower (F) body translates relative to the base (B) Body along single translational axis connecting Body coordinate origins. Sensor and actuator ports can be added. Base-follower sequence and axis direction determine sign of forward motion.						
Connect	ion parameters					
Current base: GND@Ground						
Current	follower:	CG@Gorizontal Napr				
Number of sensor / actuator ports: 1						
Paramet	ers					
Axes	Advanced	Advanced				
Name	Name Primitive Axis of Action [x y z]					
P1	prismatic	prismatic [1 0 0]				
<			>			
	ОК	Cancel Help Apply	/			

Body Sensor

Block Parameters: Body Sensor					
Body Sensor Measures the motion of the Body coordinate system to which the Sensor is connected. Sensor measures any combination of translational position, velocity, and acceleration; and rotational orientation, angular velocity, and angular acceleration. Choosing the coordinate system determines the axes in which the motion components are represented. Output is a Simulink signal. Multiple output signals can be bundled into one signal.					
Measurements With respect to CS:	Absolute (Y	World)	-		
Position [x;y;z]	Units:	cm 🗸			
✓ Velocity [x';y';z']	Units:	cm/s 🗸			
Angular velocity [Rx';Ry';Rz']	Units:	deg/s 👻			
Rotation matrix [3 x 3]:					
Acceleration [x";y";z"]	Units:	m/s^2			
Angular acceleration [Rx";Ry";Rz"]] Units:	deg/s^2			
Output selected parameters as one	e signal.		v		
		OK Cancel Help Appl	y		

Sign

Function Block Parameters: Sign	x			
Signum	^			
For real inputs, output 1 for positive input, -1 for negative input, and 0 for 0 input. For complex floating point inputs, the outputs follow $sign(u) = u ./ abs(u)$				
Parameters				
Enable zero-crossing detection				
Sample time (-1 for inherited):				
-1] 🗸			
OK Cancel Help App	ly			

•	Block Parameters: Weld						x
V	Veld						^
Represents zero degrees of freedom. Rigidly connects the base (B) and follower (F) Bodies in initial relative configuration. Sensor ports can be added. Weld joint cannot be actuated.							
Connection parameters							
0	Current b	ase:		GND@Gr	ound1		
0	Current follower: CG@Ver. Napr						
ſ	Number of sensor / actuator ports: 0						
P	aramete	rs					_
	Axes	Advanced					
	Name	Primitive		Axis of	Action [x y	z]	
	w	weld [-10 1 0]				×	
<						>	
		ОК		Cancel	Help	Apply	

Vertikal Napr

Block Parameters: Vertikal Napr						×	
Body Represe center orientat custom	Body Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.						
Mass p Mass:	roperties					kg	•
Inertia:	eye(3)					kg*m^2	•
Position Show Port	n Oriental Port Side	tion \ Name	/isualization Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of	
-	Left 🔻	CG	[-30 1 0]	cm 🔻	World -	World 👻	F
-	Right 💌	CS1	[-30 1 0]	cm 🔻	World 👻	World 👻	
	Right 💌	CS2	[-30 2 0]	cm 💌	World 👻	World 🔻	\sim
	Right 💌	CS4	[-30 4 0]	cm 💌	World 🔻	World 🔻	t I
	Right 🔹	CS5	[-30 -2 0]	cm 💌	World 🔻	World 🔻	
	Right -	CS3	[-30 0 0]	cm 👻	World -	World 🔻	~
					ОК Са	ancel Help A	.pply

Body Spring & Damper

▶

Block Parameters: Body Spring & Damper

-Body Spring & Damper

Models a damped linear oscillator between two Bodies, equivalent to a translational spring and damper. The force F between the bodies is projected along the axis connecting the Body coordinate systems and is a function of the relative displacement r and velocity v of these Body coordinate systems, given by F = $-k^*(r-r0) - b^*v$. The parameters r0, k, and b represent the spring's natural length, the spring constant, and the damper constant, respectively.

Parameters	
Spring constant (k):	100
Damper constant (b):	0
Spring natural length (r0):	30
Units	
Position:	cm 👻
Velocity:	cm/s 👻
Force:	mN 👻
	OK Cancel Help Apply

Joint Actuator

🔁 Block	Parameters: Joint Actuator	×
Joint Actuator Actuates a Joint primit linear/angular position Base-follower sequent	tive with generalized force/torque or 1, velocity, and acceleration motion signals. ce and joint axis determines sign of forward	~
bundled into one signa to primitive list.	al. Connect to Joint block to see Connected	
Connected to primitive:	P1 •	
Actuate with:	Generalized Forces	L
Applied force units:	mN 👻	~
C	K Cancel Help Apply	/

Product

2	Function Block Parameters: Product	×
- Product		^
Multiply of specify of a) * or / operation b) scala If there i Element- specified Matrix(*) and a sin	or divide inputs. Choose element-wise or matrix product and ne of the following: / for each input port. For example, **/* performs the n 'u1*u2/u3*u4'. r specifies the number of input ports to be multiplied. s only one input port and the Multiplication parameter is set to wise(.*), a single * or / collapses the input signal using the operation. However, if the Multiplication parameter is set to), a single * causes the block to output the matrix unchanged, ngle / causes the block to output the matrix inverse.	
Main	Signal Attributes	
Number o	of inputs:	
2		
Multiplica	tion: Element-wise(.*)	
Sample ti	ime (-1 for inherited):	
-1		•
	OK Cancel Help Appl	y

Prismatic

Block Parameters: Prismatic						
Prismatic						
Represents one translational degree of freedom. The follower (F) body translates relative to the base (B) Body along single translational axis connecting Body coordinate origins. Sensor and actuator ports can be added. Base-follower sequence and axis direction determine sign of forward motion.						
Connec	tion parameters					
Current	base:	CS2@Gor. Napr				
Current	follower:	CS4@Polzun				
Numbe	Number of sensor / actuator ports: 3					
Parame	ters		_			
Axes	Advanced					
Name	e Primitiv	e Axis of Action [x y z]				
P1	prismatic	[1 0 0]	~			
<		-	>			
	OK	Cancel Help Apply	/			

2	Block Parameters: Polzun								
Body Represe center o orientati customiz	Body Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.								
Mass pr	operties								
Mass:	0.5					kg 👻			
Inertia: Position	Inertia: eye(3) kg*m^2 Position Orientation Visualization								
Show Port	Port Side	Name	Origin Position Vector [x y z]	Units	Translated from Origin of	Components in Axes of			
-	Left 🝷	CG	[0 1 0]	cm 🔻	World	v World ▼			
-	Right 🔹	CS6	[0 1 0]	cm 🔻	World	r World 🔻 🗡	2		
	Left 🔻	CS1	[-2 0 0]	cm 🔻	World	v World v			
	Right 🔻	CS2	[-2 2 0]	cm 🝷	World	r World 🔫 1			
	Right •	CS3	[2 2 0]	cm 🔻	World	• World •	-		
	Right 🔻	CS5	[2 0 0]	cm 🔻	World	v World 👻			
 ✓ 	Right 🔹	CS4	[0 0 0]	cm 🔻	World	Vorld 👻			
					ОК С	ancel Help Ap	~ ply		

Constant

▶	Source Block Parameters: Constant
- Constar	nt
Output 'Consta treat the same di	the constant specified by the 'Constant value' parameter. If nt value' is a vector and 'Interpret vector parameters as 1-D' is on, e constant value as a 1-D array. Otherwise, output a matrix with the imensions as the constant value.
Main	Signal Attributes
Constan	t value:
0	
🗹 Interp	pret vector parameters as 1-D
Samplin	g mode: Sample based 👻
Sample	time:
inf	
0	OK Cancel Help Apply

Gorizontal Napr

1					Block Par	ametei	s: G	orizontal Napr			×
Body Represents a user-defined rigid body. Body defined by mass m, inertia tensor I, and coordinate origins and axes for center of gravity (CG) and other user-specified Body coordinate systems. This dialog sets Body initial position and orientation, unless Body and/or connected Joints are actuated separately. This dialog also provides optional settings for customized body geometry and color.											
-Mass pr	operties										
Mass:	1									kg	•
Inertia:	eye(3)									kg*m^2	•
Position	Orie	entat	ion \	/isualization							
Show Port	Por Side	rt e	Name	Origin P Vector	osition [x y z]	Uni	ts	Translated from Origin of	Com	ponents in Axes of	
•	Left	•	CG	[0 0 0]		cm	•	World •	World	-	
	Right	•	CS1	[-9 0 0]		cm	-	World 🔻	World	-	X
-	Right	•	CS2	[10 0 0]		cm	•	World 🔻	World	•	
	Right	•	CS3	[-25 0 0]		cm	•	World	World	•	
								ОК С	ancel	Help	Apply

Joint Actuator1

🔁 🛛 Block	Parameters: Joint Actuator1	×
Joint Actuator		^
Actuates a Joint primi linear/angular positio Base-follower sequen motion. Inputs are Si bundled into one sign to primitive list.	tive with generalized force/torque or n, velocity, and acceleration motion signals. ce and joint axis determines sign of forward mulink signals. Motion input signals must be al. Connect to Joint block to see Connected	i
Actuation		
Connected to primitive:	P1	
Actuate with:	Motion •	
Position units:	cm 💌	_
Velocity units:	cm/s 🔻	
Acceleration units:	cm/s^2 🔹	~
(DK Cancel Help App	ply

Integrator

Punction Block Parameters: Integrator	×
Integrator	^
Continuous-time integration of the input signal.	
Parameters	
External reset: none 🗸	
Initial condition source: internal	
Initial condition:	
Upper saturation limit:	
inf	
Lower saturation limit:	
-inf	
Show saturation port	
Show state port	
Absolute tolerance:	
auto	
Ignore limit and reset when linearizing	
✓ Enable zero-crossing detection	
State Name: (e.g., 'position')	
п	J
OK Cancel Help Appl	y

Joint Initial Condition

▶	Block Parameters: Joint Initial Condition							
– Joint Initia	Joint Initial Condition							
Sets the in Joint to se	Sets the initial linear/angular position and velocity of some or all of the primitives in a Joint. Connect to a Joint to see a list of its primitives.							
Actuation								
Enable	Primitive	Position	Units	Velocity	Units			
-	P1	0	cm 🔻 0		m/s 👻	~		
			ОК	Cancel	Help App	у		

Integrator1

Function Block Parameters: Integrator1	×
Integrator	^
Continuous-time integration of the input signal.	
Parameters	
External reset: none	•
Initial condition source: internal	•
Initial condition:	
1	
Limit output	
Upper saturation limit:	
inf	
Lower saturation limit:	
-inf	
Show saturation port	
Show state port	
Absolute tolerance:	
auto	
Ignore limit and reset when linearizing	
Enable zero-crossing detection	
State Name: (e.g., 'position')	
11	
OK Cancel Help Ap	ply

Mux

a	Function Block Parameters: Mux	X
Mux		^
Multiplex scalar or	vector signals.	
Parameters		
Number of inputs:		
3		
Display option: ba	ar 🔻	~
0	OK Cancel Help Apply	

Joint Sensor

Block	k Para	meters: Joi	nt Sensor		×	
Joint Sensor					^	
Measures linear/angular position, velocity, acceleration, computed force/torque and/or reaction force/torque of a Joint primitive. Spherical measured by quaternion. Base-follower sequence and joint axis determine sign of forward motion. Outputs are Simulink signals. Multiple output signals can be bundled into one signal. Connect to Joint block to see Connected to primitive list.						
Measurements						
Primitive Outputs						
Connected to primitive:	P1			•		
Position		Units:	cm	•		
Velocity		Units:	cm/s	•		
 Acceleration 		Units:	cm/s^2	•		
Computed force		Units:	Ν	~		
Joint Reactions						
Reaction torque		Units:	N*m	Ŧ		
✓ Reaction force		Units:	Ν	•		
Reaction measured on:	Base)		•		
With respect to CS:	Abso	olute (World)		•		
Output selected parameters as one signal.						
OI	<	Cancel	Help	Apply		

7. Лабораторная работа №7

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ДИНАМИЧЕСКОГО ГАСИТЕЛЯ КОЛЕБАНИЙ В ПАКЕТЕ SIMMECHANICS СРЕДЫ МАТЕМАТИЧЕСКОГО ИМИТАЦИОННОГО БЛОЧНОГО МОДЕЛИРОВАНИЯ SIMULINK/MATLAB

Цель: ознакомиться с пакетом расширения SimMechanics среды математического имитационного блочного моделирования Simulink/MATLAB на примере моделирования процесса работы динамического гасителя колебаний.

7.1 ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

На рис.7.1 представлена расчётная схема системы динамического гасителя колебаний.

Рис. 7.1 Расчётная схема системы с динамическим гасителем колебаний

Исходные данные:

 $m_1 = 1$ (кг) – масса основного тела;

 $C_1 = 100 (H/m) - коэффициент жёсткости основной пружины;$

 $m_2 = 0.1$ (кг) – масса динамического гасителя;

 $C_2 = 10 (H/M) - коэффициент жёсткости пружины динамического гасителя;$

 $\omega = 10 (c^{-1})$ – частота внешнего силового гармонического возмущающего воздействия;

*P*₀ = 10 (H) – амплитуда внешнего силового гармонического возмущающего воздействия.

На рис.7.2 представлена блок-схема модели основной колебательной системы, состоящей из основного тела массой m₁ и упругого элемента жесткостью C₁, находящейся под действием внешней гармонической

вынуждающей силы $P(t)=P_0 \sin(\omega t)$, без использования динамического гасителя колебаний. Собственная частота рассматриваемой системы равна

$$p = \sqrt{\frac{C_1}{m_1}} = \sqrt{\frac{100}{1}} = 10 \ (c^{-1}).$$

Рис.7.2 Блок-схема для моделирования вынужденных колебаний тела в SimMechanics

Так как частота $\omega = 10$ вынуждающей гармонической силы $P(t) = P_0 \sin(\omega t)$ равна собственной частоте колебательной системы p=10, то возникнут резонансные колебания. На рис.7.3 представлен график нарастающих резонансных колебаний основного тела массы m₁.

Рис. 7.3 График нарастающих резонансных колебаний основного тела

Без гашения колебаний в системе резонансные колебания будут неограниченно нарастать. Для их подавления будем использовать динамический гаситель в виде дополнительной массы m_2 , присоединяемой к основному телу посредством упругого элемента жесткостью C_2 . Значения массы и жесткости динамического гасителя колебаний должны обеспечивать парциальную частоту (собственную частоту при неподвижной массе m_1), равную частоте ω вынуждающей силы:

$$\sqrt{\frac{C_2}{m_2}} = \sqrt{\frac{10}{0.1}} = 10 \ (c^{-1}).$$

Тогда колебания динамического гасителя уравновесят действие вынуждающей силы и тем самым устранят колебания основного тела.

На рис. 7.4 представлена блок-схема, моделирующая систему динамического гасителя колебаний в SimMechanics/MATLAB.

Рис.7.4 Блок-схема, моделирующая систему динамического гасителя колебаний в SimMechanics/MATLAB

Настройки используемых в модели блоков представлены в Приложении 7.1

На рис. 7.5 представлен фрагмент анимации модели в окне MATLAB в произвольный момент времени.

Рис.7.5 Фрагмент анимации моделирования динамического гасителя колебаний в окне MATLAB

График колебаний основного тела представлен на рис. 7.6.

Рис.7.6 График колебаний основного тела

К 6 секундам колебания полностью затухают, следовательно, гашение происходит.

Динамический гаситель после остановки основного тела колеблется с постоянной амплитудой A₂ (рис7.7). Причем значение этой амплитуды таково, что величина упругой силы дополнительной пружины жесткостью C₂ компенсирует вынуждающую силу P(t):

$$P_0 = C_2 A_2;$$

10=10*1.

Рис.7.7 График колебаний динамического гасителя колебаний

Таким образом, получена модель процесса динамического гашения колебаний средствами пакета расширения SimMechanics среды математического имитационного блочного моделирования Simulink/MATLAB.

7.2 СОДЕРЖАНИЕ ОТЧЁТА

Отчет должен содержать следующие разделы:

- Название лабораторной работы и её цель;
- Расчетная схема объекта моделирования с указанием исходных значений и параметров;
- Схема модели механизма в пакете SimMechanics;
- Настройки блоков SimMechanics;
- Результаты моделирования в виде временных графиков кинематических характеристик моделируемого объекта;
- Выводы.

7.3 ВАРИАНТЫ ЗАДАНИЙ

Табл. 7.3 Варианты заданий

№ варианта	1	2	3	4	5	6	7	8	9
Macca	1.5	0.8	0.6	0.5	1.2	2.2	3.3	1.4	3.7
основного									
тела, т1, кг									
Коэффициент	150	200	80	220	250	300	350	280	180
жесткости С ₁ ,									
Н/м									
Амплитуда	15	20	25	8	12	28	30	5	22
вынуждающей									
силы Ро, Н									

7.4 КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Для чего используют динамическое гашение колебаний?

2.За счет чего происходит динамическое гашение колебаний?

3. Как правильно настроить динамический гаситель колебаний?

4. Какое влияние будет оказывать вязкое сопротивление, действующее в колебательной системе?

5. Какова будет амплитуды колебаний динамического гасителя после подавления колебаний основной массы?

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

 МАТLАВ 6/6.1/6.5 + Simulink 4/5 в математике и моделировании / Дьяконов В.П. Полное руководство пользователя - М.: СОЛОН-Пресс. – 2003. – 576 с.

 Моделирование и визуализация движений механических систем в MATLAB: Учебное пособие / В.С.Щербаков, М. С. Корытов, А.А. Руппель и др.– Омск: СибАДИ, 2007. – 84с.

 Моделирование мехатронных систем в среде MATLAB (Simulink / SimMechanics): учебное пособие для высших учебных заведений / Мусалимов
 В.М., Г.Б. Заморуев, И.И. Калапышина, и др. – СПб: НИУ ИТМО, 2013. – 114 с.

4. Моделирование процессов и систем в MATLAB. Учебный курс / Лазарев Ю.П. - СПб.: Питер, 2005, 511 с.

ПРИЛОЖЕНИЕ 7.1 НАСТРОЙКА БЛОКОВ

Joint Initial Condition, Joint Initial Condition1

b		Block Paramete	ers: Joint Initial C	ondition1		×			
Joint Initial	Condition					^			
Sets the ini Joint to see	Sets the initial linear/angular position and velocity of some or all of the primitives in a Joint. Connect to a Joint to see a list of its primitives.								
Actuation									
Enable	Primitive	Position	Units	Velocity	Units				
✓	P1	0.05	m 🔻 0		m/s 🔻				
						×			
			ОК	Cancel	Help Ap	oly			

Основное тело

-Mass pr	operties										
Mass:	1.5 kg •										
Inertia:	Inertia: eye(3) kg*m^2 •										
Positio	n Orien	tation	Visualization								
Show Port	Port Side	Nar	ne Origin Position Vector [x y z]	Units	Translated from Origin of	C	Componen Axes				
\checkmark	Left	• CG	[0 0 0]	m •	World	- Wo	rld				
\checkmark	Right	 CS5 	[0 0 0]	m •	CG	▪ CG		<u>i</u>			
\checkmark	Right	 CS6 	[0 0 0]	m •	CG	▼ CG		\times			
	Left	 CS1 	[-0.05 -0.05 0]	m •	CG	• CG		1			
	Right	CS2	[0.05 -0.05 0]	m •	CG	• CG		JIL			
	Right	 CS3 	[0.05 0.05 0]	m •	CG	• CG					
	Right	 CS4 	[-0.05 0.05 0]	m •	CG	▼ CG					

Динамический гаситель колебаний

-Mass pr	operties									
Mass:	0.15	kç	kg 🔹							
Inertia:	Inertia: eye(3)									
Positio	n Orien	ta	tion	Visualization						
Show Port	Port Side		Name	Origin Position Vector [x y z]	Units	5	Translated fron Origin of	1		
\checkmark	Left	•	CG	[0 0 0]	m	•	World	•	W	
	Right	•	CS5	[0 0 0]	m	•	CG	•	CG	
	Right	•	CS6	[0 0 0]	m	•	CG	•	CG	\times
	Left	•	CS1	[-0.02 -0.05 0]	m	•	CG	•	CG	\uparrow
	Right	•	CS2	[0.02 -0.05 0]	m	•	CG	•	CG	JI.
	Right	•	CS3	[0.02 0.05 0]	m	•	CG	•	CG	×.
	Right	•	CS4	[-0.02 0.05 0]	m	•	CG	•	CG	
<									>	

Sine Wave

🚹 Source Block Parameters: Sine Wave	\times
Sine Wave	^
Output a sine wave:	
O(t) = Amp*Sin(Freq*t+Phase) + Bias	
Sine type determines the computational technique used. The parameters in the two types are related through:	
Samples per period = 2*pi / (Frequency * Sample time)	
Number of offset samples = Phase $*$ Samples per period / (2*pi)	
Use the sample-based sine type if numerical problems due to running large times (e.g. overflow in absolute time) occur.	fc
Parameters	
Sine type: Time based	•
Time (t): Use simulation time	•
Amplitude:	
7	
Bias:	
0	
Frequency (rad/sec):	
10	
Phase (rad):	
0	
<	>

.

		Body Actua	ator
🔁 🛛 🔤 Block I	Parameters: Body	/ Actuator1	x
Body Actuator			^
Actuates a Body with g components specified system. Input is a Simi condition actuation, pro	eneralized force/to with respect to refe ulink signal. For Bo ess Help.	orque signal. Vector erence coordinate dy motion or initial	
Actuation			
With respect to CS:	Absolute (World)	•	
Generalized forces			
Applied torque	Units:	N*m ▼	
Applied force	Units:	N •	
0	K Cancel	Help Appl	y Y

Вертикаль

Mass properties													
Mass:	1	1 kg •											
Inertia: eye(3) kg*m^2 🔻													
Position	Orie	ntat	ion V	isualization/								_	1
Show Port	ow Port Name Origin Posit ort Side Vector [x		Position r [x y z]	Uni	ts	Trans	lated from Origin of	Com	ponents in Axes of				
v	Left	•	CG	[0 0 0]		m	•	World	•	World	-	ļļ,	
	Left	•	CS1	[0 -0.05 0]		m	•	World	•	World	-	×	
	Left	•	CS3	[0 0.05 0]		m	•	World	-	World	-		
-	Right	•	CS2	[0 0 0]		m	•	World	•	World	•		~
OK Cancel Help Apply													

						Joint Spi	ring & Dam	per	
a			Block Paramet	ters: Joint Sprin	g & Damper			×	
Joint Spring	& Dampe	r						^	
Models a dar prismatic pri a function of k*(x-x0) - b* respectively.	mped line mitives ar the relati tv. The pa Each pris	ar oscillator in a nd a torsional spr ve linear or angu arameters x0, k, a matic and revolu	Joint connecting ing and damper ilar displacement and b represent te primitive has a	two Bodies, equiv on revolute primi t x and the linear the spring offset, a separate spring	valent to a transla tives. The force o or angular veloci spring constant,	ational spring and or torque F betwe ty v of the bodies and damper con	d damper on een the bodies is 5, given by F = - stant,		
Primitive	Primitive Enable Spring Constant k b x0 Position Units Velocity Units Force/ Torque Units Units Velocity Ve								
P1	✓	100	7	0.05	m 🔻	m/s 🔻	N -	~	
1					ОК	Cancel H	lelp Apply		

Joint Spring & Damper1

1	Block Parameters: Joint Spring & Damper1										
-Joint Spring	& Dampe	r						^			
Models a damped linear oscillator in a Joint connecting two Bodies, equivalent to a translational spring and damper on prismatic primitives and a torsional spring and damper on revolute primitives. The force or torque F between the bodies is a function of the relative linear or angular displacement x and the linear or angular velocity v of the bodies, given by $F = -k^*(x-x0) - b^*v$. The parameters x0, k, and b represent the spring offset, spring constant, and damper constant, respectively. Each prismatic and revolute primitive has a separate spring.											
Primitive	Enable	Spring Constant k	Damper Constant b	Spring Offset x0	Position Units	Velocity Units	Force/ Torque Units				
P1	•	10	0	0.05	m 🔻	m/s ▼	N -	~			
					ОК	Cancel	Help App	ly			