Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Алтухов Александр Юрьевич Должность: Заведующий кафедрой ТМиТ

Дата подписания: 03.09.2024 11:52 НОго-Западный государственный университет

Уникальный программный ключ:

d0a60811e9b480bc50745c04b154c383c3551dd9

УТВЕРЖДАЮ:

Заведующий кафедрой

технологии материалов и транспорта

_А.Ю. Алтухов

«<u>26</u>» <u>июня 2024</u> г.

ОЦЕНОЧНЫЕ СРЕДСТВА

МИНОБРНАУКИ РОССИИ

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

<u>Автомобильные эксплуатационные материалы</u> *(наименование дисциплины)*

23.05.01 Наземные транспортно-технологические средства (код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Тема № 1. Производство топлив и смазочных материалов.

- 1. Сырье для производства топлив и смазочных материалов.
- 2. Природная нефть: элементарный состав, групповой состав, фракционный состав.
- 3. Способы переработки нефти.
- 4. Прямая перегонка нефти.
- 5. Схема атмосферно-вакуумной установки для перегонки нефти.
- 6. Деструктивная переработка нефтепродуктов: термический крекинг, каталитический крекинг, гидрокрекинг,
 - 7. Деструктивная переработка нефтепродуктов: каталитический риформинг.
- 8. Очистка автомобильных топлив: кислотная очистка, щелочная очистка, селективная очистка, гидроочистка, адсорбционная очистка, депарафинизация, ультрафильтрация.

Тема № 2. Общие сведения о топливах.

- 9. Основные определения: компонент, окислитель, горючее.
- 10. Классификация топлив: по типу двигателя, по агрегатному состоянию, по химическому составу, по виду исходного сырья.
- 11. Основные требования к топливу.
- 12. Автомобильные бензины, состав топлив.

Тема № 3. Свойства и показатели топлив, влияющие на смесеобразование

- 13. Стехиометрический коэффициент.
- 14. Концентрационные пределы воспламеняемости, диапазон воспламеняемости.
- 15. Плотность, вязкость: динамическая вязкость, кинематическая вязкость.
- 16. Поверхностное натяжение.
- 17. Испаряемость топлив и смесеобразование свойства топлива, влияющие на его распыл.
- 18. Фракционный состав бензинов, летучесть, давление насыщенных паров, низкотемпературные свойства топлив.

Тема № 4. Свойства и показатели бензинов, влияющие на подачу топлива

19. К показателям бензинов, влияющим на подачу топлива, кроме давления насыщенных паров относятся показатели: содержание воды и механических примесей.

Тема № 5. Свойства и показатели бензинов, влияющие на процесс сгорания

- 20. Воспламеняемость.
- 21. Горючесть.
- 22. Тепловое, цепное и цепочно-тепловое воспламенение.
- 23. Нормальное, детонационное и калильное сгорание смеси.
- 24. Зажигание тлеющим нагаром, калильное зажигание перегретыми деталями.
- 25. Октановое число (ОЧ).
- 26. Моторный и исследовательский методы определения ОЧ.
- 27. Чувствительность бензина. ОЧМ < ФОЧ < ОЧИ.
- 28. Способы повышения детонационной стойкости бензинов.
- 29. Алкилсвинцовые антидетонаторы,
- 30. Марганцевые антидетонаторы, Антидетонаторы на основе соединений железа.
- 31. Самовоспламиняемость топлив.
- 32. Цетановое число (ЦЧ).
- 33. Способы определения ЦЧ.

Тема № 6. Марки бензинов и их применение

- 34. Классификация бензинов,
- 35. Маркировка бензинов,
- 36. Способы получения, назначение, степень сжатия.

Тема № 7. Дизельные топлива

- 37. Классификация дизельных топлив.
- 38. Маркировка. Способы получения.
- 39. Оценка склонности топлив к образованию кристаллов и потере подвижности.

Тема № 8. Углеводородные газообразные топлива

- 40. Классификация углеводородные газообразных топлив.
- 41. Сжатые газообразные топлива.
- 42. Сжиженные газообразные топлива.
- 43. Альтернативные виды топлив.

Тема № 9. Общие сведения о смазочных материалах

- 44. Трение, смазка и износ в двигателях внутреннего сгорания.
- 45. Задир, схватывание и заедание.
- 46. Маслоемкостъ поверхности.
- 47. Требования к свойствам смазочных материалов.

Тема № 10. Моторные масла (общие сведения)

- 48. Современные моторные масла.
- 49. Классификация моторных масел: минеральные масла, синтетические масла (углеводородные масла, диэфирные масла, полиалкиленгликолевые масла, жировые масла), полусинтетические масла.
- 50. Функции моторных масел.
- 51. Выбор моторного масла, совместимость масла с материалами.

Тема № 11. Присадки к моторным маслам

- 52. Присадки к моторным маслам: дисперсанты, детергенты и антиокислители.
- 53. Функции присадок к моторным маслам.

Тема № 12. Эксплуатационные свойства моторных масел

- 54. Вязкостные свойства.
- 55. Рабочая вязкость.
- 56. Критическая вязкость. Прокачиваемость масла. Индекс вязкости (способы определения).
- 57. Вязкостные (загущающие) присадки (механизм действия).
- 58. Смазывающие свойства. Механический аспект, физический аспект, химический аспект.
- 59. Оценка смазывающих свойств масел.
- 60. Антифрикционные присадки, противоизносные и противозадирные присадки (механизм действия).
- 61. Антиокислительные свойства.
- 62. Специфические условия работы в двигателе.
- 63. Стабильность масла.
- 64. Антиокислительные присадки (механизм действия).

Тема № 13. Эксплуатационные свойства моторных масел

- 65. Лакообразование и моюще-диспергирующие свойства.
- 66. Моющие свойства.
- 67. Лаковые отложения или лаки.

- 68. Склонность к лакообразованию.
- 69. Диспергирующая способность. Моющие присадки (механизм действия). Моющий потенциал.
- 70. Промывочные свойства. Моющие присадки.
- 71. Основная причина образования осадков.
- 72. Толщина слоя осадков. способу уменьшения осадкообразования.
- 73. Промывочные (моющие) масла, обладающие высокой диспергирующей и растворяющей способностью.
- 74. Антипенные свойства. Вспениваемость.
- 75. Факторы, повышающие пенообразование масла. Отрицательное влияние аэрации.
- 76. Антипенные присадки.
- 77. Механизм пеногасящего действия.
- 78. Недостаткам антипенных присадок.

Тема № 14. Эксплуатационные свойства моторных масел

- 79. Антикоррозионные свойства.
- 80. Коррозионная агрессивность. Коррозия металлов.
- 81. Классификация коррозии металлов.
- 82. Скорость коррозионных процессов. ингибиторы коррозии.
- 83. Антикоррозионные присадки (механизм действия).
- 84. Защитные свойства.
- 85. Атмосферная коррозия. способы хранения автомобиля. Консервационные масла.
- 86. Рабоче-консервационные масла.
- 87. Консервации и реконсервации двигателя.
- 88. Обкаточные свойства.
- 89. Несущая способность масляного слоя.
- 90. Обкаточные масла. Масло с поверхностно-активными присадками.
- 91. Обкаточные присадки (механизм действия)

Тема № 15. Старение, угар и смена моторных масел

- 92. Старение моторных масел: внутренние и внешние причины.
- 93. Изменение физико-химических свойств при старении моторных масел.
- 94. Угар масла. Факторы от которых зависит величина угара масла.
- 95. Определение угара масла.
- 96. Смена моторных масел: периодичность, нормативные документы.
- 97. Анализ моторного масла как средства диагностики двигателей.

Тема № 16. Регенерация моторных масел

- 98. Отработанные моторные масла.
- 99. Методы анализа степени старения отработанного масла.
- 100. Способы хранения.
- 101. Утилизация отработанных масел на автотранспортных предприятиях.
- 102. Способы регенерации моторных масел.

Тема № 17. Смазки. Твердые и консистентные смазки.

- 103. Твердые смазки: графит, дисульфид молибдена, дисульфид вольфрама, нитрид бора, фталоцианины (Свойства, область применения).
- 104. Химически активные покрытия, мягкие металлы и полимерные материалы
- 105. Композиционные смазочные материалы: полимерные КСМ, КСМ на основе металлических материалов, КСМ на керамической основе.
- 106. Консистентные смазки. Общие сведения о консистентных смазках.

107. Физико-химические свойства и эксплуатационные качества пластичных смазок

Тема № 18. Специальные жидкости для автомобилей

- 108. Охлаждающие жидкости: вода, антифризы, высококипящие охлаждающие жидкости (основные свойства и требования к ним).
- 109. Тормозные жидкости: Касторовые жидкости, Нефтяная тормозная жидкость, гликолевая тормозная жидкость. Жидкости для других гидравлических систем.
- 110. Электролит для кислотных аккумуляторных батарей.

Шкала оценивания: 5-балльная.

Критерии оценивания:

- **5 баллов** (или оценка **«отлично»**) выставляется обучающемуся, если он принимает активное участие в беседе по большинству обсуждаемых вопросов (в том числе самых сложных); демонстрирует сформированную способность к диалогическому мышлению, проявляет уважение и интерес к иным мнениям; владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, ораторскими способностями и правилами ведения полемики; строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; легко и заинтересованно откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 4 балла (или оценка «хорошо») выставляется обучающемуся, если он принимает участие в обсуждении не менее 50% дискуссионных вопросов; проявляет уважение и интерес к иным мнениям, доказательно и корректно защищает свое мнение; владеет хорошими знаниями вопросов, в обсуждении которых принимает участие; умеет не столько вести полемику, сколько участвовать в ней; строит логичные, аргументированные высказывания, сопровождаемые подходящими примерами; не всегда откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **3 балла** (или оценка **«удовлетворительно»**) выставляется обучающемуся, если он принимает участие в беседе по одному-двум наиболее простым обсуждаемым вопросам; корректно выслушивает иные мнения; неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике предпочитает занимать позицию заинтересованного слушателя; строит краткие, но в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; теряется при возникновении неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **2 балла** (или оценка **«неудовлетворительно»**) выставляется обучающемуся, если он не владеет содержанием обсуждаемых вопросов или допускает грубые ошибки; пассивен в обмене мнениями или вообще не участвует в дискуссии; затрудняется в построении монологического высказывания и (или) допускает ошибочные высказывания; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

1.2 РАЗБОР КОНКРЕТНОЙ СИТУАЦИИ ДЛЯ АНАЛИЗА

Тема № 1 Технические системы

Описание конкретной ситуации для анализа № 1

Провести эксплуатационную оценку бензина по данным фракционной перегонки с использованием номограмм (рис. 3). Если известны следующие экспериментальные данные: давление P, температура окружающей среды, температуры кипения топлива $t_{\rm H.II.}$, $t_{5\%}$, t_{15} , $t_{25\%}$, $t_{45\%}$, $t_{55\%}$, $t_{75\%}$, $t_{85\%}$, $t_{\kappa.II}$. Построить график перегонки бензина, определить графическим методом значения температур $t_{10\%}$, $t_{50\%}$, $t_{90\%}$,

По экспериментальным данным с учетом барометрического давления строим график перегонки бензина. Для этого по горизонтальной оси откладываем значение температур перегонки, а по вертикальной — соответствующие им значения объемов испарившегося топлива.

Графическим методом находим характеристические точки,

При 10% температура $t_{10\%}$; При 50% температура $t_{50\%}$;

При 90% температура t90%.

С помощью номограмм, используя графически полученные значения температур, проводим эксплуатационную оценку бензина и заполняем таблицу Таблица Эксплуатационная оценка бензина по данным разгонки

Таблица - Эксплуатационная оценка бензина по данным разгонки

Самая низкая температура наружного воздуха, ⁰ С, при которой воз-	Температура,
можно:	^{0}C
Образование паровых пробок	
Обеспечение легкого пуска двигателя	
Обеспечение затрудненного пуска двигателя	
Обеспечение быстрого прогрева и хорошей приемистости	
Незначительное разжижение масла в картере	
Заметное разжижение масла в картере	

Тема № 2 Общие сведения о топливах

Описание конкретной ситуации для анализа № 2

Определить расчетным методом Октановое число для бензинов с O4 > 62 исходя из плотности и фракционного состава бензина. Определить цетановое число дизельного топлива (ДТ), используя график, если известны следующие данные: температура кипения, плотность.

Расчетные методы определения OY и $I\!I\!Y$ удобны, когда топлива мало и надо быстро оценить его моторные свойства. Предложенные уравнения могут быть использованы для предварительной оценки показателей OY и $I\!I\!Y$ прямогонных фракций, они не применимы для топлив с присадками, которые повышают OY и $I\!I\!Y$.

Для предварительной оценки октанового числа по плотности бензиновой фракции может быть использована формула:

$$OY = -36,5 + 152 \cdot \rho_4^{20}.$$

Бензины представляют собой смесь прямогонных бензинов, бензинов каталитического риформинга и каталитического крекинга с добавлением высокооктановых компонентов и различных присадок.

Для бензинов с OЧ > 62 рекомендуется октановое число определять исходя из плотности и фракционного состава бензина:

$$OY = 1020,7 - 64,86 \cdot \left[4 \cdot \lg \left(\frac{141,5}{\rho_{15}^{15}} - 131,5 \right) + 2 \cdot \lg \left(\frac{9}{5} t_{10\%} + 32 \right) + + 1,3 \cdot \lg \left(\frac{9}{5} t_{90\%} + 32 \right) \right]$$

где ρ_{15}^{15} – плотность топлива при 15 °C, г/см³ (таблица 3.1);

 $t_{10\%}$, $t_{90\%}$ — температуры 10 и 90 %-ной отгонки фракций соответственно, °С.

Расчетный метод оценки цетановых чисел для дизельных дистиллятов с температурой выкипания 150-350 °C:

$$LIH = 52 - 324 (\rho_4^{20} - 0.88).$$

Расчетный метод оценки цетановых чисел для дизельных дистиллятов с температурой выкипания 200-350 °C:

.
$$U = 51,4 - 378 (\rho_4^{20} - 0,85)$$

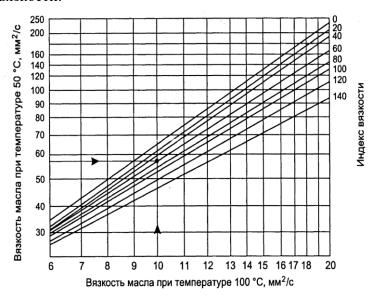
Расчетный метод оценки цетановых чисел дизельных дистиллятов дает максимальное отклонение расчетных величин от экспериментальных 5-7,5 ед. для фракций 150-350 °C и 5-7 ед. для фракций 200-350 °C.

Для ориентировочной оценки цетанового числа топлива по плотности ρ_4^{20} и кинематической вязкости V_{20} используют формулу:

$$U = \frac{(v_{20} + 17.8) \cdot 1,5879}{\rho_4^{20}}.$$

Наиболее точным является расчетный метод определения цетанового индекса по ГОСТ 27768-88, исходя из плотности и 50 %-ной точки перегонки:

$$UU = 454,74 - 1641,41 \rho_{15}^{15} + 774,74 (\rho_{15}^{15})^2 - 0,554 t_{50\%} + 97,803 (lg t_{50\%})^2 (3.6)$$


где
$$\rho_{15}^{15}$$
 – плотность при 15 °C, г/см³,

 t_{50} % — температура кипения 50 %-ной (по объему) фракции с учетом поправки на нормальное барометрическое давление 101,3 кПа, °C.

Тема № 2 Моторные масла (общие сведения)

Описание конкретной ситуации для анализа № 3

Наиболее простой способ определения индекса вязкости масла заключается в использовании номограммы (рис.) на основе значений кинематической вязкости масла при 100^{0} С и 50^{0} С. Для этого по вертикали и горизонтали проводят линии от точек соответствующих значениям вязкости масла при 100^{0} С и 50^{0} С и в месте их пересечения находят значения индекса вязкости.

Значения индекса вязкости порядка 90 - 100 и выше характеризуют хорошие, а ниже 50 - 60 - плохие вязкостно–температурные свойства масла.

Для определения вязкости нефтепродуктов используются вискозиметры типа ВПЖ -2, ВПЖТ -2 или типа Пинкевича (ВПЖ -4, ВПЖТ -4). Проводят измерения времени истечения жидкости через капилляры приборов.

Кинематическую вязкость υ (мм²/с) испытуемого нефтепродукта определяют по формуле:

$$v = C \cdot \tau$$

где C – постоянная вискозиметра, $\text{мм}^2/\text{c}^2$, C = 0,3159;

 τ — среднее арифметическое значение времени истечения нефтепродукта в вискозиметре, с.

Рассчитать кинематическую вязкость нефтепродукта, если известно время истечения его через капилляр вискозиметра при различных температурах,

Тема № 2 Моторные масла (общие сведения)

Описание конкретной ситуации для анализа № 4

При опреденеии отработанного моторного и трансмиссионного масла через объем системы смазки исходными данными для расчета являются объем масла, заливаемого в автомашины каждой марки при ТО, среднегодовой пробег каждого автомобиля, нормы пробега подвижного состава до замены. Расчет отработанного гидравлического масла, образующегося при одной замене масла в картерах гидравлических систем определяется по формуле:

$$M = \sum \ N_i \cdot V \cdot k_c \cdot \rho \cdot 10^{\text{--}3}, \, \ensuremath{\scriptscriptstyle{T}}, \label{eq:mass}$$

где: N_i - количество единиц экскаваторов і-й марки, шт.;

V - объем масляного картера экскаваторов і-й марки, л,

k_c - коэффициент сбора отработанного масла,

 $k_c = 0.9; \, \rho$ - плотность отработанного масла, кг/л, $r = 0.9 \,$ кг/л.

Расчет отработанного моторного масла и отработанного трансмиссионного масла может быть произведен двумя способами. В другом случае расчет производится через расход топлива. Исходными данными для расчета являются норма расхода топлива на 100 км пробега, среднегодовой пробег автомобилей, нормы расхода масла на 100 л топлива (таблица 7), норма сбора отработанных нефтепродуктов.

Таблица - Временные нормы расхода масел, л, и смазок, кг, на 100 л общего расхода топлива

omba					
Вид масел	Легковые, гру-	Легковые, грузовые	Внедорожные авто-		
(смазок)	зовые автомо-	автомобили, автобу-	мобили – самосва-		
	били, автобусы,	сы, работающие на	лы, работающие на		
	работающие на	дизельном топливе	дизельном топливе		
	бензине				
Моторные масла	2,4	3,2	5,0		
Трансмиссионные масла	0,3	0,4	0,5		
Специальные масла	0,1	0,1	1,0		
Пластичные смазки	0,2	0,3	0,2		

Шкала оценивания: 6-балльная.

Критерии оценивания:

6-5 баллов (или оценка «отлично») выставляется обучающемуся, если он активно участвовал в анализе конкретной ситуации; предлагал оригиналь-

ные идеи; организовывал работу всей команды, проявляя лидерские качества; положительно реагировал на идеи, высказанные другими членами команды, дополнял и развивал их.

- 4-3 балла (или оценка «хорошо») выставляется обучающемуся, если он активно участвовал в анализе конкретной ситуации; предлагал свои идеи и развивал предложенные лидером и членами команды более интересные идеи; качественно выполнял порученные ему лидером задания.
- 2-1 балл (или оценка «удовлетворительно») выставляется обучающемуся, если он участвовал в анализе конкретной ситуации; не предлагал свои идеи, но выполнял порученные ему лидером задания, при этом нуждаясь в помощи других членов команды и обращаясь к ним за консультацией.
- 0 баллов (или оценка «неудовлетворительно») выставляется обучающемуся, если он не участвовал в анализе конкретной ситуации или не выполнил ни одно из порученных ему лидером и (или) командой заданий.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕ-СТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

7 семестр

а) селективной;

1. Какой состав нефти определяется соотношение химических элементов? а) фракционный; б) элементарный; в) групповой.
2. Какой состав определяется группами входящих в нефть углеводородов? а) фракционный; б) элементарный; в) групповой.
3. Какой состав нефти определяется при ее разделении по температурам кипения входящих соединений. а) фракционный; б) элементарный; в) групповой.
4. Активные сернистые соединения, входящие в состав нефти а) сера, сероводород; б) сульфиды; в) полисульфиды.
5. Первичная переработка нефти — это а) процесс коксования; б) процесс прямой перегонки; в) процесс термического крекинга.
6. Самая легкая фракция нефти - это а) бензиновая фракция; б) дизельная фракция; в) керосиновая фракция.
7. К топливному дистилляту относится а) гудрон; б) средний масляный дистиллят; в) керосиновая фракция.
8. Очистка полуфабрикатов нефти применяемая для удаления углеводородов с высокими температурами застывания называется а) кислотная очистка; б) селективная очистка; в) депарафинизация.
9. Очистка, основанная на свойстве некоторых пористых минеральных веществ поглощать содержащиеся в нефтепродуктах примеси называется а) адсорбционная очистка; б) гидроочистка; в) щелочная очистка.
10. Очистка, применяемая для удаления сернистых, азотистых и кислородных соединений путем восстановления этих соединений водородом с образованием легко растворимых в воде веществ сероводорода, аммиака и воды называется а) депарафинизация б) гидроочистка; в) ультрафильтрация.
11. Очистка, основанная на избирательной растворяющей способности органических жидкостей по отношению к различным типам углеводородов, называется а) ультрафильтрация; б) адсорбционная очистка; в) селективная очистка.
12. Очистка, которая заключается в обработке нефтепродуктов 96-98% раствором серной кислоты, называется а) селективной; б) кислотной очисткой; в) ультрафильтрация. 13. Очистка, при которой используются полупроницаемые перегородки (мембраны), называется

б) кислотной очисткой;

в) ультрафильтрация.

14. Компонеа) горючее;	ент топлива, окислян б) окислител	ощийся в процессе горения ъ; в) присадки.
а) углеводорб) нефтяные	ческому составу топ родные и неуглеводо и синтетические; газообразные.	ливо разделяют на родные;
а) бензины и	исходного сырья тог и дизельные топлива и синтетические.	пливо разделяют на а; б) углеводородные и неуглеводородные;
а) бензины и	двигателя топливо р и дизельные топлива газообразные.	
а) бензины и	атному состоянию т и дизельные топлива газообразные.	опливо разделяют на а; б) нефтяные и синтетические;
б) часть топли	ная стойкость бензиг	пределенными температурными пределами выкипания.
а) о количес б) о наличис	онный состав позвол тве механических пр в водорастворимых в испарения бензина	римесей в топливе;
лодного дви	ии в топливе голові гателя, судят по б) t 10%;	ных (пусковых) фракций, от которых зависит легкость пуска хов) t 90%.
	вность прогрева, уст гь зависят от б) t 10%;	гойчивость работы на малой частоте вращения коленчатого вала и в) t 90%.
о мощности судят по	, развиваемой двига	ых фракций, об интенсивности и полноте сгорания рабочей смеси, телем, и количестве расходуемого топлива, об износах двигателя,
а) t _{н.к.} ;	б) t 50%;	B) t 90%.
а) ниже темб) труднее о	пература начала кипо н испаряется, и тем в	нных паров топлива, тем ения; медленнее происходят пуск двигателя; стрее происходят пуск двигателя.
25. Коэффиі	циент избытка возду	vxa a , - это

а) разница между количеством воздуха имеющегося в смеси L_6 и теоретически необходимым L_0 ; б) отношение имеющегося количества воздуха в смеси L_6 к теоретически необходимому для пол-

ного сгорания топлива L_{θ} ; в) отношение теоретически необходимого количества воздуха L_{θ} для полного сгорания топлива к имеющемуся в смеси L_{θ} .
26. Топливо — воздушная смесь называется «бедной» а) при $a < 1$; б) при $a > 1$; в) при $a = 1$.
27. Топливо — воздушная смесь называется «стехиометрической» а) при $a > 1$; б) при $a < 1$; в) при $a = 1$.
28. Топливо — воздушная смесь называется «обогащенной» а) при $a < 1$; б) при $a > 1$; в) при $a = 1$.
 29. Диапазоном воспламеняемости топлива – это а) разность между нижним и верхним пределами воспламеняемости; б) отношение между нижним и верхним пределами воспламеняемости; в) произведение между нижним и верхним пределами воспламеняемости.
30. В качестве пусковых жидкостей для бензинов и дизельных топлив применяют а) этиленгликоль; б) диэтиловый эфир; в) изооктан.
31. Комплекс физико-химических превращений смеси топлива с воздухом, сопровождающийся интенсивным выделением тепла и излучением света — это а) горение; б) воспламенение; д) самовоспламенение.
32. Детонация – это а) управляемое воспламенение рабочей топливо - воздушной смеси; б) разделений топлива на фракции; в) неуправляемое воспламенение рабочей топливо - воздушной смеси.
33. К явлениям, не связанным с детонаций, относитсяа) калильное зажигание;б) воспламенение рабочей смеси от искры свечи зажигания;в) зажигание тлеющим нагаром.
34. Детонационная стойкость бензина оценивается а) октановым числом; б) цетановым числом; в) коэффициентом избытка воздуха.
35. Самовоспламеняемость дизельного топлива оценивается а) коэффициентом избытка воздуха: б) октановым числом; в) цетановым числом.
36. Эталонное топливо для определения октанового числа а) смесь октана с α-метилнафтолином; б) смесь изооктана с нормальным гептаном; в) смесь цетана с α-метилнафтолином.
37. Эталонное топливо для определения цетанового числа а) смесь цетана с α-метилнафтолином; б) смесь октана с α-метилнафтолином; в) смесь цетана с нормальным гептаном.

б) моторный, аналитический;

38. Методы определения октанового числа....

а) моторный, исследовательский;

39. Чувствительность бензина – это а) диапазон воспламеняемости; б) разность между ОЧМ и ОЧИ; в) отношение ОЧМ к ОЧИ. 40. Антидетонаторы – это а) ингибиторы коррозии; б) присадки окислители (этил, пропил); в) металлорганические соединения.
41. Функция антидетонаторов а) повышение ОЧ бензинов; б) повышение ЦЧ дизельных топлив; в) понижение детонационной стойкости бензина.
42. Кристаллизация высокоплавких углеводородов при низких температурах, а также испарения легких фракций при высоких температурах - а) изменение химической стабильности; б) изменение физической стабильности; в) и первый и второй варианты ответов правильные.
43. Плотные продукты окислительных превращений на горячих поверхностях металла — это а) нагар; б) лаки; в) осадки.
44. Липкие, мазеподобные вещества темно-коричневого или черного цвета, состоящие из продуктов низкотемпературного окисления углеводородов, продуктов уплотнения, механических примесей и воды — это а) нагар; б) лаки; в) осадки.
45. Твердые продукты отложений, образующиеся на поверхности днища поршня и верхней части цилиндра, форсунке и выпускных клапанах а) нагар; б) лаки; в) осадки.
46. Автомобильные бензины относят к разряду а) ГЖ; б) ЛВЖ; в) и первый и второй варианты ответов правильные.
47. Дизельные топлива относят в разряду a) ГЖ; б) ЛВЖ; в) и первый и второй варианты ответов правильные.
48. Температуру, при которой теряется физическая однородность топлива вследствие образования микрокристаллов наиболее высокоплавких углеводородов и воды, называют а) температурой кристаллизации; б) температурой помутнения; в) температурой застывания.
49. Температуру, при которой кристаллы в топливе обнаруживаются невооруженным глазом, называют а) температурой помутнения; б) температурой застывания; в) температурой кристаллизации.
50. Температуру, при которой происходит сращивание кристаллов и топливо теряет подвижность, называют а) температурой кристаллизации; б) температурой застывания; в) температурой помутнения. 51. Оптимальное цетановое число для быстроходных двигателей а) 45 – 50; б)90; в) 70.

в) исследовательский, аналитический.

a) 273 K; б) 500 K; в) 373 K.
66. При повышении температуры вязкость моторного масла а) уменьшается; б) увеличивается в) остается на том же уровне.
67. Индекс вязкости выше у а) летнего моторного масла; б) всесезонного масла; в) зимнего моторного масла
68. Моющие свойства моторных масел. а) способность масла препятствовать (замедлять) образованию отложений различного рода осадков; б) способность масла смывать лаковые отложения; в) способность вспениваться.
69. Склонность масла к пенообразования увеличивается а) с уменьшением вязкости; б) с увеличением вязкости; в) при введении антипенных присадок.
70. Аэрированное масло обладает а) лучшими смазывающими способностями; б) пониженной коррозионной способностью в) меньшей химической стабильностью.
71. Атиокислительные свойства масел – это способность масла предотвращать а) окисление конструкционных материалов; б) окисление топлива; в) собственное окисление.
72. Качественные изменения масла, а) старение масла; б) угар масла; в) регенерация масла.
73. Количественные изменения, а) угар масла; б) старение масла; в) регенерация масла.
74. Для нефорсированных двигателей масла обозначаются а) Б; б) А; в) В.
75. Регенерация масла — это а) процесс смены масла; б) процесс восстановления свойств масла; в) процесс окисления.
76. В качестве твердой слоистой смазки используются а) мел; б) сульфат цинка; в) графит.
77. Консистентные смазки - жидкие масла, специальным образом загущенные, сросшиеся кристаллы загустителя образующие непрерывный каркас — это а) жидкие консистентные смазки; б) полужидкие консистентные смазки; в) пластичные консистентные смазки.
78. Консистентные смазки - жидкие масла, специальным образом загущенные, когда связь между кристаллами каркаса легко нарушаются под действием небольших сил и затем восстанавливают-

а) полужидкие консистентные смазки; б) пластичные консистентные смазки;

ся вновь — это....

- в) жидкие консистентные смазки.
- 79. Низкотемпературная охлаждающая жидкость антифриз это смесь
- а) этиленгликоля с водой; б) глицерина с водой; в) этилбензола с водой.
- 80. При приготовлении кислотного аккумуляторного электролита необходимо...
- а) только воду вливать в кислоту; б) только кислоту вливать в воду; в) нет разницы.
- 81. Прибор для определения плотности нефтепродукта
- а) ареометр; б) вискозиметр; в) установка для перегонки.
- 82. Основным вулканизирующим агентом для шинных резин служит....
- а) кислород;
- б) сера;
- в) фтор.
- 83. Прокачиваемостъ масла это
- а) это отношение действующего касательного напряжения к градиенту скорости
- б) отношение динамической вязкости жидкости к плотности при той же температуре
- в) определяется его расходом через узел трения
- 84. Динамическая вязкость это
- а) отношение действующего касательного напряжения к градиенту скорости
- б) определяется его расходом через узел трения
- в) отношением вязкости масла при 50 С к вязкости при 100 С.
- 85. Кинематическая вязкость это
- а) это отношение действующего касательного напряжения к градиенту скорости
- б) отношение динамической вязкости жидкости к плотности при той же температуре
- в) определяется его расходом через узел трения
- 86. Сжиженные газообразные топлива
- а) смесь пропана и бутана технических зимняя б) лигроин в) метан
- 87. Сжатые газообразные топлива
- а) смесь пропана и бутана технических зимняя б) лигроин в) метан
- 88. Консервационные масла используются
- а) при длительном хранении двигателя для защиты от коррозии
- б) для кратковременного хранения деталей
- в) при работе двигателя при повышенных температурах
- 89. Кристаллические вещества, обладающие смазывающими свойствами
- а) композиционные смазочные материалы б) твердые слоистые смазки
- в) консистентные смазки
- 90. Достоинства воды, как охлаждающей жидкости
- а) отсутствие токсичности б) высокая температура замерзания в) жесткость
- 91. Крекинг-процесс проводят с целью
- а) очистки топлива от смолистых соединений
- б) для увеличения количества топливных фракций в) антикоррозионной защиты
- 92. Каталитический риформинг
- а) перестройка молекул, что ведет к образованию ароматических углеводородов

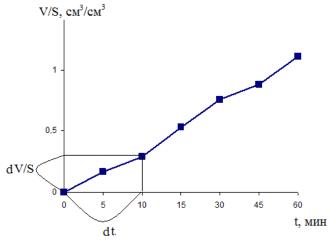
- б) расщепления (деструкции) тяжелых углеродных молекул на более легкие
- в) нейтрализация кислотных продуктов
- 93. Объем потерь топлива при перегонке (определение фракционного состава)
- а) характеризует смазывающие свойства топлива
- б) характеризует кислотность топлива
- в) характеризует склонность бензина к испарению при транспортировании и хранении
- 94. Кислотность топлива это
- а) количество кислоты находящийся в топливе
- б) количество щелочи, необходимого для нейтрализации органических кислот, находящихся в топливе
- в) и первый и второй варианты правильные
- 95. Средней скоростью распространения фронта пламени при нормальном сгорании рабочей смеси
- a) 25 40 m/c 6) 2500 3000 m/c B) 500 1500 m/c
- 96. Способ повышения детонационной стойкости бензинов
- а) введение дисперсантов б) прямая перегонка бензина
- в) введением добавок углеводородных веществ (спиртов, эфиров, изооктана, изопентана, толуола)
- 97. Полиалкиленгликолевые масла.
- а) минеральные масла б) синтетические масла в) полусинтетические масла
- 98. В процессе старения моторного масла
- а) увеличивается щелочное число
- б) уменьшается кислотное число
- в) увеличивается кислотное число
- 99. Комбинация отдельных видов твердых смазок, обеспечивающая оптимальное сочетание их смазывающих свойств, механической прочности и обрабатываемости
- а) твердые слоистые смазки
- б) композиционные смазочные материалы
- в) консистентные смазки
- 100. Охлаждающие жидкости
- а) вода
- б) серная кислота
- в) диэтиловый эфир

8семестр

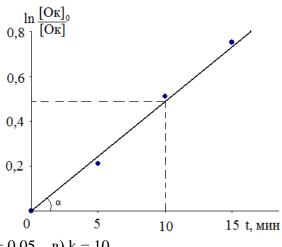
- 1. Причиной коррозии является
- а) высокая температура; б) высокая влажность;
- в) термодинамическая неустойчивость металла в окружающей среде.

- 2. Примером положительного коррозионного эффекта является...
- а) разрушение металлических отбросов; б) загрязнение окружающей среды;
- в) нарушение функций систем.
- 3. Самопроизвольно протекают процессы, если выполняется условие...
- a) $\Delta G = 0$. 6) $\Delta G > 0$; b) $\Delta G < 0$.
- 4. Термодинамическое равновесие возникает, если выполняется условие
- a) $\Delta G > 0$. 6) $\Delta G = 0$; b) $\Delta G < 0$.
- 5. Самопроизвольно не протекают процессы, если выполняется условие
- a) $\Delta G = 0$. 6) $\Delta G > 0$; b) $\Delta G < 0$.
- 6. Вид коррозии, когда один из компонентов (или одна из структур) сплава разрушается, а остальные практически остаются без изменения называется
 - а) сплошной; б) избирательной; в) межкристаллитной.
 - 7. Коррозионное растрескивание это....
 - а) межкристаллитная коррозия; б) эрозия; в) транскристаллитная коррозия.
 - 8. По условиям эксплуатации коррозию подразделяют на:
 - а) электрокоррозию, коррозионную кавитацию, коррозионную усталость;
 - б) сплошную; избирательную; поверхностную;
 - в) газовую, почвенную, жидкостную.
 - 9. По виду коррозионной среды коррозию подразделяют на:
 - а) электрокоррозию, коррозионную кавитацию, коррозионную усталость;
 - б) сплошную; избирательную; поверхностную;
 - в) газовую, почвенную, жидкостную
 - 10. По характеру разрушения коррозию подразделяют на:
 - а) электрокоррозию, коррозионную кавитацию, коррозионную усталость;
 - б) газовую, почвенную, жидкостную;
 - в) сплошную; избирательную; подповерхностную
- 11. Разрушение поверхности металла при одновременном воздействии коррозионной среды и постоянных или временных напряжений называется
 - а) коррозионной кавитацией; б) коррозионной усталостью;
 - в) коррозией под напряжением
 - 12. Неравномерная коррозия может быть
 - а) химическая; б) местная; в) газовая
 - 13. Местная коррозия может быть
 - а) кислотная; б) пресноводная; в) пятна
- 14. Разрушении металла на отдельных участках защитного покрытия, например, лакокрасочного
 - а) подповерхностная; б) транскристаллитная; в) местная
 - 15. Водородная коррозия это
 - а) газовая коррозия; б) химическая коррозия;

- в) и первый и второй варианты правильные.
- 16. Процесс разрушения металлической поверхности под действием внешней среды, протекающий по механизму химической гетерогенной реакции это....
 - а) коррозионная кавитация; б) химическая коррозия.;
 - в) электрохимическая коррозия
 - 17. Жидкостная коррозия это
 - а) кислотная коррозия б) карбонильная коррозия
 - в) микробиологическая коррозия.
 - 18. Наиболее распространенная коррозия автомобиля
 - а) межкриссталитная; б) электрохимическая; в) почвенная.
- 19. Одновременное коррозионное и механическое воздействие агрессивной среды, когда пузырьки пара, образовавшиеся при пониженном давлении, схлопываются
 - а) коррозионная кавитация; б) коррозионную усталость;
 - в) коррозия под напряжением.
 - 20. По виду процесса коррозию подразделяют на:
 - а) электрокоррозию, коррозионную кавитацию, коррозионную усталость;
 - б) химическая, электрохимическая;
 - в) сплошную; избирательную; поверхностную
 - 21. К жидкостям электролитам относятся
 - а) вода; б) бензин; в) расплавленная сера.
 - 22. К жидкостям неэлектролитам относится....
 - а) бензин; б) раствор кислоты; в) вода.
- 23. Увеличение рабочей поверхности, не покрытой отложениями продуктов коррозии,
 - а) является одним из путей интенсификации процесса коррозии;
 - б) является одним из путей самоторможения процесса коррозии;
 - в) тормозит процесс разрушения.
 - 24. Процессы окисления металлов в органической среде протекают
 - а) так же, как и в водных средах; б) в диффузионном режиме;
 - в) в кинетическом режиме
 - 25. Газовая коррозия это распространенный вид
 - а) избирательной коррозии; б) электрохимической коррозии;
 - в) химической коррозии.
 - 26. Чтобы оксидная пленка обладала защитными свойствами, она должна
 - а) иметь хорошее сцепление с металлом; б) иметь высокую растворимость;
 - в) быть пористой.
- 27. Оксидная пленка на металле может быть сплошной в том случае, если выполняется условие:


- 28. Ионизация адсорбированного кислорода это стадия
- а) образования не сплошной оксидной пленки;
- б) образования сплошной оксидной пленки;
- в) протекающая в обоих процесса.
- 29. Линейный закон роста пленки, $\Delta m = k_1 \cdot \tau$,
- а) характерен в процессе образования сплошной оксидной пленки;
- б) характерен в процессе образования не сплошной оксидной пленки;
- в) и первый и второй варианты правильные.
- 30. У сплошных пленок скорость роста подчиняется
- а) параболическому закону, $\Delta m^2 = k_2 \cdot \tau$;
- б) линейному закону, $\Delta m = k_1 \cdot \tau$,;
- в) квадратному уравнению, $k_1 \Delta m^2 + k_2 \Delta m = k_1 k_2 \tau$.

Раздел (тема) дисциплины: 8 Средства защиты автомобилей от коррозии


- 31. Лимитирующая стадия химическое взаимодействие
- а) при образования сплошной оксидной пленки;
- б) при образовании не сплошной оксидной пленки;
- в) в обоих процесса.
- 32. Зависимость электродного потенциала от концентрации ионов металла в растворе выражается:
 - а) уравнением Нернста; б) уравнением Аррениуса; в) уравнением Эванса
 - 33. Зависимость скорости роста оксидной пленки от времени
 - а) уравнением Нернста; б) уравнением Аррениуса; в) уравнением Эванса
 - 34. Какой процесс протекает самопроизвольно...
 - а) $\Delta G = 0$. кДж/моль б) $\Delta G = -56$ кДж/моль в) $\Delta G = 345$ кДж/моль
 - 35. Зависимость скорости коррозии от температуры выражается:
 - а) уравнением Нернста; б) уравнением Аррениуса; в) уравнением Эванса.
 - 36. Водородная коррозия приводит:
 - а) к образованию прочной пленки на поверхности металла;
 - б) к хрупкости, потере прочности и пластичности металла;
 - в) к потере массы.
 - 37. Сернистые газы, как продукты сгорания топлива наиболее опасны
 - а) при наличии паров воды; б) при высокой температуре;
 - в) при высокой скорости движения.
 - 38. Пентоксид ванадия V_2O_5 продукт сгорания топлива
 - а) полностью расходуется при окислении
 - б) практически не расходуется в процессе окисления
 - в) не участвует в процессе разрушения металлов
 - 39. Глушитель и выхлопная труба преимущественно изготовляют из конструкци-

онной углеродистой стали или из легированной, устойчивой к.

- а) газовой коррозии б) жидкостной коррозии в) атмосферной коррозии
- 40. При взаимодействии металлов с хлором и хлористым водородом
- а) образуется защитная пленка из продуктов реакции
- б) образуется не защитная пленки из продуктов реакции
- в) не образуется никакой пленки
- 41. Карбонильная коррозия это
- а) газовая коррозия;
- б) разрушение металлов под воздействием газа СО;
- в) и первый и второй варианты правильные.
- 42. Действие водорода на металлы при высоких температурах и давлении
- а) очень опасно; б) приводит к образованию защитной пленки;
- в) не опасно.
- 43. Определение скорости коррозии графическим дифференцированием.

- а) 10 б) 0,25 в) 0,025
- 44. Электрохимическая коррозия возможна только тогда, когда
- а) на поверхности металла нет электролита;
- б) на поверхности металла имеется электролит;
- в) металл нагрет до определенной температуры.
- 45. Восстановлением называется реакция, протекающая....
- а) с поглощением электрона; б) с выделением электрона;
- в) без перемещения электрона.
- 46. Окислением называется реакция, протекающая....
- а) с поглощением электрона; б) с выделением электрона;
- в) без перемещения электрона.
- 47. Ток через электролит переносится
- а) ионами и; б) протонам; в) электронами.
- 48. Определение константы скорости окисления металла графическим способом (представлен график анаморфозы)

- a) k = 0.5 6) k = 0.05(B) k = 10
- 49. Электролизер
- а) электрохимическая ячейка, в которой под действием внешнего электрического тока, один электрод покрывает поверхность другого
 - б) электрохимическая ячейка, которая выделяет ток
 - в) электрохимическая ячейка, гальванический элемент
- 50. Переход металла в раствор в виде гидратированных ионов с оставлением эквивалентного количества электронов в металле
 - а) гидротации процесс;
- б) катодный процесс;
- в) анодный процесс.
- 51. Ассимиляция избыточных электронов в металле какими-либо деполяризаторами (атомами, молекулами или ионами раствора).
 - а) анодный процесс;
- б) катодный процесс в) гидротации процесс.
- 52. Количество вещества, выделившегося во время электродной реакции на электроде
- а) прямо пропорционально количеству тока, прошедшего через поверхность электрода;
- б) обратно пропорционально количеству тока, прошедшего через поверхность электрода;
 - в) равно разности электродных потенциалов.
- 53. Электрохимическая ячейка, способная сама производить электрический ток, называется.....
 - а) электролизером; б) ионизатором; в) гальваническим элементом.
 - 54. Биметаллические элементы
 - а) в которых электроды образованы разными металлами;
- б) материал электродов одинаков, но концентрации (активности) веществ, участвующих в реакциях у электродов, различны;
- в) материал электродов одинаков и состав электролита внутри элемента постоянен, но температура у электродов различная.
 - 55. Термогальванические элементы
- а) материал электродов одинаков, но концентрации (активности) веществ, участвующих в реакциях у электродов, различны;

- б) материал электродов одинаков и состав электролита внутри элемента постоянен, но температура у электродов различная;
 - в) в которых электроды образованы разными металлами.
 - 56. Концентрационные элементы
- а) материал электродов одинаков и состав электролита внутри элемента постоянен, но температура у электродов различная;
 - б) в которых электроды образованы разными металлами;
- в) материал электродов одинаков, но концентрации (активности) веществ, участвующих в реакциях у электродов, различны .
- 57. Электродвижущая сила является мерой движущей силы химической реакции это
 - а) сумма электрических потенциалов между электродами;
 - б) разность электрических потенциалов между электродами;
 - в) отношение электрических потенциалов между электродами.
 - 58. Высокий окислительно-восстановительный потенциал означает, что
 - а) что раствор обладает слабыми окислительными свойствами;
 - б) что раствор обладает сильными окислительными свойствами
 - в) что раствор не обладает окислительными свойствами.
 - 59. Благородный металл это металл, которому соответствует...
 - а) низкий стандартный потенциал; б) нулевой стандартный потенциал;
 - в) высокий стандартный потенциал.
 - 60. Электродвижущую силу измеряют
 - а) потенциометр; б) амперметр; в) ареометр.
 - 61. Нормальный водородный электрод сравнения имеет потенциал равный
 - а) -1; б) ноль; в) +1.
- 62. Связь между электродным потенциалом и активностью ионов металла в растворе описывается
 - а) уравнением Аррениуса; б) уравнением Нернста; в). уравнением Эванса
 - 63. По значениям потенциалов металлов
 - а) нельзя предсказать коррозионную стойкость металлов;
 - б) можно предсказать коррозионную стойкость металлов;
 - в). можно рассчитать скорость коррозии
 - 64. Zn $| Zn^{2+} | | Ag^+ | Ag$ схема гальванического элемента
 - а) Zn является анодом; б) Zn является катодом; в) Zn²⁺- является анодом;.
 - 65. Изменение электродного потенциала называют:
 - а) деполяризацией; б) ионизаций; в) поляризацией.

66.
$$E = E^0 + \frac{RT}{nF} \cdot 2,303 lga_{Me^{n+}}$$

- а) уравнением Нернста; б) уравнением Аррениуса; в). уравнением Эванса
- 67. При изменении электродного потенциала
- а) повышается сила коррозионного тока; б) снижается сила коррозионного тока;

в) сила коррозион	нного тока не меняе	тся.		
68. Явление аном ных окислителей называ		ньшения ско	орости коррозии в растворах сил	ΙЬ-
а) пассивацией;	б) поляриза	цией; в	з) перепассивацией.	
	синетика - это наука			
а) об электрохим	ических процессах;	б) о скорос	ти химической реакции; в) о вод	ιe.
	сти структуры мета		еленных условиях	
	дповерхностной кор			
б) не являются п	ричиной его корроз	вии; в) явля	ются причиной его коррозии	
	рованная поверхно	СТЬ		
а) менее стойкая				
б) не оказывает в	лияния на процесс н	коррозии;	в) более стойкая к коррозии	
			асыщенных растворах,	
	разбавленных; б) б	ольше чем в	разбавленных;	
в) одинакова как	и в разбавленных;.			
73. На кинетику	процессов электро	литической	коррозии оказывает влияние ги	[Д-
ратация				
	цесс коррозии; б) у	ускоряет про	оцесс коррозии;	
в) практически не	е оказывает			
74. Среда являето	ся кислой, если водо	родный пока	азатель среды	
	б) pH < 7;		•	
75. Необходимо	ли при конструиро	вании исклю	очать контакт разнородных мета	۱Л-
лов в электролите?				
а) нет; б) д	ца; в) не обя	язательно.		
	цействие коррозион			
		выносливост	ги металла, прочность и пласти	Ч-
ность металлических до				
	дел выносливости	металла, пр	очность и пластичность металл	И-
ческих деталей;	эл рицослирости м	этаппа проц	иность и пластичность металлич	10
ских деталей	л выносливости мо	стапла, проч	пность и пластичность металлич	1 C -
77. Критическая	впажность -			
		озия перехо:	дит в жидкостную, протекающу	νю
по электрохимическом		₋		
<u> </u>	•	я переходит	г в жидкостную, протекающую	по
электрохимическому м	_			
		ия переходи	ит во влажную, протекающую	ПО
электрохимическому м		1		
/8. Наиболее агр	ессивная категория	атмосферы д	для хранения, транспортирования	łИ
эксплуатации автомобил а) промышленная		сая;	b) com chod	
а) промышленнах	і, б) морсі	кая,	в) сельская.	
79. Наибольший	коррозионный эффе	ект наблюдае	ется при	

а) суточных колебаний температур; б) годовых колебаниях температур; в) постоянной температуре. 80. Наибольший коррозионный эффект наблюдается при хранении автомобиля а) в отапливаемом, проветриваемом гараже; б) в отапливаемом, не проветриваемом гараже; в) в не отапливаемом, проветриваемом гараже. 81. Испытания, в которых образцы различного типа исследуют в контролируемых условиях, близким к условиям эксплуатации называются: а) полевыми; б) эксплуатационными; в) лабораторными. 82. Испытания, которые позволяют установить интенсивность и характер коррозионного процесса называют а) эксплуатационными; б) количественными; в) качественными 83. Метод количественного анализа, который позволяет определить разность массы образца до, и после коррозии называется а) металлографическим; б) потенциометрическим; в) гравиметрическим. 84. Сдвиг электродного потенциала к более низкому значению называется а) катодной защитной; б) анодной защитной; в) перепассивацией. 85. Покрытия, имеющие в определенных коррозионных средах более отрицательный электродный потенциал, чем потенциал защищаемого металла называются б) анодными; а) катодными; в) фосфатными. 86. Покрытия, имеющие в определенных коррозионных средах более положительный электродный потенциал, чем потенциал защищаемого металла называются а) катодными; в) фосфатными. б) анодными; 87. В случае повреждения анодного покрытия или при наличии в покрытии пор а) происходит разрушение, как металла основания, так и металла покрытия б) происходит разрушение металла основания, а не самого покрытия; в) происходит разрушение не металла основания, а самого покрытия. 88. В случае повреждения катодного покрытия или при наличии в покрытии пор а) происходит разрушение металла основания, а не самого покрытия; б) происходит разрушение, как металла основания, так и металла покрытия; в) происходит разрушение не металла основания, а самого покрытия 89. Электролитические покрытия получают а) погружением в горячий расплав; б) электроосаждением; в) диффузионным насыщением поверхности. 90. Покрытия методом замещения (иммерсионный метод) получают а) химическим взаимодействием; б) электроосаждением; в) диффузионным насыщением поверхности.

91. Горячие металлические покрытия

а) электроосаждением; б) погружением в расплав;

в) диффузионным насыщением поверхности.

- 92. При нанесение металлических покрытий на металлическую основу путем погружения деталей в расплав является
- а) металл или сплав покрытия должен плавиться при относительно низкой температуре, чем металл подложки;
- б) металл или сплав покрытия должен плавиться при относительно высокой температуре, чем металл подложки;
- в) металл или сплав покрытия должен плавиться при относительно близкой температуре с металлом подложки.
 - 93. К основным недостаткам метода погружения относится
 - а) высокая стоимость;
 - б) малый срок эксплуатации таких поерытий;
 - в) высокий расход защитных металлов.
 - 94. Покрытия, полученные путем погружения деталей в расплав называются
 - а) диффузионными металлическими покрытиями;
 - б) горячими металлическими покрытиями;
 - в) химическими металлическими покрытиями.
 - 95. Металлизация распылением
 - а) плазменное покрытие; б) электролитическое покрытие. в) плакирование;
 - 96. Силицирование
 - а) вакуумное покрытие; б) электроосаждение;
 - в) диффузионное насыщение поверхности
 - 97. Покрывающий металл переводится в паровую фазу путем испарения
 - а) диффузионное насыщение поверхности;
 - б) вакуумное покрытие в) электроосаждение;
- 98. Механический метод защиты металлов от коррозии, при котором покрывающий металл прикатывают к материалу основы в холодном или горючем состоянии называется
 - а) покрытием с наклепом; б) диффузионным насыщением;
 - в) плакированием.
 - 99. Ингибитор коррозии это вещество, которое
 - а) повышает прочность, образовавшейся защитной оксидной пленки;
- б) уменьшает скорость коррозии при добавлении в коррозионную среду или в сам материал;
- в) увеличивает скорость коррозии при добавлении в коррозионную среду или в сам материал.
 - 100. При каких условиях автомобиль более подвержен коррозионному воздействию
 - а) в закрытом отапливаемом помещении;
 - б) в проветриваемом помещении;
 - в) под навесом.

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по оч-

но-заочной и заочной формам обучения — 60 баллов (установлено положением Π 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

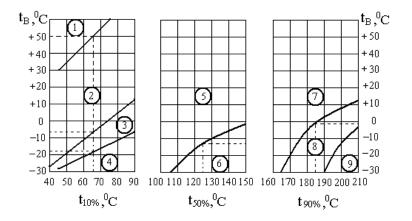
Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале (для зачета) или в оценку по 5-балльной шкале (для экзамена) следующим образом:

Соответствие 100-балльной и дихотомической шкал

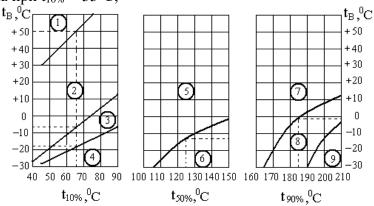
Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале	
100–50	зачтено	
49 и менее	не зачтено	

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100–85	отлично
84–70	хорошо
69–50	удовлетворительно
49 и менее	неудовлетворительно


Критерии оценивания результатов тестирования:

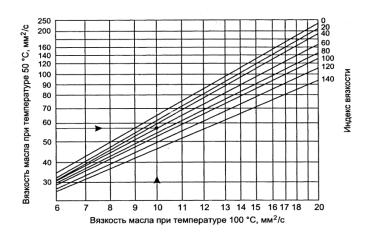
Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено – **2 балла**, не выполнено – **0 баллов**.


2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № 1

Определить температуру образования паровых пробок при эксплуатации бензина при $t_{10\%} = 60^{0}\mathrm{C};$

Определить температуру Обеспечение легкого пуска двигателя при эксплуатации бензина при $t_{10\%} = 55^{0}\mathrm{C};$


Компетентностно-ориентированная задача № 3

Определить температуру Обеспечение затрудненного пуска двигателя при эксплуатации бензина при $t_{10\%}=55^{0}\mathrm{C};$

Компетентностно-ориентированная задача № 4

Определить индекс вязкости по номограмме при $v50 = 58 \text{ мм}^2/\text{c};$, $v100 = 10 \text{ мм}^2/\text{c};$

Рассчитать массовую долю механических примесей в нефтепродуктах, если в коническую колбу массой $\mathbf{m}_{\kappa 0.06\mathbf{h}}$ поместили определенное количество нефтепродукта с плотностью $\boldsymbol{\rho}$ и взвесили ($\mathbf{m}_{\kappa 0.06\mathbf{h}}$ + \mathbf{n}_{po6a}), затем пропустили его через ряд мембранных фильтров (профильтровали), установленных в воронке. Известно, что масса мембранных фильтров равна $\mathbf{m}_{\phi и.06\mathbf{h}}$, а после фильтрования и высушивания вместе с примесями стала равна $\mathbf{m}_{\phi и.06\mathbf{h}}$, данные для расчетов в таблице 3.

Таблица - Экспериментальные данные

№	т колбы, Г	т колбы + проба, Г	т фильтров, Г	т фильтров + примеси, Г	ρ , K Γ /M ³
1	36,8501	140,4617	2,1009	3,5032	783

Компетентностно-ориентированная задача № 6

Провести анализ топлива на содержание водорастворимых кислот и щелочей, а также определить кислотность бензина, если известны следующие данные:

- нормальность щелочи 0,0Х, г-экв/л.;
- объем щелочи 0.5+(0.1*X) мл;
- объем пробы бензина 57+Х, мл;

Перечислить способы очистки топлив.

Компетентностно-ориентированная задача № 7

Провести эксплуатационную оценку бензина по данным фракционной перегонки с использованием номограмм. Если известны следующие экспериментальные данные: давление **P**, Па; температура окружающей среды \mathbf{t}^{0} C; температуры кипения топлива $\mathbf{t}_{\text{н.п.}}$; $\mathbf{t}_{5\%}$; $\mathbf{t}_{25\%}$; $\mathbf{t}_{45\%}$; $\mathbf{t}_{55\%}$; $\mathbf{t}_{75\%}$; $\mathbf{t}_{85\%}$; $\mathbf{t}_{\kappa.n.}$, C. Построить график перегонки бензина, а эксплуатационную оценку представить в виде таблицы 3.1. Данные для расчетов.

Таблица - Экспериментальные данные для расчетов

No	P·10 ³ ,	t	Темпе	Температура 0 С при количестве дистиллята, мл (%)							
$_{ m B}/_{ m B}$	Па	Ссреды	t _{н.п.}	t _{5%}	t _{15%}	t _{25%}	t45%	t55%	t75%	t _{85%}	t _{к.п.}
1	102,1	20	31	45	68	84	116	142	158	174	190

Компетентностно-ориентированная задача № 8

- 1. Определить расчетным методом Октановое число для бензинов с OЧ > 62 исходя из плотности и фракционного состава бензина ($t_{10\%}$, $t_{90\%}$ температуры 10 и 90 %ной отгонки фракций соответственно взять из самостоятельной работы 3).
- 2. Определить цетановое число дизельного топлива (ДТ), используя график (рисунок 4.2), если известны следующие данные.

Таблица – Исходные данные

No	Марка	Темпера-	Плотность	№	Марка	Темпера-	Плот-
	бензина	тура ки-	ДТ, р		бензина	тура ки-	ность ДТ,
		пения ДТ	г/см ³			пения ДТ	ρ
		t _{50%}				t _{50%}	г/см ³
1	A-76	0,865	250	21	A-76	0,865	220

Компетентностно-ориентированная задача № 9

Определить расход топлива на транспортную работу при известных условиях

Таблица – Исходные данные

No	Марка	Hs,	G_{rp}	Возраст	Пробе	Пробег АТС			
$_{\rm B/B}$	ATC	л/100км	, T	ATC/	общий	с гру-	регион	ce-	высота над
				ТИП		зом		зон	уровнем
				двига-					моря, м
				теля					-
1	ГАЗ-33021	16,85	1,5	5/Б	400	350	C-3	3	100

Компетентностно-ориентированная задача № 10

Провести сравнительный анализ потерь нефтепродуктов от испарения при наливе в цистерну двумя способами: открытой и закрытой струей.

Таблица - Исходные данные к расчету потерь от испарения

Поморожатуу	Номер варианта									
Показатели	1	2	3	4	5	6	7	8	9	10
Паспортное давление насы-щенных паров $P_{38}\cdot 10^3$, Па	65,7	58,1	49,0	58,8	68,6	78,4	60,8	54,3	55,5	58,3

Компетентностно-ориентированная задача № 11

Рассчитать потери бензина от малых и больших "дыханий" резервуара, если известно:

Резервуар — 10000+X м³; степень заполнения резервуара — 0.7; температура начала кипения: $t_{\text{н.к.}}$ (сходные данные из задачи 3); среднее атмосферное давление: $P_a = 10^5 \Pi a$; Упругость паров $P_V 1 = (0.25+0.X) \cdot 10^5 \Pi a$ и $P_V 1 = (0.41+0.X) \cdot 10^5 \Pi a$. Плотность 8314 кг/м^3 .

Таблица – Исходные данные

No	t_r^{\min}	t_r^{max}	№	t _r ^{min}	t_r^{max}
1	10	40	21	10	33

Компетентностно-ориентированная задача № 12

Рассчитать кинематическую вязкость нефтепродукта, если известно время истечения его через капилляр вискозиметра при различных температурах, а именно при $t=50^{0}C$: τ_{1} ; τ_{2} ; τ_{3} ; при $t=100^{0}C$: τ_{1} ; τ_{2} ; τ_{3} ; постоянная вискозиметра C=0,3159 мм $^{2}/c^{2}$. Определить индекс вязкости (ИВ) по номограмме (рис. 5). Выводы оформить в виде таблицы 4. Данные для расчетов в таблице 5.

Таблица - Экспериментальные данные

Ma	Время истечения топлива, с									
No p/p		При 50 ⁰ С		При 100 ⁰ C						
B/B	$ au_1$	$ au_2$	τ3	$ au_1$	$ au_2$	τ3				
1	152,0	154,0	150,2	31,6	32,0	31,5				

Компетентностно-ориентированная задача № 13

Определить массовую (W) и объемную (W₁) долю воды в масле в процентах, если известны следующие данные: Объем воды в ловушке 0,4+0,1*X, масса пробы 308+2*X, объем пробы 602+3*X.

Рассчитать количество отработанных масел на автотранспортном предприятии.

Таблица – Исходные данные

		1	r 1 r 1						
$N_{\underline{0}}$	Кол-во	H_{S} ,	Среднегодо-	Тип	№	Кол-во	H_{S} ,	Среднегодо-	Тип
$_{\rm B}/_{\rm B}$	ATC,	л/100	вой пробег,	двига-	$_{ m B}/_{ m B}$	ATC,	л/100	вой пробег,	дви-
	ШТ	KM	тыс. км/год	теля		ШТ	KM	тыс. км/год	гате-
									ЛЯ
1	17	16,85	18,4	Б	26	24	16,85	12,4	Б

Компетентностно-ориентированная задача № 15

Определить состав и температуру застывания антифриза.

Таблица - Экспериментальные данные

N	Температура	Плот-	Темпера-	N	Температу-	Плотность,	Темпера-
Π/Π	измерения,	ность,	турная	Π/Π	ра измере-	$ρ$, $κΓ/m^3$	турная по-
	^{0}C	ρ, κΓ/m ³	поправка,		ния, ⁰ С		правка, ү
			γ				
1	27	1075	0,503	26	17	1111	0,467

Компетентностно-ориентированная задача № 16

Определить количество отработанных аккумуляторов и электролита на АТП, если известны следующие данные: плотность электролита 1,27 кг/л, эксплуатационный срок аккумулятора данного типа 3 года (Таблица 12)

Таблица – Исходные данные

№	Кол-во	так, кг	Vэл-та, л	n, шт	No	Кол-во	так, кг	Vэл-та,	n, шт
$_{\mathbf{B}}/_{\mathbf{B}}$	ATC,				$_{ m B}/_{ m B}$	ATC,		Л	
	ШТ					ШТ			
1	17	43	4,5	1	26	24	41	12	1

Компетентностно-ориентированная задача № 17

Определить скорость газовой коррозии металлической пластинки с известными геометрическими размерами ${\bf a}$, ${\bf 6}$, ${\bf 8}$ по изменению ее массы, если известно, что металл находился в атмосфере электрической печи при температуре 500^0 К ${\bf \tau}$ часов. Начальная масса металла ${\bf m_0}$, а после эксперимента стала ${\bf m_1}$. Написать уравнение реакции и сделать вывод о том, является ли оксидная пленка защитной.

Таблица - Экспериментальные данные для расчета

No n/n	Металл	тапп Масса образца	Конечная мас-	Время экспери-	Линейные размеры образца, см			
B/B		т 0, Г	са образца m _{1,} г	мента, $ au$	a	б	В	
1	Fe (III)	188,6400	188,6732	1,7	3,0	5,0	1,6	

Компетентностно-ориентированная задача № 18

Определить графическим способом дифференциальную скорость коррозии металла с известными геометрическими размерами (многовариантная задача 1) в кислой среде по объему выделившегося водорода: если известно количество выделившегося водорода V, см³ через определенные промежутки времени, а именно через 5, 10,15,30 и 40 минут.

Таблица - Данные для расчета

	таолице	і дапп	імс дли	pac icia							
№	К	оличест	во водор	одаV, с	ода V , см 3 № Количество водорода V , см 3						м ³
\mathbf{B}/\mathbf{B}	5	10	15	30	40	в/в	5	10	15	30	40
1	4	8	14	19	29	26	5	9	15	22	30

Определить константу скорости коррозии металла по изменению содержания окислителя в системе, через определенные промежутки времени, а именно через 10, 20, 30, 40 и 50 минут, если известны масса проб m_{np} , Γ и концентрации восстановителя V(Bc), мл. и начальная концентрация окислителя $[Ok]_0$ моль/кг.

Таблица - Данные для расчета

№ в	время									
		10	20	30	40	50	[Ок]0			
1	$m_{\pi p}$	0,20	0,129	0,138	0,129	0,096	0,052			
	V_{B}	1,3	0,5	0,35	0,2	0,07				

Компетентностно-ориентированная задача № 20

Определить ЭДС гальванического элемента представленного в таблице 8. В каком направлении будут перемещаться электроны во внешней цепи при концентрации участвующих в реакции ионов [X] и [Y] (в моль/кг).

Таблица – данные для расчета

№	Реакция	Концентрация ионов [X], моль/л	Концентрация ионов [Y], моль/л
1	2	3	4
1	Sn Sn ²⁺ Pb ²⁺ Pb	$[Sn^{2+}] = 0.0101$	$[Pb^{2+}] = 0,1001$

Компетентностно-ориентированная задача № 21

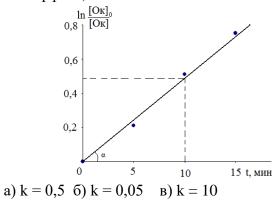
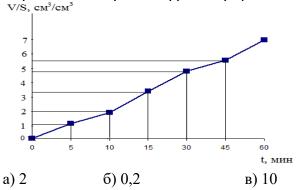

Электролитическим методом было нанесено покрытие из металла на стальную деталь площадь поверхности, которой равна ${\bf S}$. Электролиз вели в следующем режиме: плотность тока ${\bf i}_k$, продолжительность процесса ${\bf \tau}$. Определить толщину слоя покрытия, а также предполагаемую и фактически полученную массу выделившегося металла, если выход по току составляет ${\bf B}_T$

Таблица - Экспериментальные данные для расчета

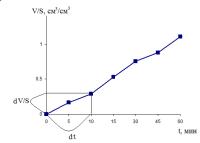

No	Металл	Поверхность по-	Плотность то-	Продолжитель-	Выход по току
$_{ m B/B}$	покры-	крываемой дета-	ка i _k , A/см ²	ность процесса т,	составляет Вт, %
	тия	ли S , г		час	
1	Al	187	0,01	1,7	60

Компетентностно-ориентированная задача № 22

Определение константы скорости окисления металла графическим способом (представлен график анаморфозы)

Определение скорости коррозии графическим дифференцированием при 10 мин.

Компетентностно-ориентированная задача № 24


Определить скорость газовой коррозии металлической пластинки площадью поверхности 0.0075 м^2 по изменению ее массы, если известно, что металл находился в атмосфере электрической печи 1.1 часа. Начальная масса металла 68,5400 г, а после эксперимента стала 68,5739 г.

Компетентностно-ориентированная задача № 25

Определить скорость газовой коррозии металлической пластинки площадью поверхности $0,0044~\text{m}^2$ по изменению ее массы, если известно, что металл находился в атмосфере электрической печи 1,5 часа. Начальная масса металла 68,5411~г, а после эксперимента стала 68,5739~г.

Компетентностно-ориентированная задача № 26

Определение скорости коррозии графическим дифференцированием. a) 10-60,025-60,0025

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностноориентированной задачи -6 баллов.

Балл, полученный обучающимся за решение компетентностноориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования. Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале (для зачета) или в оценку по 5-балльной шкале (для экзамена) следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале
100–50	зачтено
49 и менее	не зачтено

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100–85	отлично
84–70	хорошо
69–50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания решения компетентностноориентированной задачи:

- 6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.