Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Семичева Наталья Евгеньевна Должность: Заведующий кафедрой Дата подписания: 11.02.2025 11:35:27

МИНОБРНАУКИ РОССИИ

Уникальный программный ключ: 198cd4bc63e476f0e8ebed69026a51e0f4d.Юго-Западный государственный университет

УТВЕРЖДАЮ:

Заведующий кафедрой инфраструктурных

энергетических систем

Н.Е. Семичева

<u>(28)</u> 06 <u>2024</u> г.

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

<u>Электротехника</u>

(наименование дисциплины)

12.03.04 Биотехнические системы и технологии (код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕ-ВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Раздел (тема) № 1. Введение. Основные определения, законы и методы расчета электрических цепей

Вопросы собеседования при защите лабораторной работы «Исследование линии электропередачи постоянного тока»

- 1. От чего зависит падение напряжения в линии?
- 2. Объяснить вид характеристик линии передачи.
- 3. Какие режимы работы линии передачи Вы знаете?
- 4. От чего зависит ток короткого замыкания линии передачи?
- 5. При каком условии линия передачи передает нагрузке наибольшую мощность? Когда применяются линии, работающие в это режиме?
- 6. Как изменятся характеристики линии электропередачи, если еè выполнить из медного провода?
- 7. Как изменятся характеристики линии электропередачи, если вместо медного провода взять алюминиевый провод?
- 8. Как изменятся падение напряжения и потери мощности в линии передачи, если увеличить площадь сечения проводов?
- 9. Как изменятся падение напряжения и потери мощности в линии передачи, если увеличить напряжение в начале линии?

Раздел (тема) № 2. Анализ и расчет линейных цепей синусоидального тока

Вопросы собеседования при защите лабораторной работы «Исследование электрической цепи с последовательным соединением индуктивной катушки и конденсатора»

- 1. В каком случае при последовательном соединении индуктивной катушки и батареи конденсаторов ток будет отставать по фазе от напряжения или опережать его?
 - 2. При каких условиях возникает резонанс напряжений?
 - 3. Почему при резонансе напряжений ток в цепи будет максимальным?
- 4. От каких факторов зависит коэффициент мощности всей цепи и при каком условии он будет равен единице?
- 5. Потребляется или нет электрическая энергия от источника питания на создание магнитного и электрического полей при резонансе напряжений?
 - 6. Объяснить вид полученных кривых $I, U2, U3, cos \varphi, P, Q, S$ в функции X_C .

Вопросы собеседования при защите лабораторной работы «Исследование электрической цепи с параллельным соединением индуктивной катушки и конденсатора»

- 1. Как определить активную, реактивную и полную проводимость цепи?
- 2. В каких цепях и при каких условиях может возникнуть резонанс токов?
- 3. По какому признаку была найдена точка резонанса в экспериментах? Докажите правильность этого метода.
 - 4. Чему равен коэффициент мощности электрической цепи при резонансе токов?
 - 5. Где используется явление резонанса токов?
 - 6. Почему стремятся повышать коэффициент мощности электрических установок?
 - 7. Как влияет коэффициент мощности разветвленной цепи на величину общего тока?
- 8. Когда ток в неразветвленной части цепи отстает по фазе от напряжения и когда опережает напряжение?
- 9. Могут ли токи в ветвях электрической цепи превышать ток в неразветвленной части этой же цепи?
- 10. Объяснить векторные диаграммы для различных режимов работы экспериментальной установки (BL > BC, BL = BC, BL < BC).

Раздел (тема) № 3. Трехфазные цепи

Вопросы собеседования при защите лабораторной работы «Исследование трехфазной цепи при соединении потребителя звездой»:

- 1. В чем преимущества трехфазных цепей в сравнении с однофазными цепями?
- 2. Укажите области применения трехфазных цепей.
- 3. Чему равно отношение линейных и фазных напряжений в четырехпроводной цепи при соединении трехфазного приемника звездой? Откуда это видно?
- 4. Какое соотношение между линейными и фазными токами имеет место при соединении трèхфазного приемника звездой?
- 5. Какими будут фазные напряжения при обрыве одного линейного провода в четырèх- и трèхпроводной цепи?
- 6. Чему равны фазные напряжения в трехпроводной цепи при коротком замыкании одной из фаз?
- 7. Какова роль нейтрального провода? Почему в него не включают предохранители и разъединители?
 - 8. Когда необходим нейтральный провод?
- 9. Почему при наличии нейтрального провода отсутствует несимметрия фазных напряжений при несимметричной нагрузке?
- 10. Показать на схеме установки как измерить фазные и линейные напряжения приемника.
 - 11. К чему приведет обрыв нейтрального проводя при несимметричной нагрузке фаз?
- 12. Чему будут равны фазные напряжения при симметричной нагрузке, если фазу А замкнуть накоротко?
 - 13. Как определить ток в нейтральном проводе при несимметричной нагрузке?

Разделы (темы) № 8. Передаточная функция и частотные характеристики, № 9. Основы теории четырехполюсников, № 10 Частотозависимые цепи и электрические фильтры

Вопросы собеседования при защите лабораторной работы «Исследование RC-цепей»:

- 1. Дать определение четырехполюсника
- 2. Как и при каких условиях определяется коэффициент передачи четырехполюсника?
- 3. Что такое АЧХ электрической схемы?
- 4. Объяснить вид АЧХ интегрирующей и дифференцирующей цепей.
- 5. Как зависит от частоты сопротивление конденсатора?
- 6. Почему интегрирующую RC-цепь можно использовать как фильтр нижних частот?
- 7. Почему дифференцирующую RC-цепь можно использовать как фильтр верхних частот?
- 8. Что такое полоса пропускания электрического фильтра? Показать полосу пропускания на построенных АЧХ интегрирующей и дифференцирующей цепей.
 - 9. Почему интегрирующую RC-цепь называют интегрирующей и при каком условии?
- 10. Почему дифференцирующую RC-цепь называют дифференцирующей и при каком условии?

Раздел (тема) № 11. Трансформаторы

Вопросы собеседования при защите лабораторной работы «Исследование однофазного трансформатора»:

- 1. Что произойдет с трансформатором, если включить его на постоянное напряжение?
- 2. Какие функции выполняет магнитопровод в трансформаторе?
- 3. Чем вызвана необходимость применения магнитопровода?
- 4. Почему магнитопровод выполняют из ферромагнитного материала, а не из алюминия или пластмасе?
- 5. Почему магнитопровод выполняют из электротехнической, стали, а не из обычной конструкционной?

- 6. Может ли трансформатор работать без магнитопровода? Если да, то какие его параметры при этом изменятся и почему?
- 7. Для чего магнитопровод собирают из отдельных изолированных пластин электротехнической стали?
 - 8. Почему обмотки выполнят из медного и алюминиевого провода?
- 9. Почему первичную и вторичную обмотки размещают на одном стержне магнитопровода одну на другую?
- 10. Что нужно изменить в трансформаторе, чтобы его выходное напряжение уменьшилось (или увеличилось) в 2 раза?
- 11. Как изменятся напряжения, токи и мощности, если при неизменной нагрузке уменьшить число витков вторичной обмотки?
 - 12. Как взаимосвязаны токи первичной и вторичной обмоток?
- 13. Что произойдет, если при подключении трансформатора перепутать первичную и вторичную обмотки?
- 14. Что произойдет, если трансформатор, рассчитанный на частоту 50 Гц, включить в сеть с частотой 60 Гц, а рассчитанный на частоту 400 Гц в сеть 50 Гц?
- 15. Почему отличаются напряжения на выходе трансформатора в номинальном режиме и при холостом ходе?
- 16. Почему трансформатор проектируют так, чтобы напряжение вторичной обмотки в режиме холостого хода было бы на 5% больше номинального напряжения его нагрузки?
- 17. Как и почему изменяется напряжение на приемнике, подключенном к трансформатору, при изменении его мощности (сопротивления)?
- 18. Каким образом компенсируют изменение напряжения на нагрузке трансформатора при изменении еè мощности?
- 19. Почему трансформатор нежелательно держать включенным в сеть в режиме холостого хода?
- 20. Какие потери мощности и где имеют место в трансформаторе и как они зависят от величины нагрузки?
 - 21. Как опытным путем определить потери в трансформаторе?
- 22. Почему пренебрегают электрическими потерями энергии (потерями в обмотках) трансформатора при холостом ходе и магнитными потерями (потерями в магнитопроводе) в опыте короткого замыкания?
- 23. Почему в режиме холостого хода магнитопровод трансформатора нагревается, а обмотки практически нет?
- 24. Почему в опыте короткого замыкания обмотка трансформатора нагревается, а магнитопровод практически нет?
- 25. Чем отличается опыт короткого замыкания от аварийного режима короткого замыкания?

Шкала оценивания: 4-балльная.

Критерии оценивания:

- 4 балла выставляются обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ доказательствами в виде формул и рисунков (схем), актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя, отлично ориентируется в своем отчете по лабораторной работе.
- **3 балла** выставляются обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами и доказательствами в виде типовых формул и рисунков (схем), хорошо ориентируется в своем отчете по лабораторной работе.

- **2 балла** выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко излагает основные понятия и определения; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя, удовлетворительно ориентируется в своем отчете по лабораторной работе.
- **1 балл** выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки, однако представил отчет по лабораторной работе и удовлетворительно ориентируется в нем.

0 баллов выставляется обучающемуся, если он не представил отчет по лабораторной работе.

1.2 ВОПРОСЫ ДЛЯ КОНТРОЛЬНОГО ОПРОСА

Разделы (темы) № 2. Анализ и расчет электрических цепей с нелинейными элементами, № 5 Магнитные цепи

- 1. Что такое статическое сопротивление и как оно определяется?
- 2. Что такое дифференциальное сопротивление и как оно определяется?
- 3. Перечислите основные методы расчета цепей постоянного тока с нелинейными резистивными элементами.
 - 4. Для каких схем применяется метод пересечения характеристик?
- 5. В чем суть метода эквивалентных преобразований, используемого для расчета цепей с нелинейными резистивными элементами?
- 6. Какой порядок расчета цепи постоянного тока с нелинейным резистивным элементом методом эквивалентного генератора?
- 7. Какой участок вольт-амперной характеристики нелинейного элемента используют при расчете цепей с нелинейными элементами методом линеаризации?
 - 8. Что такое статический нелинейный элемент?
 - 9. Что такое динамический нелинейный элемент?
- 10. Какие методы применяются для расчета цепей переменного тока с нелинейными резистивными элементами?
 - 11. Что такое аппроксимация ВАХ нелинейного элемента?
 - 12. Чем вызвана необходимость применения магнитопровода?
- 13. Почему магнитопровод выполняют из ферромагнитного материала, а не из алюминия или пластмасе?
- 14. Почему магнитопровод выполняют из электротехнической, стали, а не из обычной конструкционной?
- 15. Для чего магнитопровод собирают из отдельных изолированных пластин электротехнической стали?
 - 16. Дать формулировку закона полного тока для магнитных цепей.
 - 17. Что такое магнитная цепь?
 - 18. Записать формулу закона Ома для магнитной цепи
 - 19. Записать формулу первого закона Кирхгофа для магнитной цепи
 - 20. Записать формулу второго закона Кирхгофа для магнитной цепи

Разделы (темы) № 12. Асинхронные двигатели, № 13 Машины постоянного тока

- 1. В каком случае обмотки статора ТАД соединяется звездой, а в каком треугольником? Как это осуществить на клеммной панели и к каким клеммам подсоединяется сеть?
 - 2. Какие способы пуска в ход ТАД существуют?
- 3. В каком случае возможно применение способа пуска ТАД переключением обмоток статора со звезды на треугольник? Как при этом изменяются и во сколько раз пусковые ток и момент?

- 4. Как устроен ТАД?
- 5. Расскажите принцип действия ТАД.
- 6. Дайте объяснение характера изменения механической характеристики ТАД?
- 7. Какие потери мощности и где имеют место в ТАД и как они зависят от величины нагрузки?
- 8. Объясните характер и причину изменения КПД, коэффициента мощности и потребляемого тока при изменении полезной мощности P_2 .
 - 9. Как изменить направление вращения (осуществить реверсирование) ТАД?
- 10. Какими способами регулируется частота вращения ТАД? Достоинства и недостатки этих способов.
 - 11. Расскажите устройство машины постоянного тока
 - 12. Расскажите принцип действия двигателя постоянного тока
- 13. Какие существуют обмотки возбуждения, в чем их отличие и как они соединяются? Как подразделяются двигатели при этом?
 - 14. Расскажите принцип действия генератора постоянного тока
 - 15. От каких физических величин зависит вращающий момент двигателя?
- 16. Как изменяется вращающий момент двигателя при изменении питающего напряжения?
 - 17. Как происходит процесс саморегулирования двигателя при изменении его нагрузки?
 - 18. Какова роль в двигателе ЭДС якоря и от каких физических величин она зависит?
 - 19. Почему при уменьшении тока в цепи возбуждения двигателя возрастает ток якоря?
 - 20. Во сколько раз и почему пусковой ток якоря отличается от номинального?
 - 21. Какими способами ограничивают пусковой ток?
 - 23. Дайте объяснение механической характеристики двигателя.
- 24. Какие потери мощности и где имеют место в двигателе и как они зависят от величины нагрузки?
- 25. Какими способами регулируется частота вращения двигателя? Достоинства и недостатки этих способов.
- 26. Какими способами изменяют направление вращения двигателя, почему происходит это изменение и какой способ более приемлем?

Шкала оценивания: 3-балльная.

Критерии оценивания:

- 3 балла выставляется обучающемуся, если он принимает активное участие в беседе по большинству обсуждаемых вопросов (в том числе самых сложных); демонстрирует сформированную способность к диалогическому мышлению, проявляет уважение и интерес к иным мнениям; владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, ораторскими способностями и правилами ведения полемики; строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; легко и заинтересованно откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 2 балла выставляется обучающемуся, если он принимает участие в беседе по основным обсуждаемым вопросам; корректно выслушивает иные мнения; в основном ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике нередко занимает позицию заинтересованного слушателя; строит в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; нередко теряется при возникновении неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

1 балл выставляется обучающемуся, если он принимает участие в беседе по наиболее простым обсуждаемым вопросам; корректно выслушивает иные мнения; неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике предпочитает занимать позицию заинтересованного слушателя; строит краткие, но в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; теряется при возникнове-

нии неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов выставляются обучающемуся, если он не владеет содержанием обсуждаемых вопросов или допускает грубые ошибки; пассивен в обмене мнениями или вообще не участвует в дискуссии; затрудняется в построении монологического высказывания и (или) допускает ошибочные высказывания; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

1.3 АУДИТОРНЫЕ КОНТРОЛЬНЫЕ РАБОТЫ

Раздел (тема) № 1 Введение. Основные определения, законы и методы расчета электрических цепей

Аудиторная контрольная работа «Расчет цепи постоянного тока»:

Использование метода контурных токов и метода эквивалентного генератора с проверкой составлением баланса мощностей для расчета двухконтурной схемы постоянного тока с двумя источниками ЭДС.

Раздел (тема) № 2 Анализ и расчет линейных цепей синусоидального тока

Аудиторная контрольная работа «Расчет цепи синусоидального тока»:

Использование символического метода (метода контурных токов, метода двух узлов) с проверкой составлением баланса мощностей для расчета двухконтурной схемы синусоидального тока с двумя источниками ЭДС.

Разделы (темы) № 6 **Переходные процессы и их расчет во временной области**, № 7 **Преобразования Лапласа и операторный метод для анализа и расчета цепей**

Аудиторная контрольная работа «Расчет переходного процесса в цепи постоянного тока»:

Расчет переходного процесса классическим и операторным методами в двухконтурной цепи постоянного тока с одним источником ЭДС, одной индуктивностью, одним конденсатором и одной коммутацией.

Шкала оценивания: 2-балльная.

Критерии оценивания:

- 2 балла выставляется обучающемуся, если правильно выполнено 70-100% заданий.
- 1 балл выставляется обучающемуся, если правильно выполнено 30-69% заданий.
- 0 баллов выставляется обучающемуся, если правильно решено 29% и менее % заданий.

1.4 РАСЧЕТНО-ГРАФИЧЕСКИЕ РАБОТЫ

Раздел (тема) № 1 Введение. Основные определения, законы и методы расчета электрических цепей

Расчетно-графическая работа № 1 Расчет цепи постоянного тока

Задание:

- 1. Для заданной согласно своему варианту электрической схемы составить систему уравнений по законам Кирхгофа, достаточную для определения токов ветвей. Полученную систему уравнений не решать.
- 2. Рассчитать токи во всех ветвях заданной электрической схемы методом контурных токов. Правильность расчетов проверить составлением баланса мощностей.
- 3. Рассчитать ток в ветви *cd* методов эквивалентного генератора. При этом ЭДС эквивалентного генератора определить, используя метод двух узлов.
 - 4. Построить потенциальную диаграмму для контура *abcd*.

Исходные данные для расчета согласно варианту, заданного преподавателем, и методические указания по выполнению расчетной работы представлены в:

Расчет цепи постоянного тока: задания и методические указания по выполнению расчетной работы по дисциплине «Электротехника и электроника» для студентов технических

направлений подготовки и специальностей / Юго-Зап. гос. ун-т; сост. : А. С. Романченко, А. Л. Овчинников, О. В. Лобова. – Курск : ЮЗГУ, 2016. – 11 с. - Текст : электронный.

Разделы (темы) № 6 **Переходные процессы и их расчет во временной области**, № 7 **Преобразования** Лапласа и операторный метод для анализа и расчета цепей

Расчетно-графическая работа № 2 Расчет переходного процесса в цепи постоянного тока *Задание*:

В заданной согласно варианту RLC-цепи постоянного тока переходный процесс вызывается замыканием ключа. Во всех вариантах действует источник постоянной ЭДС E=100B, индуктивность L=100м Γ .

РАССЧИТАТЬ:

- а) переходные напряжение и ток конденсатора классическим методом;
- б) переходный ток конденсатора операторным методом.

U3OEPA3UTb на одном графике кривые $u_C(t)$ и $i_C(t)$. В случае апериодического процесса кривые построить в интервале $0...3\tau_1$, где $\tau_1=1/|p_1|$, p_1 - меньший по модулю корень характеристического уравнения. В случае колебательного процесса кривые построить в интервале $0...3(1/\delta)$, где δ - вещественная часть комплексно-сопряжённых корней характеристического уравнения.

Исходные данные для расчета согласно варианту, заданного преподавателем, и методические указания по выполнению расчетной работы представлены в:

Расчет переходных процессов : методические рекомендации по организации самостоятельной работы студентов по электротехнике / Юго-Зап. гос. ун-т ; сост. : А. С. Романченко, А. Л. Овчинников. – Курск : ЮЗГУ, 2017. - 28 с. - Текст : электронный.

Разделы (темы) № 8 Передаточная функция и частотные характеристики, № 9 Основы теории четырехполюсников

Расчетно-графическая работа № 3 Расчет четырехполюсника

Задание:

В соответствии с номером варианта, заданного преподавателем, выполнить следующее:

- 1) начертить исходную схему четырехполюсника (ЧП);
- 2) свести полученную схему ЧП к Γ -образной эквивалентной схеме ЧП, заменив трёхэлементные схемы замещения продольного и поперечного сопротивлений двухэлементными схемами: $\underline{Z}_1 = R_1 \pm j X_1$, $\underline{Z}_2 = R_2 \pm j X_2$. Дальнейший расчёт вести для эквивалентной схемы;
 - 3) определить коэффициенты А формы записи уравнений ЧП:
 - а) записывая уравнения по законам Кирхгофа;
 - б) используя режимы холостого хода и короткого замыкания;
- 4) определить сопротивления холостого хода и короткого замыкания со стороны первичных (11') и вторичных выводов (22'):
 - а) через А параметры;
- б) непосредственно через продольное и поперечное сопротивления для режимов холостого хода и короткого замыкания на соответствующих выводах;
- 5) определить характеристические сопротивления для выводов 11' и 22' и постоянную передачи ЧП;
- 6) определить комплексный коэффициент передачи по напряжению и передаточную функцию ЧП;
- 7) определить индуктивность и ёмкость элементов X_1 , X_2 эквивалентной схемы ЧП при $f = f_0$, после чего построить амплитудно-частотную и фазочастотную характеристики ЧП, если частота входного сигнала меняется от f = 0 до $f = f_0$. Построение вести с шагом 0,1 f_0 .

Исходные данные для расчета согласно варианту, заданного преподавателем, и методические указания по выполнению расчетной работы представлены в:

Расчет четырехполюсника : задания и методические указания по выполнению расчетной работы по электротехнике / Юго-Зап. гос. ун-т ; сост. : А. С. Романченко, Л. В. Плесконос. – Курск : ЮЗГУ, 2015. - 12 с. - Текст : электронный.

Шкала оценивания: 4-балльная.

Критерии оценивания:

- 4 балла выставляется обучающемуся, если правильно выполнено 80-100% заданий.
- 3 балла выставляется обучающемуся, если правильно выполнено 60-79% заданий.
- 2 балла выставляется обучающемуся, если правильно выполнено 30-59% заданий.
- 1 балл выставляется обучающемуся, если правильно выполнено 15-29% заданий.
- 0 баллов выставляется обучающемуся, если правильно решено 14% и менее % заданий.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТА-ЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Раздел (тема) № 1 Введение. Основные определения, законы и методы расчета электрических цепей

- 1. При параллельном соединении резисторов их общее сопротивление
- 2. При последовательном соединении сопротивлений их общее сопротивление
- 3. Электродвижущая сила источника электрической энергии определяется как
- 4. Электродвижущая сила источника электрической энергии может быть определена (измерена) в режиме
 - 5. Источник энергии относят к идеальному источнику ЭДС при выполнении условия
 - 6. Источник энергии относят к идеальному источнику тока, при выполнении условия
- 7. Источник электрической энергии, для которого изменение внешней нагрузки не приводит к изменению разности потенциалов на его выходе, называют
- 8. При согласованном режиме работы источника электрической энергии с приемником (нагрузкой) выполняется условие
 - 9. Для уменьшения потерь в линии электропередачи необходимо
 - 10. При расчете разветвленных электрических цепей достаточно
- 11. При решении задачи расчета сложных электрических цепей необходимо записать столько уравнений по законам Кирхгофа, сколько
 - 12. Укажите ошибочную формулировку закона Ома для участка цепи
 - 13. Какие формулировки первого закона Кирхгофа будут правильными:
- а) арифметическая сумма токов в узле равна нулю; б) сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла; в) алгебраическая сумма токов в узле равна нулю; г) алгебраическая сумма токов, втекающих в узел, равна алгебраической сумме токов, вытекающих из узла?
 - 14. Укажите правильную формулировку второго закона Кирхгофа
- 15. Разветвленная схема содержит два источника ЭДС. Какой метод расчета нельзя для неё применить
 - 16. Какой режим работы нельзя применить для источника ЭДС?
 - 17. Контурный ток это
- 18. Если два сопротивления R1, R2 соединены параллельно, то их общее сопротивление R нахолится как
 - 19. Какое понятие не относится к топологическим понятиям электрической цепи
- 20. Какой метод не применяется при расчете линейных электрических цепей постоянного тока

Раздел (тема) № 2 Анализ и расчет линейных цепей синусоидального тока

- 1. Действующее значение I синусоидального переменного тока связано с амплитудным значением I_m как
- 2. Среднее значение I_{cp} синусоидального переменного тока связано с амплитудным значением I_m как

- 3. При выполнении электротехнических расчетов в цепях синусоидального тока для токов, ЭДС и напряжений используются
- 4. Какой вид мощности в цепи синусоидального тока можно определить как произведение действующих значений тока и напряжения
- 5. В цепи с идеальной индуктивностью напряжение по отношению к току отличается по фазе на угол
- 6. В цепи с идеальной емкостью напряжение по отношению к току отличается по фазе на угол
 - 7. Резонанс напряжений возникает при условии
- $8.\ B$ реальной индуктивной катушке с X=R сдвиг фаз между напряжением на катушке и током в катушке составляет
- 9. В цепи с последовательно соединенным конденсатором и резистором при X=R сдвиг фаз между напряжением на входе данной цепи и током в цепи составляет
- 10. Какое условие для возникновения резонанса напряжений в цепи синусоидального тока является необязательным
- 11. Какое условие для возникновения резонанса токов в цепи синусоидального тока является необязательным
- 12. Резонанс в последовательной RLC-цепи называется резонансом напряжений, потому что
 - 13. Условием резонанса токов в параллельной RLC-цепи является равенство
 - 14. Реактивное сопротивление конденсатора можно определить по формуле
- 15. Сдвиг фаз между напряжением и током в цепи синусоидального тока составляет (*составьте правильные пары*)

1) цепь с идеальным резистором	a) $+90^{0}$
2) цепь с идеальной индуктивной катушкой	б) +45 ⁰
3) цепь с идеальным конденсатором	в) 0
4) RL-цепь	г) -45 ⁰
5) RC-цепь	$_{\rm J}$) -90 0

- 16. Вставьте на пустые места в формулу закона Ома для последовательной RLC-цепи синусоидального тока $I = U/\sqrt{(_)^2 + (\boxed] \boxed]^2}$ символы из следующего списка: $P, X_C, G, R, Q, X_L, B_L, S, B_C$
- 17. Вставьте на пустые места в формулу закона Ома для параллельной RLC-цепи синусоидального тока $I = U\sqrt{(_)^2 + ([_] [_])^2}$ символы из следующего списка: P, X_C , G, R, Q, X_L , B_L , S, B_C
- 18. Вставьте на пустые места в формулу определения коэффициента мощности для последовательной RLC-цепи синусоидального тока $\cos \varphi = (_)/\sqrt{(_)^2 + ([_] [_])^2}$ символы из следующего списка: P, X_C , G, R, Q, X_L , B_L , S, B_C
- 19. Вставьте на пустые места в формулу определения коэффициента мощности для параллельной RLC-цепи синусоидального тока $\cos \varphi = (_)/\sqrt{(_)^2 + (\boxed] \boxed]^2}$ символы из следующего списка: $P, X_C, G, R, Q, X_L, B_L, S, B_C$
 - 20. Реактивное сопротивление индуктивной катушки можно определить по формуле ...

Раздел (тема) № 3. Трехфазные цепи

- 1. В трехфазной цепи переменного тока вектора ЭДС фаз сдвинуты относительно друг друга на угол
- 2. Для трехфазной цепи, соединенной звездой, при симметричной нагрузке выполняются соотношения
 - 3. Нейтральный (нулевой) провод в трехфазной цепи необходим для
 - 4. Линейное напряжение это
 - 5. Фазное напряжение это

- 6. В трехпроводной трехфазной цепи, соединенной звездой, при обрыве в одной фазе фазные напряжения остальных фаз при равной нагрузке станут равными
- 7. В трехпроводной трехфазной цепи, соединенной звездой, при коротком замыкании в одной фазе фазные напряжения остальных фаз при равной нагрузке станут равными
- 8. При коротком замыкании фазы A нагрузки в трехпроводной цепи, соединенной звездой, при U_{JI} =380 В (составьте правильные пары):

1) напряжение фазы А нагрузки равно	a) 380 B
2) напряжение фазы В нагрузки равно	6) 0 B
3) напряжение фазы С нагрузки равно	в) 220 В
4) напряжение смещения нейтрали равно	г) 380 В

9. При отключении фазы A нагрузки в трехпроводной цепи, соединенной звездой, при $U_{\!M}\!\!=\!\!380\,B$ (составьте правильные пары):

1) напряжение фазы А нагрузки равно	a) 190 B
2) напряжение фазы В нагрузки равно	б) 0 B
3) напряжение фазы С нагрузки равно	в) 110 В
4) напряжение смещения нейтрали равно	г) 190 В

10. При отключении фазы В нагрузки в трехфазной цепи, соединенной звездой с нейтральным проводом, при U_{π} =380 В (составьте правильные пары):

1) напряжение фазы А нагрузки равно	a) 0 B
2) напряжение фазы В нагрузки равно	б) 220 В
3) напряжение фазы С нагрузки равно	в) 0 B
4) напряжение смещения нейтрали равно	г) 220 В

- 10. Записать формулу для нахождения активной мощности трехфазной цепи при симметричной нагрузке
- 12. Записать формулу для нахождения реактивной мощности трехфазной цепи при симметричной нагрузке

Раздел (тема) № 4. **Анализ и расчет электрических цепей с нелинейными элемента**ми

- 1. При анализе и расчете цепей с нелинейными резистивными элементами для их характеристики используют следующие сопротивления
- 2. В методе пересечения характеристик при расчете цепей постоянного тока с нелинейным резистивным элементом речь идет о пересечении следующих графиков
- 3. При расчете цепей постоянного тока с нелинейными резистивными элементами можно применить следующие методы
- 4. При расчете цепи постоянного тока с нелинейным резистивным элементом методом линеаризации нелинейный элемент заменяют
- 5. Дифференциальное сопротивление нелинейного резистивного элемента в точке A на его BAX определяют как

Раздел (тема) № 5. Магнитные цепи

- 1. Магнитопровод в электромагнитном устройстве необходим для
- 2. Магнитопроводы электромагнитных устройств изготавливают из
- 3. Первый закон Кирхгофа для магнитной цепи записывается для
- 4. Второй закон Кирхгофа для магнитной цепи записывается по аналогии с
- 5. Электромагнит содержит кроме индуктивной катушки также
- 6. Электромагнит содержит кроме магнитопровода также
- 7. Какие потери энергии в электромагнитном устройстве можно отнести к магнитным потерям?
 - 8. Закон Ома для магнитной цепи определяется выражением
 - 9. Первый закон Кирхгофа для магнитной цепи определяется выражением
 - 10. Закон полного тока для магнитной цепи определяется выражением
 - 11. Второй закон Кирхгофа для магнитной цепи определяется выражением

- 12. Укажите правильную формулировку второго закона Кирхгофа для магнитной цепи
- 13. Укажите правильную формулировку первого закона Кирхгофа для магнитной цепи
- 14. Стальной магнитопровод большинства электротехнических устройств изготовляют из отдельных листов электротехнической стали для

Раздел (тема) № 6. Переходные процессы и их расчет во временной области

- 1. Согласно первому закону коммутации (указать правильную формулировку)
- 2. Согласно второму закону коммутации (указать правильную формулировку)
- 3. Как получают характеристическое уравнение в классическом методе расчета переходного процесса?
- 4. Какое действие не является обязательным для классического метода расчета переходного процесса (укажите правильный ответ)
- 5. К независимым начальным условиям при расчете переходного процесса классическим методом относятся
 - 6. При каком условии в электрической цепи не возникнет переходный процесс?
- 7. При расчете переходных процессов ток в индуктивной катушке при t=0 определяют как
- 8. При расчете переходных процессов напряжение на конденсаторе при t=0 определяют как
- 9. Какие корни могут быть при решении характеристического уравнения в классическом методе расчета переходного процесса?
- 10. Если конденсатор подключить к источнику с постоянным напряжением U через резистор R, то постоянная заряда конденсатора определяется по формуле
- 11. Если конденсатор, заряженный до напряжения U, замкнуть на резистор R, то постоянная разряда конденсатора определяется по формуле
- 12. Если реальную индуктивную катушку подключить к источнику постоянной ЭДС с внутренним сопротивлением R_0 , то постоянная времени такой цепи определяется как
- 13. Если реальную катушку с индуктивностью L и сопротивлением R отключить от источника постоянной ЭДС и замкнуть на сопротивление $R_{\scriptscriptstyle H}$, то постоянная времени полученной цепи определяется по формуле
- 14. Количество корней характеристического уравнения при расчете переходного процесса классическим методом определяется числом
- 15. При каком условии в RL-цепи синусоидального тока не возникнет переходный процесс

Раздел (тема) № 7. **Преобразования Лапласа и операторный метод для анализа и** расчета цепей

- 1. Как учитываются независимые начальные условия в операторном методе расчета переходного процесса?
- 2. Какое действие является ошибочным при составлении операторной схемы после коммутации? (укажите правильный ответ)
- 3. В электротехнике при операторном методе расчета переходного процесса от изображения к оригиналу переходят, как правило, с помощью
- 4. При составлении операторной схемы катушку с индуктивностью L представляем как
 - 5. При составлении операторной схемы конденсатор представляем как
 - 6. Для перехода от изображения к оригиналу в операторном методе используют

Раздел (тема) № 8. Передаточная функция и частотные характеристики

- 1. Графическое изображение комплексной частотной характеристики называется
- 2. Какое определение передаточной функции будет правильным
- 3. Какое определение комплексной частотной характеристики будет правильным и наиболее полным (укажите правильный ответ)

	_
4. Для перехода от передаточной функци обходимо и достаточно использовать 5. Передаточной функцией называется 6. Комплексной частотной характеристик 7. Полюсами передаточной функции называ 8. Нулями передаточной функции называ	ой называется ваются
9. Комплексное передаточное сопротивле 10. Комплексная передаточная проводимо	ение — это
	по току определяется по формуле
• • • • • • • • • • • • • • • • • • • •	
Раздел (тема) № 9. Основы теории четы 1. Какие из нижеперечисленных парамет метрам четырехполюсника?	рехполюсников гров относятся к основным (первичным) пара-
	параметрам четырехполюсника относят
4. Что такое А-параметры четырехполюсь 5. Что такое В-параметры четырехполюсь	ника?
6. Что такое Z-параметры четырехполюсь 7. Что такое Y-параметры четырехполюсь	ника?
8. Что такое G-параметры четырехполюся 9. Коэффициент передачи четырехполюс	ника? сника по напряжению определяют для режима
10. Что дифференцирует дифференцирую 11. Что интегрирует интегрирующее звен 12. Обратимым четырехполюсником явля	o?
Раздел (тема) № 10. Частотозависимые і	
 Электрический фильтр «фильтрует» си Какой вид фильтров не применяют при 	
	звеньев пассивные фильтры делятся на
4. Изобразить схему Г-образного реактив:	± ±
5. Изобразить схему Г-образного реактив	
6. Изобразить схему Т-образного реактив	
7. Изобразить схему Т-образного реактив 8. Изобразить схему П-образного реактив	
9. Изобразить схему П-образного реактив	
10. Изобразить схему Г-образного полосо	
11. Изобразить схему Г-образного загради	
12. Изобразить АЧХ реактивного фильтра	а нижних частот
13. Изобразить АЧХ реактивного фильтра	<u>-</u>
14. Изобразить АЧХ полосового реактивн	
15. Изобразить АЧХ заградительного реаг	
16. Изобразить схему RC-фильтра нижни:	
17. Изобразить схему RC-фильтра верхни	
18. Изобразить схему полосового RC-фил	ьтра ользовать дифференцирующую RC-цепь?
20. В качестве какого фильтра можно исп	
Раздел (тема) № 11. Трансформаторы	
1. Магнитопровод в электромагнитном ус	
2. Магнитопроводы электромагнитных ус	тройств изготавливают из

- 4. Из опыта холостого хода трансформатора определяют следующую паспортную величину
- 5. Из опыта короткого замыкания трансформатора определяют следующую паспортную величину
- 6. Основной рабочей характеристикой трансформатора является его внешняя характеристика, которая представляет собой зависимость
 - 7. Начертите схему замещения однофазного трансформатора
- 8. Величину ЭДС в обмотках трансформатора можно определить, используя формулу трансформаторной ЭДС: $E=4,44fN[__]$ (вставьте недостающий символ).
- 9. Величину ЭДС в обмотках трансформатора можно определить, используя формулу трансформаторной ЭДС: $E=4,44f[__]$ Φ_m (вставьте недостающий символ).
- 10. Величину ЭДС в обмотках трансформатора можно определить, используя формулу трансформаторной ЭДС: E=4,44[$JN\Phi_m$ (вставьте недостающий символ).

Раздел (тема) № 12. Асинхронные двигатели

- 1. Принцип действия трехфазного асинхронного двигателя основан на
- 2. Трехфазный асинхронный двигатель называется асинхронным, так как
- 3. К основным частям трехфазного асинхронного двигателя относятся
- 4. Схемы пуска трехфазных асинхронных двигателей применяют для
- 5. При увеличении скольжения величина тока в обмотке ротора трехфазного асинхронного двигателя
- 6. Указать способы регулирования частоты вращения, которые применяются в трехфазных асинхронных двигателях:
- 7. Какой способ пуска позволяет уменьшить пусковой ток трехфазного асинхронного двигателя
- 8. Какой вращающий момент трехфазного асинхронного двигателя можно определить по данным паспорта или каталога
- 9. Какую формулу можно применить для определения вращающего момента трехфазного асинхронного двигателя
 - 10. Для запуска однофазного асинхронного двигателя необходимо и достаточно
- 11. Вращающий момент трехфазного асинхронного двигателя определяется по формуле (вставьте недостающий символ): $M = C_M \Phi [__] cos \varphi_2$
- 12. Вращающий момент трехфазного асинхронного двигателя определяется по формуле (вставьте недостающий символ): $M = C_M \int I_2 cos \varphi_2$
 - 13. Начертите схему подключения трехфазного асинхронного двигателя к сети
- 14. Запишите формулу для определения частоты вращения магнитного поля трехфазного асинхронного двигателя

Раздел (тема) № 13. Машины постоянного тока

- 1. ЭДС генератора постоянного тока определяется как:
- 2. В генераторе постоянного тока ток в нагрузку поступает ($\kappa a \kappa$?)
- 3. При пуске двигателя постоянного тока ток в цепи якоря
- 4. Указать способы возбуждения, которые применяются в машинах постоянного тока
- 5. Указать способы регулирования частоты вращения, которые применяются в двигателях постоянного тока:
- 6. Указать характеристики, которые относят к рабочим характеристикам двигателя постоянного тока
 - 7. Вращающий момент двигателя постоянного тока определяется как
- 8. ЭДС в генераторе постоянного тока определяется по формуле (вставьте недостающий символ): $E=C_E n[$
- 9. Вращающий момент двигателя постоянного тока определяется по формуле (вставьте недостающий символ): $M=C_M\Phi$ []

- 10. Начертите схему подключения к сети двигателя постоянного тока независимого возбуждения
- 11. Начертите схему подключения к сети двигателя постоянного тока смешанного возбуждения
- 12. Реостат, включенный последовательно с обмоткой якоря двигателя постоянного то-ка, позволяет

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 баллов (установлено положением П 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале для зачета следующим образом:

Соответствие 100-балльной и лихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале
100–50	зачтено
49 и менее	не зачтено

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -2 балла, выполнено частично -1 балл, не выполнено -0 баллов.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

- 1. К источнику синусоидального напряжения с U=10 В подключена последовательная RLC-цепь. При R=3 Ом, индуктивном сопротивлении 8 Ом, емкостном сопротивлении 4 Ом определить действующее значение напряжения на активном сопротивлении и полную мощность цепи.
- 2. К источнику синусоидального напряжения с U=20 В подключена последовательная RLC-цепь. При R=3 Ом, индуктивном сопротивлении 8 Ом, емкостном сопротивлении 4 Ом определить действующее значение напряжения на индуктивном сопротивлении и активную мощность цепи.
- 3. К источнику синусоидального напряжения с U=20 В подключена последовательная RLC-цепь. При R=4 Ом, индуктивном сопротивлении 6 Ом, емкостном сопротивлении 3 Ом определить действующее значение напряжения на емкостном сопротивлении и реактивную мощность цепи.
- 4. К источнику синусоидального напряжения с U=20 В подключена параллельная RLСцепь. При R=5 Ом, индуктивном сопротивлении 8 Ом, емкостном сопротивлении 4 Ом определить ток источника, токи в ветвях и активную мощность цепи.
- 5. К источнику синусоидального напряжения с U=20 В подключена параллельная RLCцепь. При R=2 Ом, индуктивном сопротивлении 5 Ом, емкостном сопротивлении 4 Ом определить ток источника, токи в ветвях и реактивную мощность цепи.
- 6. К источнику синусоидального напряжения с U=12 В подключена параллельная RLCцепь. При R=3 Ом, индуктивном сопротивлении 4 Ом, емкостном сопротивлении 2 Ом определить ток источника, токи в ветвях и полную мощность цепи.

- 7. Три активных сопротивления подключены к трехфазной цепи с фазным напряжением 12 В по схеме «звезда с нейтральным проводом». Если R_a =3 Ом, R_b =4 Ом, R_c =6 Ом, то чему равны линейные токи и активная мощность цепи?
- 8. Три одинаковых индуктивных катушки с X=3 Ом, R=4 Ом включены звездой в трехфазную цепь с фазным напряжением 10 В. Чему равны линейные токи и активная мощность такой цепи?
- 9. Три одинаковых индуктивных катушки с X=4 Ом, R=3 Ом включены звездой в трехфазную цепь с фазным напряжением 20 В. Чему равны линейные токи и реактивная мощность такой пепи?
- 10. Три одинаковых индуктивных катушки с X=8 Ом, R=6 Ом включены звездой в трехфазную цепь с фазным напряжением 10 В. Чему равны линейные токи и полная мощность такой цепи?
- 11. Три одинаковых индуктивных катушки с X=3 Ом, R=4 Ом включены треугольником в трехфазную цепь с линейным напряжением 10 В. Чему равны фазные токи и активная мощность такой цепи?
- 12. Три одинаковых индуктивных катушки с X=8 Ом, R=6 Ом включены треугольником в трехфазную цепь с линейным напряжением 20 В. Чему равны фазные токи и реактивная мощность такой цепи?
- 13. Три одинаковых индуктивных катушки с X=3 Ом, R=4 Ом включены треугольником в трехфазную цепь с линейным напряжением 20 В. Чему равны фазные токи и полная мощность такой цепи?
- 14. В трехфазную цепь с фазным напряжением 12 В включены по схеме «звезда с нейтральным проводом» активное R_a =4 Ом, индуктивное X_L =3 Ом (в фазе В) и емкостное X_C =6 Ом (в фазе С) сопротивления. Определить линейные токи и полную мощность данной цепи.
- 15. В трехфазную цепь с фазным напряжением 12 В включены по схеме «звезда с нейтральным проводом» активное R_a =4 Ом, индуктивное X_L =6 Ом (в фазе В) и емкостное X_C =3 Ом (в фазе С) сопротивления. Определить линейные токи и активную мощность данной цепи.
- 16. В трехфазную цепь с фазным напряжением 24 В включены по схеме «звезда с нейтральным проводом» активное R_a =4 Ом, индуктивное X_L =6 Ом (в фазе В) и емкостное X_C =3 Ом (в фазе С) сопротивления. Определить линейные токи и реактивную мощность данной цепи.
- 17. В трехфазную цепь с линейным напряжением 12 В включены по схеме «треугольник» активное R_a =4 Ом, индуктивное X_L =3 Ом и емкостное X_C =6 Ом сопротивления. Определить фазные токи и полную мощность данной цепи.
- 18. В трехфазную цепь с линейным напряжением 24 В включены по схеме «треугольник» активное R_a =3 Ом, индуктивное X_L =8 Ом и емкостное X_C =4 Ом сопротивления. Определить фазные токи и активную мощность данной цепи.
- 19. В трехфазную цепь с линейным напряжением 24 В включены по схеме «треугольник» активное R_a =8 Ом, индуктивное X_L =6 Ом и емкостное X_C =3 Ом сопротивления. Определить фазные токи и реактивную мощность данной цепи.
- 20. Продольное сопротивление Γ -образного четырехполюсника (ЧП) состоит из последовательно соединенных емкостного сопротивления X_C и резистора R. Поперечное сопротивление ЧП представляет собой индуктивную катушку с параметрами R_K и X_K . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 21. Продольное сопротивление Γ -образного четырехполюсника (ЧП) представляет собой индуктивную катушку с параметрами R_K и X_K . Поперечное сопротивление ЧП состоит из последовательно соединенных емкостного сопротивления X_C и резистора R. Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.

- 22. Продольное сопротивление Γ -образного четырехполюсника (ЧП) состоит из последовательно соединенных индуктивного сопротивления X_L , емкостного сопротивления X_C и резистора R. Поперечное сопротивление ЧП представляет собой емкостное сопротивление X_C . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 23. Продольное сопротивление Γ -образного четырехполюсника (ЧП) состоит из последовательно соединенных индуктивного сопротивления X_L , емкостного сопротивления X_C и резистора R. Поперечное сопротивление ЧП представляет собой индуктивное сопротивление X_L . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 24. Продольное сопротивление Γ -образного четырехполюсника (ЧП) состоит из последовательно соединенных индуктивного сопротивления X_L , емкостного сопротивления X_C и резистора R. Поперечное сопротивление ЧП представляет собой резистор R. Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 25. Продольное сопротивление Γ -образного четырехполюсника (ЧП) представляет собой резистор R. Поперечное сопротивление ЧП состоит из последовательно соединенных индуктивного сопротивления X_L , емкостного сопротивления X_C и резистора R. Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 26. Продольное сопротивление Γ -образного четырехполюсника (ЧП) представляет собой емкостное сопротивление X_C . Поперечное сопротивление ЧП состоит из последовательно соединенных индуктивного сопротивления X_L , емкостного сопротивления X_C и резистора R. Нарисовать схему ЧП, получить выражения для Λ -коэффициентов, используя законы Кирхгофа, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 27. Продольное входное сопротивление Т-образного четырехполюсника (ЧП) представляет собой индуктивную катушку с параметрами R_K и X_K . Продольное выходное сопротивление последовательно соединенные емкостное сопротивление X_C и резистор R. Поперечное сопротивление ЧП представляет собой резистор R. Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя режимы холостого хода и короткого замыкания, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 28. Продольное входное сопротивление Т-образного четырехполюсника (ЧП) представляет собой индуктивную катушку с параметрами R_K и X_K . Продольное выходное сопротивление последовательно соединенные емкостное сопротивление X_C и резистор R. Поперечное сопротивление ЧП представляет собой емкостное сопротивление X_C . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя режимы холостого хода и короткого замыкания, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 29. Продольное входное сопротивление Т-образного четырехполюсника (ЧП) представляет собой индуктивную катушку с параметрами R_K и X_K . Продольное выходное сопротивление последовательно соединенные емкостное сопротивление X_C и резистор R. Поперечное сопротивление ЧП представляет собой индуктивное сопротивление X_L . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя режимы холостого хода и короткого замыкания, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.
- 30. Продольное входное сопротивление Т-образного четырехполюсника (ЧП) представляет собой резистор R. Продольное выходное сопротивление последовательно соединенные

емкостное сопротивление X_C и резистор R. Поперечное сопротивление ЧП представляет собой индуктивную катушку с параметрами R_K и X_K . Нарисовать схему ЧП, получить выражения для A-коэффициентов, используя режимы холостого хода и короткого замыкания, и записать выражения для входных сопротивлений со стороны первичных и вторичных зажимов ЧП при холостом ходе и коротком замыкании.

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи – 6 баллов. Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале для зачета следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале
100–50	зачтено
49 и менее	не зачтено

Критерии оценивания решения компетентностно-ориентированной задачи:

- **6-5 баллов** выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение, представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи и формулировку правильного ответа; при этом обучающимся единственно правильное решение; задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место несущественные недочеты в описании хода решения и ответа.
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.