Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

МИНОБРНАУКИ РОССИИ Должность: проректор по учебной работе

Дата подписания: 06. Федеральное государственное бюджетное образовательное

Уникальный программный ключ:

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра космического приборостроения и систем связи

РАСЧЁТ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ПАРАМЕТРОВ МЕТАЛЛИЧЕСКИХ КАБЕЛЕЙ

Методические указания по выполнению лабораторной работы для студентов, обучающихся по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» по дисциплине «Методы и средства измерений в телекоммуникациях» УДК 621.315.213.1

Составители: Д.С. Коптев, В.Г. Довбня

Рецензент:

Доктор технических наук, старший научный сотрудник, заведующий кафедрой космического приборостроения и систем связи $B.\ \Gamma.\ Aндронов$

Расчёт первичных и вторичных параметров металлических кабелей: методические указания по выполнению лабораторной работы / Юго-Зап. гос. ун-т; сост.: Д.С. Коптев, В.Г. Довбня. — Курск, 2023. — 20 с.

Методические указания по выполнению лабораторной работы содержат все необходимые теоретические сведения для расчёта первичных и вторичных параметров металлических кабелей, варианты заданий, а также требования к оформлению отчёта по выполнению лабораторной работы и список контрольных вопросов для самопроверки изучаемого материала.

Методические указания полностью соответствуют учебному плану по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи», а также рабочей программе дисциплины «Методы и средства измерений в телекоммуникациях».

Предназначены для студентов, обучающихся по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи», очной формы обучения.

Текст печатается в авторской редакции

Подписано в печать 08.08.2023. Формат 60х841/16. Усл. печ. л. 1,1625. Уч.-изд. л. 1,053. Тираж 100 экз. Заказ 721. Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

1 Цель работы

Провести расчёт первичных и вторичных параметров симметричной кабельной цепи звёздной скрутки, расположенной в первом повиве семичетвёрочного кабеля со свинцовой оболочкой. По результатам вычислений построить графики частотной зависимости параметров и дать анализ этих зависимостей.

2 Основные теоретические сведения

2.1 Конструктивные размеры симметричного ЭКС

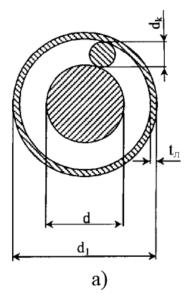
Способ организации связи по симметричному кабелю — двух кабельный, при котором цепи каждого направления передачи расположены в отдельном кабеле.

При существенном расхождении исходных данных симметричного ЭКС по заданию преподавателя и стандартных конструкций симметричных кабелей согласно [1, 2] необходимо уточнить конструктивные размеры симметричного ЭКС. Для этого по заданному значению диаметра токопроводящей жилы определяется диаметр изолированной жилы. В симметричных кабелях изоляция жил по конструкции может быть представлена двумя профилями, изображёнными на рисунке 1.

Диаметр изолированной жилы для кордельной изоляции (рисунок 1, а) определяется по формуле:

$$d_I = d_0 + 2d_\kappa + 2t_\pi \quad , \quad \mathbf{MM}$$

где d_0 – диаметр токопроводящей жилы, мм;


 d_{κ} – диаметр корделя, мм;

 t_{π} – общая толщина лент, наложенных поверх корделя, мм.

Диаметр изолированной жилы со сплошной или пористой изоляцией (рисунок 1, б) определяется по формуле:

$$d_l = d_0 + 2 t_u$$
, mm

где $t_{\rm M}$ — радиальная толщина изоляционного слоя, мм.

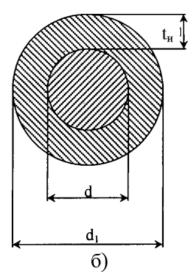


Рисунок 1 — Профили изоляции симметричных кабелей: а) кордельно-полистирольная; б) сплошная или пористая полиэтиленовая

Изолированные жилы скручиваются в четвёрки с шагом 80-300 мм. Диаметр элементарной группы, скрученной в звёздную четвёрку (рисунок 2), определяется из выражения:

$$d_3 = d_l + a$$
, MM

где a – расстояние между центрами жил одной пары.

$$a = \sqrt{AC^2 + BC^2} = \sqrt{2}d_1$$
, MM

Отсюда $d_3 = 2,41 d_1$

Диаметр центрирующего корделя определится соотношением:

$$d_{u\kappa} = a - d_l$$
 , mm

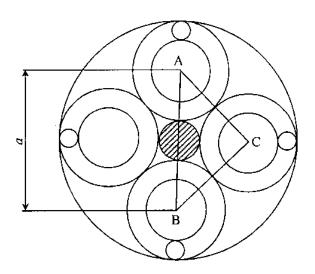


Рисунок 2 – Диаметр элементарной группы кабеля

Размеры кабельного сердечника зависят от числа четвёрок в кабеле. Диаметр кабельного сердечника с поясной изоляцией при наличии металлической оболочки будет соответствовать диаметру экрана:

$$d_{2} = D_{\kappa c} + 2t_{nu}$$
, mm

где t_{nu} – радиальная толщина поясной изоляции, мм.

Диаметр кабельного сердечника $D_{\kappa c}$ определяется из выражений:

- для одно четверочного кабеля $D_{\kappa c}=d_3$;
- для четырёх четвёрочного кабеля (рисунок 2.3) $D_{\kappa c} = 2,41d_3$
- для семи четвёрочного кабеля при расположении в центре одной четвёрки и шести четвёрок в повиве $D_{\kappa c}=3d_3$.

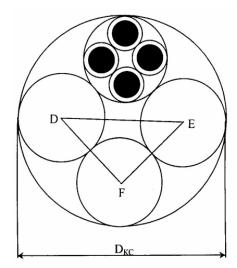


Рисунок 3 – Диаметр кабельного сердечника 4х4

Как правило, используются кабели небронированные — для прокладки в канализации, бронированные стальными лентами — для прокладки непосредственно в грунте и бронированные круглыми проволоками — для прокладки через судоходные и сплавные реки. Поэтому расчёт диаметров кабеля необходимо выполнить для всех трёх разновидностей конструкции, используя справочные данные.

2.2 Конструктивные размеры коаксиального ЭКС

Определение конструктивных размеров коаксиального кабеля во многом аналогичен расчёту симметричного кабеля. По заданному значению диаметра внутреннего проводника и изоляции коаксиальной пары

(КП) прежде всего, исходя из нормируемого значения волнового сопротивления $Z_6 = 75$ Ом, определяют внутренний диаметр внешнего проводника:

$$Z_{e} = \frac{60}{\sqrt{\varepsilon_{9}}} \ln \frac{D}{d}$$

где ε_9 — значение эквивалентной относительной диэлектрической проницаемости изоляции;

d – диаметр внутреннего проводника, мм;

D – внутренний диаметр внешнего проводника, мм.

При $z_e = 75$ Ом находим D:

$$D = de^{z_{e\sqrt{\varepsilon_9}/60}} = de^{1,25\sqrt{\varepsilon_9}}, \text{ MM}$$

Наружный диаметр КП определяется по формуле:

$$D_{\kappa n} = D + 2t$$
, MM

где t - толщина внешнего проводника, определяется из справочника для ближайшего по конструкции коаксиального кабеля.

Диаметр сердечника кабеля, состоящего из четырёх КП одинакового размера, будет равен:

$$D_{\kappa c} = 2,41D_{\kappa n}, \text{ MM}$$

В кабеле, содержащем четыре одинаковых КП, размещается пять симметричных групп. По результатам выполненного расчёта конструктивных параметров, приводится чертёж сечения кабеля, выполненный в масштабе с указанием всех элементов конструкции и полной марки кабеля.

3 Определение параметров передачи кабельных цепей

Параметры передачи кабельных цепей определяются с целью оценки электрических свойств кабеля и нахождения количества регенерационных пунктов и их размещения по трассе линии связи.

В результате расчёта должны быть построены графики частотной зависимости параметров, поэтому расчёт необходимо провести не менее,

чем на пяти фиксированных частотах рабочего диапазона, включая минимальную и максимальную.

Минимальную и максимальную частоту определяет преподаватель. При построении графиков следует иметь в виду, что наиболее резкому изменению подвержены параметры в области нижней части рабочего диапазона.

3.1 Первичные параметры передачи симметричного кабеля 3.1.1 Активное сопротивление цепи

Активное сопротивление цепи определяется по формуле:

$$R = R_{\rm o} \left[1 + F(kr_{\rm o}) + \frac{{\rm p}\,G(kr_{\rm o})(d_{\rm o}/a)^2}{1 - H(kr_{\rm o})(d_{\rm o}/a)^2} \right] + R_{\rm M} , {
m Om/km}$$

где R_0 - сопротивление цепи на постоянном токе, рассчитываемое по формуле:

$$R_0 = \frac{8 \cdot 10^3 \, \chi \rho}{\pi d_0^2}, \qquad O_{\rm M/KM};$$

 $ho = \frac{1}{\sigma}$ - удельное сопротивление материала жил, Ом мм²/м, (таблица 1);

 d_0 - диаметр жил, мм;

 χ - коэффициент укрутки, учитывающий увеличение длины цепи за счёт скрутки, принимается равным 1,01.....1,07;

p - коэффициент, учитывающий потери на вихревые токи в жилах второй цепи элементарной группы, для звёздной скрутки p=5;

а - расстояние между центрами жил цепи, мм;

 μ_a - абсолютная магнитная проницаемость;

 μ - относительная магнитная проницаемость;

$$\mu_{\alpha}=\mu_{0}\mu$$
 , Гн/м; $\qquad \mu_{0}=4\pi\cdot 10^{-7}$, Гн/м;

 $k = \sqrt{\omega \mu_a \sigma}$ - коэффициент вихревых токов, 1/м;

 $P(kr_0)$, $G(kr_0)$, $H(kr_0)$ — Бесселевые функции, учитывающие потери на вихревые токи вследствие поверхностного эффекта и эффекта близости, значения которых приведены в Приложении A.

Таблица 1 – Удельное сопротивление токопроводящих жил

т и оттици т		inpermenter re-		
Металл	Удельное сопротивле- ние, Ом*мм ² /м	Удельная проводимость, См*м/мм ²	Относительная магнитная про- ницаемость	Коэффициент вихре- вых токов k, 1/мм
медь	0.01754	57	1	0,0212√ <i>f</i>
алюминий	0.0295	34.4	1	0,01635√ <i>f</i>
свинец	0.221	4.52	1	0,00597√ <i>f</i>
сталь	0.139	7.23	100200	0,0756√ <i>f</i>

Составляющая активного сопротивления $R_{\rm M}$, обусловленная потерями в окружающих металлических массах (соседних группах и металлической оболочке), на частоте 200 к Γ ц определяется по таблице 2 как сумма потерь в смежных четвёрках и оболочке.

Таблица 2 — Определение составляющей активного сопротивления $R_{\scriptscriptstyle M}$

	Д	Дополнительное сопротивление R_{M200} за счёт потерь, Ом/км							
Число четвёрок	в смежных четвёрках для повивов			свинцовой оболочке для повивов			алюминевой оболочке для повивов		
в повиве	1-го	2-го	3-го	1-го	2-го	3-го	1-го	2-го	3-го
1	0	-	-	22	-	-	8,1	-	-
4	7,5	-	-	14	-	-	5,2		-
1+6	8,0	7,5	-	1,5	5,5	-	0,6	2,0	-
1+6+12	8,0	7,5	7,5	0	0	1,0	0	0	0,4

Определение потерь в металле для другой частоты производится по формуле:

$$R_{\rm M} = R_{\rm M200} \sqrt{f/2 \cdot 10^5}$$
, OM/KM

где f - частота, Γ ц.

Расчёт потерь в стальной металлической оболочке можно производить аналогичным образом, так как при наличии алюминиевого экрана под стальной оболочкой потери определяются в основном внутренним слоем экрана.

3.1.2 Индуктивность, ёмкость и проводимость изоляции симметричной кабельной цепи

Индуктивность симметричной кабельной цепи определяется как сумма внешней межпроводниковой индуктивности (L_{eu}) и внутренней индуктивности самих проводников ($L_a + L_e$):

$$L = \Re \left[4 \ln \frac{a - r_0}{r_0} + \mu Q(kr_0) \right] \cdot 10^{-4}, \ \Gamma_{\text{H/KM}}$$

где $Q(kr_0)$ – функция поверхностного эффекта, определяемая по таблице (Приложение A).

Емкость симметричной кабельной цепи определяется по формуле:

$$C = \aleph \varepsilon_0 10^{-6} / 36 \ln \left(\frac{a}{r_0} \psi \right), \quad \Phi/\text{KM}$$

где ε_9 — эквивалентное значение диэлектрической проницаемости, для различного конструктивного исполнения изоляции приведено в таблице 3; Ψ — поправочный коэффициент.

Таблица 3 — Эквивалентные значения диэлектрической проницаемости, для различного конструктивного исполнения изоляции

Тип изоляции	ϵ_3	$tg\delta_{\mathfrak{d}}$ 10 ⁻⁴ при частотах, к Γ ц					
	33	10	100	250	550		
Кордельно-бумажная	1.3	30	120	180	260		
Кордельно-полисти- рольная	1.2-1.3	3	7	12	20		
Полиэтиленовая	1.9-2.1	2	6	8	14		

Пористо-полиэтиленовая	1.4-1.5	3	8	12	20
Баллонно-полиэтилено- вая	1.2-1.3	2	6	8	12

Поправочный коэффициент Ψ, характеризующий близость проводов цепи к заземлённой оболочке и другим проводникам, при звёздной скрутке определяется по формуле:

$$\Psi = \frac{(d_3 + d_1 - d_0)^2 - a^2}{(d_3 + d_1 - d_0)^2 + a^2}$$

Проводимость изоляции кабельных цепей находится из выражения:

$$G = \omega C \, tg \delta_{\rm B}$$
, CM/KM

где $tg\delta_{3}$ — тангенс угла диэлектрических потерь комбинированной изоляции (таблица 3).

Сведений о значениях $tg\delta_{\mathfrak{I}}$ на более высоких частотах для симметричных кабелей в технической литературе не имеется, однако, учитывая, что чистые полиэтилен и полистирол имеют значение $tg\delta_{\mathfrak{I}}$ постоянное в широком диапазоне частот и потери определяются лишь наличием в изоляции примесей и загрязнений неполярного диэлектрика полярными молекулами, то для более высоких частот значение $tg\delta_{\mathfrak{I}}$ можно принимать равным его величине при f=550 к Γ ц.

3.2 Вторичные параметры передачи симметричного кабеля

Коэффициент распространения цепи определяется по формуле:

$$\gamma = \alpha + i\beta = \sqrt{(R + i\omega L)(G + i\omega C)}$$
,

где α – коэффициент затухания, Нп/км;

 β – коэффициент фазы, рад/км.

В области высоких частот ($\omega L/R > 3,5$) расчёт можно выполнять по упрощённым формулам:

$$\alpha = \alpha_{\scriptscriptstyle M} + \alpha_{\scriptscriptstyle O} = \left(\frac{R}{2}\sqrt{\frac{C}{L}} + \frac{G}{2}\sqrt{\frac{L}{C}}\right)$$
8,69 дБ/км

$$\beta = \omega \sqrt{LC}$$
 , рад/км

где $\alpha_{\scriptscriptstyle M}$ — составляющая затухания за счёт потерь в металле; $\alpha_{\scriptscriptstyle \partial}$ — составляющая затухания за счёт потерь в диэлектрике.

Волновое сопротивление цепи определяется по формуле:

$$Z_{g} = \sqrt{\frac{(R + j\omega L)}{(G + j\omega C)}}, \quad \text{Om.}$$

При
$$\omega L/R > 3.5$$
 $Z_e = \sqrt{\frac{L}{C}}$.

Скорость распространения электромагнитной волны:

$$v = \omega/\beta$$
, km/c.

При выполнении условия:

$$v = 1/\sqrt{LC}$$
, KM/c

Результаты расчёта первичных и вторичных параметров должны быть сведены в таблицу и отражены на графиках частотной зависимости параметров, построенных в линейном масштабе частот. Необходимо объяснить поведение этих параметров в частотной области.

Полученные величины следует сравнить с параметрами близкого по конструкции типового кабеля и дать анализ причин отличия параметров рассчитанного кабеля от типового, выпускаемого кабельной промышленностью.

3.3 Параметры передачи коаксиальных кабелей

Активное сопротивление коаксиальной цепи определяется по формуле:

$$R = R_a + R_{\tilde{o}} = \frac{\sqrt{2}\kappa}{2\pi\sigma} \left(\frac{1}{d} + \frac{1}{D}\right) = \frac{A_1\sqrt{f}}{d} + \frac{A_2\sqrt{f}}{D}$$
, OM/KM

где R_a , R_δ — активное сопротивление соответственно внутреннего и внешнего проводников, Ом/км;

d, D — диаметры, соответственно, внутреннего и внутренней диаметр внешнего проводников;

 A_1 и A_2 — постоянные коэффициенты соответственно для внутреннего и внешнего проводников, зависящие от материала проводников. Для меди — A=0,0835, для алюминия — A=0,108;

f – частота, Γ ц.

Индуктивность коаксиальной цепи состоит из суммы внешней индуктивности между проводами L_{eu} и внутренней индуктивности проводников $L_a + L_e$:

$$L = L_a + L_{\sharp} = \left[2 \ln \frac{D}{d} + \frac{\sqrt{2}\mu_a}{2\pi k} \left(\frac{1}{d} + \frac{1}{D} \right) \right] 10^{-4} \quad \text{FH/km}$$

Ёмкость коаксиальной цепи определяется как ёмкость цилиндрического конденсатора:

$$C = \varepsilon_9 10^{-6} / 18 \ln \frac{D}{d} \quad , \quad \Phi/M$$

где ε_9 - эквивалентное значение относительной диэлектрической проницаемости комбинированной изоляции (таблица 4).

Таблица 4 – Эквивалентное значение относительной диэлектрической про-

ницаемости комбинированной изоляции

Тип изоляции	£ ₃	$tg\delta_{\circ}~10^{\text{-4}}$ при частотах, МГц					
		1	5	10	60		
Кордельно-полистирольная	1,19	0,7	0,8	1,0	1,2		
Полиэтиленовая шайбовая	1,13	0,5	0,5	0,7	0,8		
Пористо-полиэтиленовая	1,5	2	3	3	-		
Трубчато-полиэтиленовая	1,22	1,2	1,3	1,5	-		
Полиэтиленовая спираль- ная	1,1	0,4	0,4	0,5	0,6		

Проводимость изоляции коаксиальной кабеля находится, как и для симметричного кабеля!

Вторичные параметры передачи определяются по тем же формулам, что и для симметричного кабеля!

Для коаксиальных кабелей с медными внутренним и внешним проводниками коэффициент затухания можно определить через габаритные размеры и параметры изоляции:

$$oldsymbol{lpha} = oldsymbol{lpha}_{\scriptscriptstyle M} + oldsymbol{lpha}_{\scriptscriptstyle O} = rac{2.6\sqrt{foldsymbol{arepsilon}_{\scriptscriptstyle 9}}}{\lg D \, / \, d} igg(rac{1}{d} + rac{1}{D}igg) 10^{-3} + 9.08 f \, \sqrt{oldsymbol{arepsilon}_{\scriptscriptstyle 9}} tg \, oldsymbol{\delta}_{\scriptscriptstyle 9} 10^{-5} \; , \quad \ \, \mathrm{д} \mathrm{Б}/\mathrm{KM} \, \mathrm{d} \, \mathrm{d}$$

Если в области высоких частот пренебречь внутренней индуктивностью проводников, то вторичные параметры можно рассчитать по упрощённым формулам:

$$eta = \omega \sqrt{arepsilon_9} / C$$
 , рад/км $Z_e = \frac{60}{\sqrt{arepsilon_9}} \cdot \ln \frac{D}{d}$, Ом $v = \frac{c}{\sqrt{arepsilon_9}}$, км/с

где c — скорость света в вакууме.

Результаты расчёта первичных и вторичных параметров должны быть сведены в таблицу и отражены на графика частотной зависимости параметров, построены в линейном масштабе частот. Необходимо объяснить поведение этих параметров в частотной области.

Полученные величины параметров следует сравнить с параметрами близкого по конструкции типового кабеля и дать анализ причин отличия параметров рассчитанного кабеля от типового, выпускаемого кабельной промышленностью.

4 Задание на лабораторную работу

Провести расчёт первичных и вторичных параметров симметричной кабельной цепи звёздной скрутки, расположенной в первом повиве семичетвёрочного кабеля со свинцовой оболочкой.

Задания для каждого варианта определяются по таблице 5.

Таблица 5 — Варианты заданий для выполнения лабораторной работы (последние две цифры зачётной книжки студента)

Изоляция			Материал и диаметр жилы									
Материал	Диаметр корделя или слоя изоля- ции, мм	Предель- ная ча- стота, кГц	Медь			Алюминий						
			0,9	1,0	1,1	1,2	1,3	1,1	1,2	1,3	1,4	1,5
						Но	мера в	ариант	гов			
Кордельно –	0,5	60	00	01	02	03	04	05	06	07	08	09
бумажная (тол-	0,6	108	10	11	12	13	14	15	16	17	18	19
щина ленты	0,7	252	20	21	22	23	24	25	26	27	28	29
0,11 мм)	0,8	360	30	31	32	33	34	35	36	37	38	39
Кордельно –	0,5	108	40	41	42	43	44	45	46	47	48	49
полистироль-	0,6	252	50	51	52	53	54	55	56	57	58	59
ная (толщина	0,7	552	60	61	62	63	64	65	66	67	68	69
ленты 0,05 мм)	0,8	792	70	71	72	73	74	75	76	77	78	79
Сплошная по-	1,1	108	80	81	82	83	84	85	86	87	88	89
лиэтиленовая	1,15	252	90	91	92	93	94	95	96	97	98	99

Значение коэффициента скрутки к принять равным 1,02.

Значение ϵ и tg ϵ приведены в таблице 6, для других частот ϵ и tg ϵ следует определять методом интерполяции.

Таблица 6 - 3начение ϵ и tg ϵ для различных типов изоляции

Тип изоля-	C	tg ε *10 ⁻⁴ при f кГц					
ции	3	12	60	108	252	552	800
Кордельно – бумажная	1,3	30	80	120	180	260	360
Кордельно – полисти- рольная	1,2	4,5	10	15	20	30	50
Сплошная полиэтиле- новая	2,0	6	12	24	38	50	80

Расчёт выполнить в заданном диапазоне fн....fв на частотах, указанных в таблице 7.

Таблица 7 – Распределение частот

Заданный	1					
диапазон	f_1	f_2	f_3	f_4	f_5	f_6
fнfв, кГц						
12-60	12	20	28	35	50	60
12-108	12	30	45	70	90	108
12-252	12	40	60	100	160	252
12-360	12	60	120	180	240	360
12-552	12	100	200	300	420	552
12-792	12	120	180	280	400	792

По результатам вычислений построить графики частотной зависимости параметров и дать анализ этих зависимостей. Кривые должны быть плавными, если наблюдаются выбросы, то необходимо проверить расчёт данной точки. По результатам проделанных расчетов сделать вывод о том, к какому кабелю наиболее близки результаты расчётов. Кабель подобрать на основе исходных данных и анализа современного рынка телекоммуникационных составляющих передачи (кабелей).

5 Требования к оформлению отчёта по выполнению лаборатор- ной работы

Отчёт набирается на компьютере в формате .doc или .rtf и печатается на одной стороне листа белой бумаги формата A4 (210×297).

Размеры полей:

- верхнее поле -2 см;
- нижнее поле -2 см;
- левое поле 3 см;
- правое поле 1,5 см;
- переплет 0 см.

Выравнивание текста — по ширине. Шрифт — Times New Roman. Цвет шрифта — чёрный, размер шрифта — 14. Текст работы печатается с абзацного отступа 1,25 см. Междустрочный интервал — 1,5. Дополнительные отступы до и после абзацев не применяются.

Несложные формулы должны быть набраны с использованием команды «Вставка→Символ». Сложные формулы должны быть набраны в редакторе MathType 6.0 Equation.

Отчёт по выполнению лабораторной работы должен содержать:

- название предмета, номер и название лабораторной работы;
- фамилию и инициалы автора, номер группы;
- фамилию и инициалы преподавателя;
- цель работы;
- перечень используемого оборудования;
- последовательность действий при проведении исследований;
- вывод о проделанной работе;
- ответы на контрольные вопросы;
- дату выполнения и личную подпись.

Результаты различных измерений необходимо представить в виде нескольких самостоятельных таблиц и графиков. Каждая таблица и каждый график должны иметь свой заголовок и исходные данные эксперимента.

При выполнении численных расчетов надо записать формулу определяемой величины, сделать соответственную численную подстановку и произвести вычисления.

6 Контрольные вопросы

- 1. Обзор и классификация видов измерений, применяемых в многоканальных системах передачи.
 - 2. Виды измерений параметров металлических кабелей.
 - 3. Первичные и вторичные параметры металлических кабелей.
- 4. Вторичные параметры передачи кабельной цепи и их зависимость от частоты.
- 5. Волновое сопротивление и коэффициент распространения, зависимость от частоты
- 6. Скорость распространения электромагнитной энергии по кабелям, зависимость от частоты.
- 7. Краткая характеристика измерений параметров симметричного и коаксиального кабелей, особенности измерений коаксиальных кабелей.

Библиографический список

- 1. Метрология и радиоизмерения: учебник / И. В. Лютиков, А. Н. Фомин, В. А. Леусенко и др.; под общ. ред. Д. С. Викторова; Сибирский федеральный университет. Красноярск: Сибирский федеральный университет (СФУ), 2016. 508 с.: ил., табл., схем. Режим доступа: URL: https://biblioclub.ru/index.php?page=book&id=497346.
- 2. Голиков, А. М. Тестирование и диагностика в инфокоммуникационных системах и сетях: курс лекций, компьютерные лабораторные работы и практикум, задание на самостоятельную работу / А. М. Голиков. Томск: ТУСУР, 2016. 436 с.: ил., табл., схем. (Учебная литература для вузов). Режим доступа: URL: https://biblioclub.ru/index.php?page=book&id=480803
- 3. Бабёр, А. И. Электрические измерения: учебное пособие / А. И. Бабёр, Е. Т. Харевская. Минск: РИПО, 2019. 109 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=600608

- 4. Основы метрологии, стандартизации и сертификации: контрольно-обучающие тесты: [16+] / Е. В. Усова, А. Ю. Краснова, О. Н. Моисеев и др.; под общ. ред. Е. В. Усовой. Москва; Берлин: Директ-Медиа, 2021. 278 с.: ил., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=602453.
- 5. Мандель, А. Е. Метрология в оптических телекоммуникационных системах: учебное пособие / А. Е. Мандель; Томский Государственный университет систем управления и радиоэлектроники (ТУСУР), Кафедра сверхвысокочастотной и квантовой радиотехники. Томск: Томский государственный университет систем управления и радиоэлектроники, 2014. 139 с.: схем., табл. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=480513.
- 6. Дворкович, В. П. Измерения в видеоинформационных системах: (теория и практика) / В. П. Дворкович, А. В. Дворкович. Москва: Техносфера, 2015. 783 с. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=467606.

Приложение А

kr_0	$P(kr_0)$	$G(kr_{\theta})$	$H(kr_0)$	$Q(kr_0)$
0.0	0	0	0.0417	1.0
0.5	0.0003	0.000975	0.0420	0.9998
0.6	0.001	0.00202	0.0440	0.9998
0.7	0.001	0.00373	0.0450	0.999
0.8	0.002	0.00632	0.0460	0.999
0.9	0.003	0.0101	0.0490	0.998
1.0	0.005	0.0152	0.0530	0.997
1.1	0.008	0.0220	0.0580	0.996
1.2	0.011	0.0306	0.0640	0.995 0.993
1.3	0.015 0.020	0.0413 0.0541	0.0720 0.080	0.993
1.5	0.020	0.0541	0.080	0.987
1.6	0.020	0.0863	0.106	0.983
1.7	0.042	0.105	0.100	0.979
1.8	0.052	0.126	0.137	0.974
1.9	0.064	0.149	0.154	0.968
2.0	0.078	0.172	0.169	0.961
2.1	0.094	0.197	0.187	0.953
2.2	0.111	0.221	0.205	0.945
2.3	0.131	0.246	0.224	0.935
2.4	0.152	0.271	0.242	0.925
2.5	0.175	0.295	0.263	0.913
2.6	0.201	0.318 0.341	0.280	0.901
2.7	0.228		0.298	0.888
2.8	0.256 0.286	0.363 0.384	0.316 0.333	0.874 0.860
3.0	0.286	0.405	0.348	0.800
3.1	0.318	0.405	0.362	0.830
3.1	0.385	0.423	0.376	0.814
3.3	0.420	0.463	0.388	0.798
3.4	0.456	0.481	0.400	0.782
3.5	0.492	0.499	0.416	0.766
3.6	0.529	0.516	0.420	0.749
3.7	0.566	0.533	0.430	0.733
3.8	0.603	0.550	0.440	0.717
3.9	0.640	0.567	0.450	0.720
4.0	0.678	0.584	0.460	0.688
4.1	0.715	0.601	0.466	0.671
4.2	0.752	0.618	0.474	0.657
4.3	0.789	0.635	0.484	0.643
4.4	0.826	0.652	0.490 0.509	0.629
4.5	0.863 0.899	0.669 0.686	0.509	0.616 0.603
4.8	0.899	0.720	0.516	0.579
5.0	1.043	0.720	0.530	0.556
5.2	1.114	0.790	0.540	0.535
5.4	1.184	0.825	0.550	0.516
5.6	1.254	0.861	0.558	0.498
5.8	1.324	0.896	0.566	0.481
6.0	1.394	0.932	0.575	0.461
6.2	1.463	0.967	0.582	0.445
6.4	1.533	1.003	0.590	0.436
6.8	1.673	1.073	0.602	0.412
7.0	1.743	1.109	0.608	0.400
7.4	1.884	1.180	0.620	0.379
7.8	2.024	1.251	0.630	0.360
8.0	2.094	1.287	0.634	0.351
9.0 10.0	2.446 2.799	1.464	0.655	0.313 0.282
10.0	<u> </u>	1.641	0.670	0.282
kr ₀ >10	$\sqrt{2}kr_0-3$	$\sqrt{2}kr_0-1$	0.75	$\frac{2\sqrt{2}}{kr_0}$
W 0/10			0.73	<u> </u>
	4	8		kr_0
	I	~	1	