Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Кувардин Николай Владимирович

Должность: Заведующий кафедрой

МИНОБРНАУКИ РОССИИ

Дата подписания: 01.09.2023 15:43 фОго-Западный государственный университет

Уникальный программный ключ:

9e48c4318069d59a383b8e4c07e4eba99aa1cb28

УТВЕРЖДАЮ

Заведующий кафедрой фундаментальной химии и химической технологии

(наименование кафедры)

Н.В. Кувардин

(подпись, инициалы, фамилия)

« 29 » июня 2023 г.

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Физика и химия полимеров

(наименование дисциплины)

ОПОП ВО 18.03.01 Химическая технология

(код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.4 ВОПРОСЫ И ЗАДАНИЯ В ТЕСТОВОЙ ФОРМЕ

Вариант № 1

1 Физические методы определения молекулярной массы полимеров

- 1.1 Эбулиоскопия
- 1.2 Криоскопия
- 1.3 Осмометрия

2 Реакции деструкции полимеров

- 2.1 Классификация реакций деструкции
- 2.2 Краткая характеристика реакций деструкции

3 Основное отличие реакций поликонденсации от реакций полимеризации

Ответ 1: последовательное присоединение молекул к растущей цепи

Ответ 2: в реакцию вступают два разных соединения

Ответ 3: образование высокомолекулярного соединения

Ответ 4: выделение побочного низкомолекулярного продукта

4 Можно ли назвать макромолекулой полимера молекулу олеиновой кислоты:

CH₃-(CH₂)₇-CH=CH-(CH₂)₇-COOH

Ответ 1: да Ответ 2: нет

Ответ 2: нет 5 Задача

- 5.1 Напишите реакцию поликонденсации n оксиэтоксибензойной кислоты (5 баллов)
- 5.2 Рассчитайте молекулярный вес полученного полимера, если при определении концевых карбоксильных групп на титрование 2,000 г полимера израсходовано 3,7 мл 0,1М раствора $AgNO_3$.

Вариант № 2

1 Химические реакции ВМС

- 2.1 Классификация химических реакций ВМС
- 2.2 Краткая характеристика химических реакций ВМС

2 Классификация полимеров

- 1.1 По природе мономеров, составляющих главную цепь
- 1.2 По регулярности

3 Какие признаки отличают ВМС от низкомолекулярных соединений:

а) плохая растворимость;

- е) эластичность;
- б) набухание при растворении;
- ж) низкая хрупкость;

в) низкая вязкость растворов;

- з) термопластичность;
- г) высокая вязкость растворов;
- и) термореактивность;
- д) неспособность к кристаллизации;
- к) электропроводность.

Ответ 1: б, г, е, ж,

Ответ 2: а, б, д, з, и, к,

Ответ 3: б, г, д, е, з, и,

Ответ 4: а, б, в, ж, к.

4 Укажите структурное звено макромолекулы:

...-CH2-CH=CH-CH2-CH2-CH2-CH2-CH2-CH2-CH2-...

Ответ 1: -СН2-СН=СН-,

OTBET 2: -CH=CH-CH₂-CH₂-,

OTBET 3: =CH-CH₂-CH₂-CH=,

Ответ 4: -СН2-СН=СН-СН2-.

5 Задача

- 5.1 При полимеризации стирола в среде четыреххлористого углерода в присутствии перекиси бензоила образуются сравнительно низкомолекулярные продукты (напишите реакцию полимеризации). После осаждения их из реакционной среды и очистки было проведено определение $\overline{M_n}$ эбулиоскопическим методом в бензоле.
- 5.2 Рассчитать кажущуюся молекулярную массу и степень полимеризации полистирола, если температура кипения бензольного раствора с концентрацией полимера на 1500 г растворителя выше температуры кипения чистого растворителя на 0,0004 град.

Вариант № 3

1 Классификация полимеров

- 1.1 По природе атомов главной цепи
- 1.2 По геометрии макромолекулы
- 2. Релаксационные свойства полимеров.
- 2.1 Типы кривых напряжения деформация для различных полимеров.
- 2.2 Влияние различных факторов на время релаксации. Способы изучения релаксационных явлений.

3. Какое химическое строение имеют макромолекулы поливинилхлорида:

- a) ...-CH2-CHCl-CHCl-CH2-CHCl-CH2-CHCl-CH2-...;
- б) ...-CHCl-CH2-CHCl-CH2-CHCl-CH2-...

Ответ 1: а - регулярное, б - нерегулярное строение,

Ответ 2: а и б - регулярное строение,

Ответ 3: а и б - нерегулярное строение,

Ответ 4: а - нерегулярное, б - регулярное строение.

4. Какие свойства полимеров можно объяснить гибкостью макромолекул:

а) высокая температура разложения; б) эластичность каучуков; в) прочность органических стекол; г) горючесть.

Ответ 1: а, б,

Ответ 2: а, г,

Ответ 3: а, б, в,

Ответ 4: б, в,

Ответ 5: все перечисленные свойства.

5 Залача

- **5.1** Рассчитать молекулярную массу и степень полимеризации поликапроамида из криоскопических данных, если ΔT_k для его раствора в муравьиной кислоте составляет 0,0012 град при концентрации 0,3 г /100мл раствора; K_k =2,77.
- 5.2 Напишите химическую формулу поликапроамида.

Вариант № 4

1 Классификация полимеров

- 1.1 По методу синтеза полимеров
- 1.2 По отношению к нагреванию
- 1.3 По полярности

2. Характеристика основных физико-механических свойств полимеров

- 2.1 Механическая прочность
- 2.2 Деформационные свойства

3. Для улучшения физических свойств пластмасс в них вводят:

Ответ 1 ферменты;

Ответ 2 стабилизаторы;

Ответ 3 катализаторы;

Ответ 4 воду.

4. К природным волокнам растительного происхождения относятся

Ответ 1 хлопок и лен

Ответ 2 шерсть и шелк

Ответ 3 вискозное и ацетатное волокна

Ответ 4 капрон и нейлон

5 Задача

Рассчитать среднечисловую молекулярную массу и степень полимеризации поли-α-метилстирола, если при измерении осмотического давления при температуре 25 °C для его растворов в толуоле получены следующие данные

1	$C \cdot 10^3$,	г/мл	0,3	0,5	0,78	0,98
	Δh , MN	ı	0,96	1,65	2,83	3,75

 $\rho = 0.8623 \ e/cm$

Вариант № 5

1 Сшивание серой и ускорителями.

- 1.1 Образование сетчатых структур из мономеров
- 1.2 Образование сетчатых структур из олигомеров.

2. Специфика физико-химических свойства полимеров

- 2.1 Гибкость цепи
- 2.2 Конформация макромолекул

3. К термореактивным полимерам не относится:

Ответ 1 карбамидная смола;

Ответ 2 фенолформальдегидная смола;

Ответ 3 поливинилхлорид;

Ответ 4 полиэфирная смола.

4. Структура макромолекул резины

Ответ 1 линейная, изогнутая

Ответ 2 линейная скрученная

Ответ 3 разветвленная

Ответ 4 пространственная

5. Задача

Рассчитать К и а из вискозометрических данных для растворов поливинилпиридина в воде, если для его фракций получены следующие значения характеристической вязкости и молекулярного веса (седиментационным способом):

	Ι	II	III	IV	V
[η]	0,148	0,251	0,348	0,619	0,879
M	$1,2\cdot 10^4$	$2,6\cdot10^4$	$4,2\cdot10^4$	$9.8 \cdot 10^4$	$16,4\cdot10^4$

Вариант № 6

1. Методы получения полимеров.

- 1.1 Классификация методов получения полимеров
- 1.2 Краткая характеристика методов получения полимеров.

2. Физические состояния полимеров:

- 2.1 Агрегатные
- 2.2. Фазовые
- 2.3 Релаксационные

3. Синтетические каучуки получают

Ответ 1 полимеризацией алкадиенов

Ответ 2 полимеризацией алкинов

Ответ 3 полимеризацией алкенов

Ответ 4 поликонденсацией аминокислот

4. Реакция образования полимера из мономеров называется

Ответ 1 ферментативной реакцией

Ответ 2 полимеризацией

Ответ 3 реакцией гидролиза

Ответ 4 биуретовой реакцией

5 Задача

Для установления значений К и α для растворов поливинилацетата в ацетоне были выделены узкие фракции, определены их молекулярные массы (осмомометрически) и характеристические вязкости. Оказалось, что для фракции с M_n = 22500 , $[\eta]$ = 0,194 , а для фракции с M_n = 40000 , $[\eta]$ = 0,289. Вычислить К и α .

Вариант № 7

1. Гидродинамические методы определения молекулярной массы полимеров.

- 1.1. Вискозиметрия
- 1.2 Диффузионные
- 1.3 Ультрацентрифугирование

2. Макромолекулярные реакции полимеров.

- 2.1 Реакции сшивания(4 балла)
- 2.2 Реакции концевых функциональных групп

3. Биополимеры, построенные из остатков нуклеотидов – это

Ответ 1 белки

Ответ 2 крахмал

Ответ 3 целлюлоза

Ответ 4 нуклеиновые кислоты

4. Из полимеров наиболее стойкий химически

Ответ 1 политетрафторэтилен

Ответ 2 полистирол

Ответ 3 полибутадиен

Ответ 4 целлюлоза

5 Залача

Рассчитать средневязкостную молекулярную массу и степень полимеризации поливинилового спирта (раствор в воде) при 25 °C, если $K=5,95\cdot10^{-4},~\alpha=0,63$ и известны значения приведенной логарифмической вязкости:

С, г/100 мл	0,1	0,2	0,3	0,4
lnη _{отн} /C	2,1	1,6	1.0	0.2

Вариант № 8

1. Свободнорадикальная полимеризация:

- 1.1 Стадии свободнорадикальной полимеризации;
- 1.2 Способы инициирования.

2. Релаксационные свойства полимеров.

- 2.1 Типы кривых напряжение-деформация для различных полимеров.
- 2.2 Влияние различных факторов на время релаксации.

3. Формула мономера для получения поливинилацетата, используемого для изготовления клея ПВА, имеет вид ...

OTBET 1 CH₃COO-CH=CH₂

Ответ 2 СН2=СНСОО-СН3

OTBET 3 C6H5COO-CH=CH2

OTBET 4 CH₃CH₂O-CH=CH₂

4. Линейное строение полипептидной цепи – это

Ответ 1 первичная структура белка

Ответ 2 вторичная структура белка

Ответ 3 третичная структура белка

Ответ 4 четвертичная структура белка

5 Задача

Рассчитать молекулярный вес и напишите формулу полистирола из диффузионных данных, если найденный коэффициент диффузии полистирола в дихлорэтане оказался равным $1,2\cdot 10^{-7}$ см²/с.

Вариант № 9

1. Аморфные полимеры

- 1.1 Свойства аморфных полимеров
- 1.2 Термомеханические кривые аморфных полимеров
- 2. Взаимодействие полимеров с жидкостями
- 2.1 Набухание полимеров
- 2.2 Растворение полимеров
- 3. В качестве мономеров в реакциях поликонденсации используются соединения, содержащие группы.

Ответ 1 NH₂, COOH, OH

OTBET 2 CH2=CH, COOH, OH

OTBET 3 NH₂, CH≡C, OH

OTBET 4 C6H5, NH2, COOH

4. Формулы соединений, которые могут быть использованы в качестве инициаторов катионной полимеризации, имеют вид...

Ответ 1 H₂SO₄ и HCl

Ответ 2 Na₂SO₄ и NaCl

Ответ 3 Са(ОН)2 и NаОН

Ответ 4 Ba(OH)₂ и BaCl₂

5 Задача (12 баллов)

Рассчитать молекулярную массу полиизопропена из данных ультроцентрифугирования его растворов в октане при 20 °C: $S_0 = 5.24 \cdot 10^{-13} \, \text{ cm*c}^{-1} \text{*дин}^{-1}; \, K_S = 6.1 \text{*} 10^{-2}; \, b = 0.620$

Вариант № 10

1. Реакции полимеров с кислородом.

- 1.1 Ускорители окисления полимеров
- 1.2 Ингибиторы окисления полимеров
- 2. Высокоэластическое состояние
- 2.1 Термодинамика и молекулярный механизм высокоэластических деформаций
- 2.2 Энтропийная природа высокоэластичности
- 3. Мономер для производства полистирола (полифенилэтилена) получают по реакции дегидрирования углеводорода

Ответ 1 метилбензол

Ответ 2 этилбензол

Ответ 3 1,2-диметилбензол

Ответ 4 пропилбензол

4. Переход полимеров из аморфного состояния в кристаллическое сопровождается увеличением

Ответ 1 механической прочности

Ответ 2 эластичности

Ответ 3 термопластичности

Ответ 4 подвижности макромолекул

5 Задача

Рассчитать полидисперсность по Шульцу для перхлорвинила, если при фракционировании его из 1% растворов в ацетоне осаждением метиловым спиртом получены следующие фракции:

$$a_i$$
, %.......10 12 8 11 18 7 12 9 10 3 M_i*10^{-4} ..7.5 6.2 5.4 5.0 4.6 3.9 3.3 2.5 1.2 0.6

Вариант № 11

1. Общие представления о старении полимеров

- 1.1 Стабилизация полимеров
- 1.2 Защита полимерных материалов от старения
- 2. Тепловые эффекты взаимодействия полимеров с жидкостями
- 2.1 Описание приборов, предназначенных для измерения тепловых эффектов
- 2.2 График для определения действенного изменения температуры при взаимодействии полимеров с жидкостями
- 3. Определите геометрическую форму макромолекулы:

Ответ 1: разветвленная,

Ответ 2: линейная,

Ответ 3: пространственная.

4. Полибутадиеновый каучук может реагировать с хлором в темноте, потому что:

Ответ 1 это эластичный полимер

Ответ 2 в молекулах полимера много двойных связей

Ответ 3 С-С связи способны к разрыву

Ответ 4 содержит в главной цепи атомы углерода

5 Задача

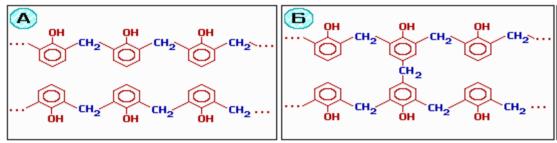
Рассчитать молекулярный вес полистирола из диффузионных данных, если найденный коэффициент диффузии полистирола в дихлорэтане оказался равным $1,7\cdot10^{-7}$ см²/с.

Вариант № 12

1. Макромолекулярные реакции полимеров.

- 1.1 Реакции сшивания
- 1.2 Реакции концевых функциональных групп
- 2. Способы изучения релаксационных явлений полимеров
- 2.1 По релаксации напряжения, по кривой ползучести
- 2.2 По кривой напряжение-деформация, по многократным циклическим деформациям.

3. Основное отличие реакций поликонденсации от реакций полимеризации:


Ответ 1 последовательное присоединение молекул к растущей цепи

Ответ 2 в реакцию вступают два разных соединения

Ответ 3 образование высокомолекулярного соединения

Ответ 4 выделение побочного низкомолекулярного продукта

4. Какова геометрическая форма макромолекул полимеров А и Б

Ответ 1: А - линейная форма; Б - пространственная форма,

Ответ 2: А - линейная форма; Б - разветвленная форма,

Ответ 3: А - разветвленная форма; Б - пространственная форма,

Ответ 4: А - пространственная форма; Б - разветвленная форма.

5 Задача

- **5.1** Рассчитать молекулярную массу и степень полимеризации поликапроамида из криоскопических данных, если ΔT_k для его раствора в муравьиной кислоте составляет 0,0012 град при концентрации 0,3 г /100мл раствора; K_k =2,77.
- 5.2 Напишите химическую формулу поликапроамида.

Вариант № 13

1 Полимерные тела

- 1.1 Структура и основные физические свойства полимерных тел.
- 1.2 Особенности молекулярного строения полимеров и принципы упаковки макромолекул
- 2. Количественные характеристики гибкости макромолекул
- 2.1 Среднеквадратичное расстояние между концами цепи
- 2.2 Радиус инерции макромолекулы и статистический сегмент
- 3. Какое химическое строение имеют макромолекулы поливинилхлорида:
- a) ...-CH2-CHCl-CHCl-CH2-CHCl-CH2-CHCl-CH2-...;
- 6) ...-CHCl-CH₂-CHCl-CH₂-CHCl-CH₂-...

Ответ 1: а - регулярное, б - нерегулярное строение,

Ответ 2: а и б - регулярное строение,

Ответ 3: а и б - нерегулярное строение,

Ответ 4: а - нерегулярное, б - регулярное строение.

4. Какие свойства полимеров можно объяснить гибкостью макромолекул:

а) высокая температура разложения; б) эластичность каучуков; в) прочность органических стекол; г) горючесть.

Ответ 1: а, б,

Ответ 2: а, г,

Ответ 3: а, б, в,

Ответ 4: б, в,

Ответ 5: все перечисленные свойства.

5 Задача

Рассчитать молекулярную массу полимера и степень полимеризации из криоскопических данных его раствора в растворителе:

Полимер	Растворитель	Δ Τ, 10 ⁴ , град.	С, г/100 мл	Kκ
Полиэтилентерефталат	п-Крезол	5,1	1,1	7,11

Вариант № 14

1 Полимерные тела (16 баллов)

- 1.1 Структура и основные физические свойства полимерных тел.
- 1.2 Особенности молекулярного строения полимеров и принципы упаковки макромолекул
- 2. Количественные характеристики гибкости макромолекул

- 2.1 Среднеквадратичное расстояние между концами цепи
- 2.2 Радиус инерции макромолекулы и статистический сегмент
- 3. Какое химическое строение имеют макромолекулы поливинилхлорида:
- a) ...-CH2-CHCl-CHCl-CH2-CHCl-CH2-CHCl-CH2-...;
- б) ...-CHCl-CH₂-CHCl-CH₂-CHCl-CH₂-...

Ответ 1: а - регулярное, б - нерегулярное строение,

Ответ 2: а и б - регулярное строение,

Ответ 3: а и б - нерегулярное строение,

Ответ 4: а - нерегулярное, б - регулярное строение.

4. Какие свойства полимеров можно объяснить гибкостью макромолекул:

а) высокая температура разложения; б) эластичность каучуков; в) прочность органических стекол; г) горючесть.

Ответ 1: а, б,

Ответ 2: а, г,

Ответ 3: а, б, в,

Ответ 4: б, в,

Ответ 5: все перечисленные свойства.

5 Задача

Рассчитать молекулярную массу полимера и степень полимеризации из криоскопических

данных его раствора в растворителе:

Полимер	Растворитель	ΔТ, 10⁴, град.	С, г/100 мл	K_{κ}
Полиэтилентерефталат	п-Крезол	5,1	1,1	7,11

Вариант № 15

1. Аморфные полимеры

- 1.1 Свойства аморфных полимеров
- 1.2 Термомеханические кривые аморфных полимеров
- 2. Взаимодействие полимеров с жидкостями
- 2.1 Набухание полимеров
- 2.2 Растворение полимеров
- 3. В качестве мономеров в реакциях поликонденсации используются соединения, содержащие ______ группы.

Ответ 1 NH₂, COOH, OH

OTBET 2 CH₂=CH, COOH, OH

OTBET 3 NH₂, CH≡C, OH

OTBET 4 C₆H₅, NH₂, COOH

4. Формулы соединений, которые могут быть использованы в качестве инициаторов катионной полимеризации, имеют вид...

Ответ 1 H₂SO₄ и HCl

Ответ 2 Na₂SO₄ и NaCl

Ответ 3 Са(ОН)2 и NаОН

Ответ 4 Ba(OH)₂ и BaCl₂

5 Задача

Рассчитать молекулярную массу полиизопропена из данных ультроцентрифугирования его растворов в октане при 20 °C: $S_o = 5,24 \cdot 10^{-13}$ см* c^{-1} *дин $^{-1}$; $K_s = 6.1 \cdot 10^{-2}$; b = 0.620

Вариант № 16

1. Реакции полимеров с кислородом.

1.1 Ускорители окисления полимеров

- 1.2 Ингибиторы окисления полимеров
- 2. Высокоэластическое состояние
- 2.1 Термодинамика и молекулярный механизм высокоэластических деформаций (5 баллов)
- 2.2 Энтропийная природа высокоэластичности

3. Мономер для производства полистирола (полифенилэтилена) получают по реакции дегидрирования углеводорода

Ответ 1 метилбензол

Ответ 2 этилбензол

Ответ 3 1,2-диметилбензол

Ответ 4 пропилбензол

4. Переход полимеров из аморфного состояния в кристаллическое сопровождается увеличением

Ответ 1 механической прочности

Ответ 2 эластичности

Ответ 3 термопластичности

Ответ 4 подвижности макромолекул

5 Задача

Рассчитать полидисперсность по Шульцу для перхлорвинила, если при фракционировании его из 1% растворов в ацетоне осаждением метиловым спиртом получены следующие фракции:

$$a_i$$
, %......10 12 8 11 18 7 12 9 10 3 M_i*10^{-4} ..7.5 6.2 5.4 5.0 4.6 3.9 3.3 2.5 1.2 0.6

Шкала оценивания: пятибалльная.

Критерии оценивания: Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -1 балл, не выполнено -0 баллов.

Применяется следующая шкала перевода баллов в оценку по 5-балльной шкале:

- 5 баллов соответствуют оценке «отлично»;
- -4 балла оценке «хорошо»;
- -3 балла оценке «удовлетворительно»;
- -2 балла и менее оценке «неудовлетворительно».

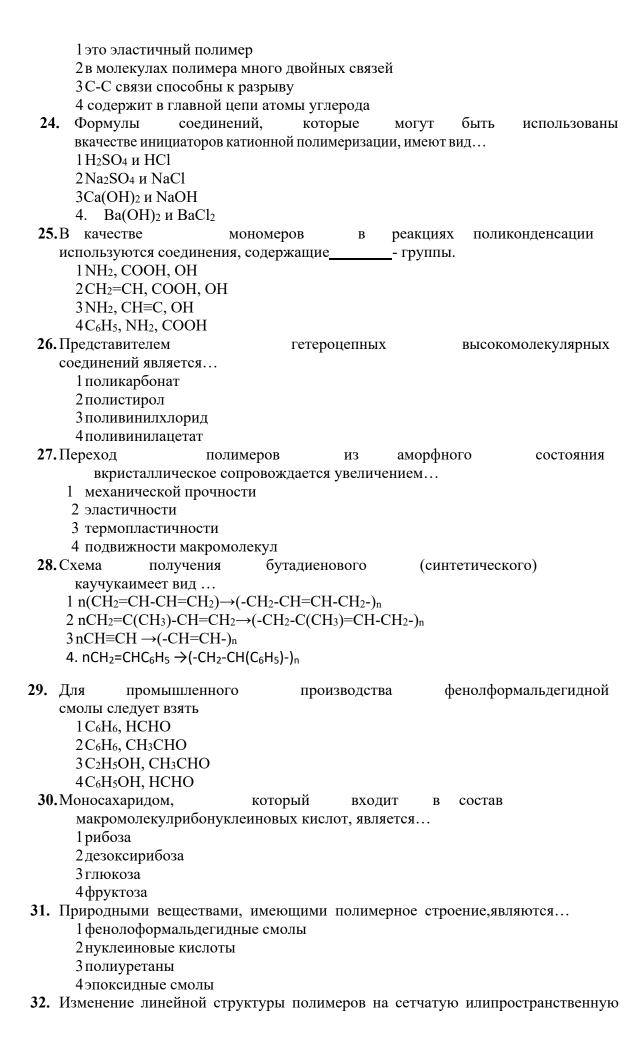
2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1. Мономером для получения поливинилхлорида является
 - 1 хлорэтан
 - 2 хлорпропан
 - 3 хлорэтен
 - 4 1,2-дихлорэтан
- 2. Пенька представляет собой волокно
 - 1 природное, минеральное
 - 2 природное, растительное
 - 3 искусственное, химическое
 - 4 синтетическое, химическое
- 3. Глобулярное строение полипептидной цепи это
 - 1 первичная структура белка
 - 2 вторичная структура белка
 - 3 третичная структура белка
 - 4 четвертичная структура белка

- 4. Основное отличие реакций поликонденсации от реакций полимеризации 1 последовательное присоединение молекул к растущей цепи 2 в реакцию вступают два разных соединения 3 образование высокомолекулярного соединения 4 выделение побочного низкомолекулярного продукта 5. Для улучшения физических свойств пластмасс в них вводят: 1 ферменты 2 стабилизаторы 3 катализаторы 4 воду 6. Остатки аминокислот являются структурными звеньями ... 1 полипептидов 2 полинуклеотидов 3 полисахаридов 4 жиров **7.** K природным волокнам растительного происхожденияотносятся 1 хлопок и лен 2 шерсть и шелк 3 вискозное и ацетатное волокна 4 капрон и нейлон 8. К термореактивным полимерам не относится 1 карбамидная смола 2 фенолформальдегидная смола 3 поливинилхлорид 4 полиэфирная смола 9. Получение крахмала из глюкозы – это реакция 1 гомополимеризации 2 сополимеризации 3 гомополиконденсации 4 сополиконденсации 10. Структурным макромолекул целлюлозы звеном являетсяостаток нуклеотида 1α-глюкозы 2β-фруктозы 3 В-глюкозы 4 β-рибозы 11. Мономерами ДНК и РНК являются... 1 рибофураноза и дезоксирибофураноза2 нуклеотиды 3 аденин, тимин, гуанин 4 нуклеозиды 12. Структура макромолекул резины 1 линейная, изогнутая 2линейная скрученная 3 разветвленная 4 пространственная
- **13.** Материалы, содержащие полимер, который при формировании изделия находится в вязкотекучем состоянии, а при его эксплуатации в стеклообразном,

называются... 1 пластмассами 2 пластификаторами 3 полимерными лаками 4 каучуками 14. Синтетические каучуки получают 1 полимеризацией алкадиенов 2 полимеризацией алкинов 3 полимеризацией алкенов 4 поликонденсацией аминокислот 15. Реакция образования полимера из мономеров называется 1 ферментативной реакцией 2 полимеризацией 3 реакцией гидролиза 4 биуретовой реакцией 16. Мономером для получения полистирола является 1 этилбензол 2 винилбензол 3 этилацетат 4 нитробензол 17. Биополимеры, построенные из остатков нуклеотидов – это 1 белки 2 крахмал 3 целлюлоза 4 нуклеиновые кислоты 18. Из полимеров наиболее стойкий химически 1 политетрафторэтилен 2 полистирол 3 полибутадиен 4 целлюлоза 19. Реакция гомополимеризации – это получение 1 поливинилхлорида 2бутадиен-стирольного каучука 3 энанта 4 фенолформальдегидной смолы 20. Синтетический каучук получают из бутадиена-1,3 реакцией 1 изомеризации 2 гидрогенизации 3 полимеризации 4 поликонденсации **21.** Формула мономера ДЛЯ получения поливинилацетата,


используемого для изготовления клея ПВА, имеет вид ...

23. Полибутадиеновый каучук может реагировать с хлором втемноте, потому что:

22. Линейное строение полипептидной цепи - это

1 первичная структура белка 2 вторичная структура белка 3 третичная структура белка 4 четвертичная структура белка

1 CH₃COO-CH=CH₂ 2 CH₂=CHCOO-CH₃ 3 C₆H₅COO-CH=CH₂ 4 CH₃CH₂O-CH=CH₂

П	риводит к уменьшению их
	1 эластичности
	2 механической прочности
	3 термореактивности
	4 стереорегулярности
33. 4	Рормулы веществ, между которыми возможно протеканиереакции
	оликонденсации, имеют вид
	1 С ₆ Н ₅ ОН и НСНО
	2 C ₆ H ₅ OH и CH ₂ =CHCl
	3 C ₆ H ₅ OH и CH ₂ =CHCOOH
	4C ₆ H ₅ OH и NaOH
24 L	· ·
	Ісходное вещество, которое используется в производстве ацетатного шелка,
К	вляется сложным эфиром целлюлозы и кислоты.
	1 уксусной
	2 стеариновой
	Зазотной
	4 серной
35. T	Іолимеры, макромолекулы которых содержат звенья разныхмономеров,
H	азываются
	1 сополимерами
	2 олигомерами
	3 стереомерами
	4таутомерами
36.	Полимеры, которые по значению молекулярной массы занимают промежуточное
П	оложение между низкомолекулярными и высокомолекулярными соединениями,
	азываются
	1 олигомерами
	2 сополимерами
	3 мономерами
	4эластомерами
37	К термопластичным полимерам не относится
37.	1 полиэтилен
	2 полипропилен
	3 полиамиды
20	4 фенолформальдегидная смола
38.	1
	вещество,формула которого имеет вид
	$1 C_6 H_5 CH = CH_2$
	2 C ₆ H ₅ OH
	3 C ₆ H ₅ CH=CHCH ₃
	$4 C_6H_5C(CH_3)=CH_2$
39.	Ацетилцеллюлоза, используемая в производстве ацетатногошелка, является
	римеромволокна.
	1 синтетического
	2 натурального
	3 полиамидного
	4искусственного
40 .T	Іолипропилен получают из вещества, формула которого
1001	1 CH ₂ =CH ₂
	2HC≡CH
	3CH ₃ -CH ₂ -CH ₃
	4CH ₂ =CH-CH ₃
	4U112=U11-UΠ3

41.	К природным	высокомолекулярным	соединениям
	неотносятся		
	l полиуретаны		
	2 полипептиды		
	Зполисахариды		
	4полиглюкины		
42.		ащие полимер, который при	
находится	в вязкотекучем состо	янии, а при его эксплуатаци	и – в стеклообразном,
называются			
	l пластмассами		
	2 пластификаторами		
	3 полимерными лаками		
	4 каучуками		
		винипласт (винил) производит	ся на основе продукта
	ции вещества, формула	которого имеет вид	
	CICH=CH2		
	CH ₃ CH=CH ₂		
	CH ₂ =CH ₂		
	C ₆ H ₅ CH=CH ₂	,	~
	акои вулканизирующии	й агент взаимодействует с каучун	сом сооразованием
резины?	haahan		
	фосфор сера		
	углерод		
	фтор		
4	фтор		
45. ∏p	одукт полимеризации э	тилена (полиэтилен) имеет форм	VЛV
-	$(CH_2)_n$, , , ,	<i>y</i>
	(-CH=CH-) _n		
	(-CH ₂ -CH ₂ -) _n		
4	$(CH_2=CH_2)_n$		
46.	К природным	высокомолекулярным	
	соединениямотносят	ся	
1	нуклеиновые кислоты		
2	фенолоформальдегидн	ные смолы	
3	ацетаты целлюлозы		
	поликарбонаты		
47. Д	(обавление наполнител	ей в состав полимерных матер	иаловпроводится, как
	целью увеличения их		
	механической прочнос	сти	
	кислотостойкости		
	эластичности		
	термопластичности		
		вулканизации макромолекул кау	
	_	при нагревані	ии.
	серой		
	сажей		
	графитом		
	пероксидом водорода		, pylovicompo 1/2
		соединений можно использоват	ь вкачестве мономеров и
	зации, и в поликонденса С6H5OH	ации:	
1	C0115O11		

- 2 CH₂=CH₂ 3 ClCH=CH₂
- 4 C₆H₆
- 50. Мономером для получения полиэтилена является
 - 1 CH₂=CH₂
 - 2 CH₂=CH-CH₃
 - 3 CH₃-CH₃
 - 4 CH₂=C=CH₂
- **51.** Природный (натуральный) каучук является продуктомполимеризации мономера, который называется...
 - 1 2-метилбутадиен-1,3
 - 2 бутадиен-1,3
 - 3 фенилэтилен
 - 4 2,3-диметилбутадиен-1,3
- 52. К полимерам, обладающим термопластическими свойствами, относится...
 - 1 полипропилен
 - 2 эпоксидная смола
 - 3 мочевино-формальдегидная смола
 - 4 полиуретан
- **53.** Процесс получения полимеров путем реакцииполиконденсации в отличие от полимеризации всегда сопровождается образованием...
 - 1 низкомолекулярных соединений
 - 2 олигомеров
 - 3 блок-сополимеров
 - 4 линейных полимеров
- **54.** Мономер для производства полистирола (полифенилэтилена)получают по реакции дегидрирования углеводорода
 - 1 метилбензол
 - 2 зтилбензол
 - 3 1,2-диметилбензол
 - 4 пропилбензол
 - 55. Продукт полимеризации этилена (полиэтилен) имеет формулу
 - $1(CH_2)_n$
 - $2(-CH=CH-)_n$
 - 3 (-CH₂- CH₂-)_n
 - 4 (CH₂=CH₂)_n
- **56.** Представителем гетероцепных высокомолекулярных соединений является...
 - 1 поликарбонат
 - 2 полистирол
 - 3 поливинилхлорид
 - 4 поливинилацетат
- **57.** При ухудшении свойств полимеров в результате деструкциимолекулярная масса макромолекул...
 - 1 уменьшается
 - 2 увеличивается
 - 3 не изменяется
 - 4 изменяется незначительно
- **58.** Стадия процесса полимеризации, на которой происходит присоединение активных центров к молекулам мономеров с образованием новых активных центров,

```
называется...
            1 ростом цепи
            2 стабилизированием
            3 инициированием
            4 передачей цепи
       59. Для
                    промышленного
                                               производства
                                                                      фенолформальдегидной
смолы следует взять
            1C<sub>6</sub>H<sub>6</sub>, HCHO
            2C<sub>6</sub>H<sub>6</sub>, CH<sub>3</sub>CHO
            3 C<sub>2</sub>H<sub>5</sub>OH, CH<sub>3</sub>CHO
            4C<sub>6</sub>H<sub>5</sub>OH, HCHO
      60. Полипропилен получают из вещества, формула которого
            1 \text{ CH}_2 = \text{CH}_2
            2HC≡CH
            3 CH<sub>3</sub>-CH<sub>2</sub>-CH<sub>3</sub>
            4CH<sub>2</sub>=CH-CH<sub>3</sub>
       61. Реакции полимеризации характерны для
            1 стирола, пропена, этилена
            2 пропилена, метаналя, этана
            3 стирола, этина, метановой кислоты
            4 пропена, бутадиена, гексана
       62. Одной из характерных особенностей первичной структурыбелковой
макромолекулы является наличие в ней_
                                                                                        связей.
            1 пептидных
            2эфирных
            3 ковалентных полярных
            4 донорно-акцепторных
       63. Образование макромолекул белков происходит в результатереакции а-
аминокислот.
            1 поликонденсации
            2 этерификации
            3 пептизации
            4 полимеризации
       64. Формула вещества, являющегося исходным мономером дляполучения
поливинилхлорида, имеет вид...
            1 CH<sub>2</sub>=CHCl
            2C1CH=CHC1
            3 Cl_2C=CCl_2
            4CH<sub>2</sub>=CHCH<sub>2</sub>Cl
      65. Мономером для получения искусственного каучука по способу Лебедева служит
            1 бутен-2
            2 этан
            3 этилен
            4бутадиен-1,3
   66.
         Представителем
                                        природных
                                                            неорганических
            полимерных волокнистых материалов является...
            1 асбест
            2 корунд
            3 шелк
            4эбонит
```

. =	T						
67.	Полимером, обладающим термопластическими свойствами,я	вляется					
	1 полистирол 2 эпоксидная смола						
	3 фенолформальдегидная смола4 полиэтилентерефталат						
68.		нопон рустоя					
00.	1	используется					
	впромышленности для получения						
	1 поливинилацетата						
	2 полиэтилентерефталата3 фенолформальдегидных смол						
	4 эпоксидных смол						
69.							
0).	1 сакция расщепления полимера до мономеров называется 1 плазмолиз						
	2 фотолиз						
	3 гидролиз						
	4 денатурация						
	т денатурация						
70.	Формула продукта полимеризации пропилена						
	1 CH ₃ -CH ₂ -CH ₃						
	2 (-CH ₂ -CH(CH ₃)-CH ₂ -CH ₂ -) _n						
	3 (-CH ₂ -CH ₂ -) _n						
	4 (-CH ₂ -CH ₂ -CH ₂ -) _n						
71.	К искусственным химическим волокнам относятся						
	1 хлопок и лен						
	2 шерсть и шелк						
	3 вискозное и ацетатное олокна						
	4 капрон и нейлон	_					
72.	Вулканизированная резина набухает, но не растворяется во	рензине, потому что					
	1 молекулы полимера не содержат полярные группы						
	2 это эластичный полимер	,					
	3 молекулы полимера химически связаны сульфидными мо	стиками4 молекулы					
	олимера содержат двойные связи	1					
73.	Для получения синтетического каучука можно использов	атьвещество, формула					
которого							
	1 CH ₃ -CH ₂ -CH ₂ -CH ₃						
	2 CH ₃ -CH=CH-CH ₃						
	3 CH ₂ =CH-CH ₂ -CH ₃ 4 CH ₂ =CH-CH=CH ₂						
74.		VVV					
/4.	Основное отличие реакций поликонденсац реакцийполимеризации	ии от					
	реакцииполимеризации 1 последовательное присоединение молекулы к растущей це	attix					
		OTIVI					
	2 в реакцию вступают два разных соединения3. образование высокомолекулярного соединения						
	4. выделение побочного низкомолекулярного продукта это						
75.	Биополимеры, построенные из остатков L – аминокисло	T					
13.	1 белки	1 —					
	2 крахмал						
	3 целлюлоза						
	4 нуклеиновые кислоты						
76.	4 нуклеиновые кислоты Асбест представляет собой волокно						
70.	1 природное, минеральное						
	2 природное, растительное						
	2 Inpripognice, paerintendince						

- 3 искусственное, химическое 4 синтетическое, химическое Полибутадиеновый каучук может реагировать с хлором в 77. темноте, потому что 1. это эластичный полимер 2. в молекулах полимера много двойных связей 3. 3 С-С связи способны к разрыву 4 содержит в главной цепи атомы углерода поликонденсации **78.** реакцию вступают мономеры, содержащие... 1 π-связь 2 функциональные группы 3 только σ-связи 4 гетероатомы 79. Для получения поливинилацетата (основной компонент клеяПВА) используется продукт реакции 1 CH≡CH + HCN $2 CH_2=C(CH_3)COOH + CH_3OH$ 3 CH₂=CH₂+CH≡CH 4 $CH_2=CH_2+CH_3COOH$ 80. Биополимер, построенные из остатков моносахаридов – это 1 белки 2 крахмал 3 ДНК 4 PHK **81.** Гуттаперча ... 1 неэластичная и нестереорегулярная 2 эластичная и нестереорегулярная 3. неэластичная и стереорегулярная 4. неэластичная и стереорегулярная 82. Реагирует с бромной водой 1 полистирол 2 полиэтилен 3 полибутадиен 4 поливинилхлорид

 - 83. Биологическим сырьем, используемым для получения

искусственных волокон, является:

- 1 резина
- 2 целлюлоза
- 3 живица
- 4 латекс
- 84. Синтетические каучуки получают
 - 1 полимеризацией алкадиенов
 - 2 полимеризацией алкинов
 - 3 полимеризацией алкенов
 - 4 поликонденсацией аминокислот
- **85.** Мономер И структурное звено полимеров, полученных реакцией полимеризации, имеют...
 - 1 одинаковое строение
 - 2 одинаковый состав

- 3 одинаковый состав и строение
- 4 различный состав
- 86. Природным полимером является
 - 1 полипропилен
 - 2 целлюлоза
 - 3 капрон
 - 4 каучук бутадиеновый
- 87. К полимерам, обладающим термопластическими свойствами, относится...
 - 1 полипропилен
 - 2 эпоксидная смола
 - 3 мочевино-формальдегидная смола
 - 4 полиуретан
- 88. Синтетический каучук получают из бутадиена-1,3 реакцией
 - 1 изомеризации
 - 2 гидрогенизации
 - 3 полимеризации
 - 4 поликонденсации
- 89. В основе биосинтеза природных полимеров лежат реакцииполимеризации и поликонденсации
 - 1 гидролиза
 - 2 сополимеризации
 - 3 полимеризации и поликонденсации
 - 4 поликонденсации
- 90. Мономером для получения поливинилхлорида является
 - 1 хлорэтан
 - 2 хлорпропан
 - 3 хлорэтен
 - 4 1,2-дихлорэтан
- **91.** Представителем гетероцепных высокомолекулярных соединений является...
 - 1 поликарбонат
 - 2 полистирол
 - 3 поливинилхлорид
 - 4 поливинилацетат
 - 92. Полиизопреновый каучук может обесцвечивать растворперманганата калия, потому что
 - 1 это высокоэластичный полимер
 - 2 молекулы полимера содержат метильные группы
 - 3 имеет большую молекулярную массу
 - 4 в молекулах полимера много двойных связей
 - 93. Реакция сополимеризации это получение
 - 1 поливинилхлорида
 - 2бутадиен-стирольного каучука
 - 3 энанта
 - 4 фенолформальдегидной смолы
 - **94.** Какой способ используется для получения искусственных полимеров?
 - 1 полимеризация
 - 2 химические превращения синтетических полимеров3 поликонденсация
 - 3 химические превращения природных полимеров

- 95. Мономером для получения полиэтилена является
 - 1 CH₂=CH₂
 - 2 CH₂=CH-CH₃
 - 3 CH₃-CH₃
 - 4 CH₂=C=CH₂
- 96. К природным веществам, имеющим полимерное строение, относится...
 - 1 гликоген
 - 2 поли-є-капроамид
 - 3 целлофан
 - 4 порфин
- 97. Выберите свойство, которым обладают нерегулярные полимеры и не обладают регулярные
 - 1 устойчивость структуры
 - 2 большие размеры молекулы
 - 3 способность хранить энергию
 - 4 способность хранить информацию
- 98. Получение белков из аминокислот это реакция
 - 1 гомополимеризации
 - 2 сополимеризации
 - 3 гомополиконденсации
 - 4 сополиконденсации
- 99. Выберите вещество, не являющееся полимером
 - 1 кислая фосфатаза
 - 2 крахмал
 - 3 PHK
 - 4 нуклеотид

100. Мономер для производства полистирола (полифенилэтилена)получают по реакции дегидрирования углеводорода

1 метилбензол

2 этилбензол

31,2-диметилбензол

4пропилбензол

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание ре-зультатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной атте-стации обучающихся по очной форме обучения составляет 36 баллов, по оч-но-заочной и заочной формам обучения -60 баллов (установлено положени-ем Π 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентност-но-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале (для зачета) или в оценку по 5-балльной шкале (для экзамена) следующим образом:

Соответствие 100-балльной и

Оценка по дихотомической шкале

дихотомической шкал Сумма баллов по

100-балльной шкале

100–50 49 и менее

зачтено не зачтено

2.3 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

- 1. Рассчитайте молекулярный вес полученного полимера, если при определении концевых карбоксильных групп на титрование 2,000 г полимера израсходовано 3,7 мл 0,1М раствора AgNO₃.
- 2. При полимеризации стирола в среде четыреххлористого углерода в присутствии перекиси бензоила образуются сравнительно низкомолекулярные продукты (напишите реакцию полимеризации). После осаждения их из реакционной среды и очистки было проведено определение $\overline{M_n}$ эбулиоскопическим методом в бензоле.
- 3. Рассчитать кажущуюся молекулярную массу и степень полимеризации полистирола, если температура кипения бензольного раствора с концентрацией полимера на 1500 г растворителя выше температуры кипения чистого растворителя на 0,0004 град.
- 4. Рассчитать молекулярную массу и степень полимеризации поликапроамида из криоскопических данных, если ΔT_k для его раствора в муравьиной кислоте составляет 0,0012 град при концентрации 0,3 г /100мл раствора; K_k =2,77.
- 5. Рассчитать среднечисловую молекулярную массу и степень полимеризации поли-α-метилстирола, если при измерении осмотического давления при температуре 25 °C для его растворов в толуоле получены следующие данные

С·10³, г/мл	0,3	0,5	0,78	0,98
Δh , мм	0,96	1,65	2,83	3,75

$$\rho = 0.8623 \ e/cm$$

6. Рассчитать К и а из вискозометрических данных для растворов поливинилпиридина в воде, если для его фракций получены следующие значения характеристической вязкости и молекулярного веса (седиментационным способом):

	Ι	II	III	IV	V
[η]	0,148	0,251	0,348	0,619	0,879
M	$1,2\cdot 10^4$	$2,6\cdot10^4$	$4,2\cdot10^4$	$9.8 \cdot 10^4$	$16,4\cdot10^4$

- 7. Для установления значений К и а для растворов поливинилацетата в ацетоне были выделены фракции, определены их молекулярные массы (осмомометрически) и характеристические вязкости. Оказалось, что для фракции с M_n = 22500, $[\eta]$ = 0,194, а для фракции с M_n = 40000, [n] = 0,289. Вычислить К и α .
 - 8. Рассчитать средневязкостную молекулярную массу и степень полимеризации поливинилового спирта (раствор в воде) при 25 °C, если $K=5.95\cdot10^{-4}$, $\alpha=0.63$ и известны значения приведенной логарифмической вязкости:

- 9. Рассчитать молекулярный вес и напишите формулу полистирола из диффузионных данных, если найденный коэффициент диффузии полистирола в дихлорэтане оказался равным $1.2 \cdot 10^{-7}$ cm^2/c .
- 10. Рассчитать молекулярную массу полиизопропена из данных ультроцентрифугирования его растворов в октане при 20 °C: $S_o = 5.24 \cdot 10^{-13}~{\rm cm}^*{\rm c}^{-1}$ *дин $^{-1}$; $K_s = 6.1 \cdot 10^{-2}$; b = 0.620
- 11. Рассчитать полидисперсность по Шульцу для перхлорвинила, если при фракционировании его из 1% растворов в ацетоне осаждением метиловым спиртом получены следующие фракции:

$$a_i$$
, %.......10 12 8 11 18 7 12 9 10 3 M_i*10^{-4} ..7.5 6.2 5.4 5.0 4.6 3.9 3.3 2.5 1.2 0.6

- 12. Рассчитать молекулярный вес полистирола из диффузионных данных, если найденный коэффициент диффузии полистирола в дихлорэтане оказался равным $1,7\cdot10^{-7}$ см 2 /с.
- 13. Рассчитать молекулярную массу и степень полимеризации поликапроамида из криоскопических данных, если ΔT_k для его раствора в муравьиной кислоте составляет 0,0012 град при концентрации $0.3 \, \Gamma / 100$ мл раствора; $K_k = 2.77$.

14. Рассчитать молекулярную массу полимера и степень полимеризации из криоскопических

данных его раствора в растворителе:

Полимер	Растворитель	ΔT , 10^4 , град.	С, г/100 мл	Кк
Полиэтилентерефталат	п-Крезол	5,1	1,1	7,11

15. Рассчитать молекулярную массу полимера и степень полимеризации из криоскопических

данных его раствора в растворителе:

Полимер		Pac	творитель	ΔT, 10 ⁴ , град.	С, г/100 мл	Кк	Ī
							ı

Полиэтилентерефталат п-Кр	резол 5,1	1,1	7,11
---------------------------	-----------	-----	------

16. Рассчитать молекулярную массу полиизопропена из данных ультроцентрифугирования его растворов в октане при 20 °C: $S_o = 5.24 \cdot 10^{-13}$ см*с $^{-1}$ *дин $^{-1}$; $K_s = 6.1 \cdot 10^{-2}$; b = 0.620

Шкала оценивания решения компетентностно-ориентированной задачи:

в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно- ориентированной задачи — 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемостив течение семестра; сумма баллов переводится в оценку по дихотомической шкале (для зачета) или в оценку по 5-балльной шкале (для экзамена) следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале	
100–50	зачтено	
49 и менее	не зачтено	

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100–85	отлично
84–70	хорошо
69–50	удовлетворительно
49 и менее	неудовлетворительно

Соответствие 100-балльной и 5-балльной шкал

Критерии оценивания решения компетентностно-ориентированной задачи:

- **6-5 баллов** выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляетсобой логичное, ясное и при этом краткое, точное описание хода решения за- дачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задачарешена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в

установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).

- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или)задача не решена.