Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

МИНОБРНАУКИ РОССИИ

Дата подписания: 03.10.2023 00: Федеральное государственное бюджетное Уникальный программный ключ:

0b817са911e6668abb136бразовательное учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра биомедицинской инженерии

УТВЕРЖДАЮ

Проректор по учебной работе

О.Г. Локтионова

25 " 09 100 21

МЕДИЦИНСКАЯ ЭЛЕКТРОНИКА

Методические указания по выполнению самостоятельной работы для студентов специальности 30.05.03 – Медицинская кибернетика

Составители: С.Н. Родионова.

Рецензент: Кандидат технических наук, доцент *А.В. Киселев*

Медицинская электроника: методические указания по выполнению самостоятельной работы для студентов специальности 30.05.03 — Медицинская кибернетика / Юго-Зап. гос. ун-т; сост.: Родионова С.Н., Курск, 2023. - 13 с.

Содержат методические указания к выполнению самостоятельной работы по дисциплине «Медицинская электроника».

Методические указания по структуре, содержанию и стилю изложения материала соответствуют методическим и научным требования, предъявляемым к учебным и методическим пособиям.

Предназначены для студентов направления подготовки 30.05.03 – Медицинская кибернетика.

Текст печатается в авторской редакции

Подписано в печать _____. Формат 60х84 1/16 Усо.печ.л. _____. Уч.-изд.л. . Тираж _____ экз. Заказ: 1046. Бесплатно. Юго-Западный государственный университет. 305040. г. Курск, ул. 50 лет Октября, 94.

- 1 Цель и задачи дисциплины. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
- **1.1 Цель** дисциплины изучение студентами физических процессов в элементах электронной и полупроводниковой техники, их основных параметров и характеристик.

1.2 Задачи дисциплины

- формирование базовых знаний в области теории электрических цепей и электронных компонентов, используемых в биотехнических устройствах и приборах;
- приобретение навыков в выборе, обосновании, расчете и построении (синтезе) электрических и электронных цепей, схем, узлов, устройств и приборов биотехнического назначения;
- приобретение базовых знаний о преобразовании сигналов в электрических и радиоэлектронных цепях и устройствах, моделировании электрических цепей и выборе соответствующих моделей при практическом решении задач по расчету электрических и электронных схем.

1.3 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

Знать: основные определения, приемы и методы решения задач анализа и расчета электронных цепей, узлов и устройств;

Уметь: проводить анализ и рассчитывать по исходным данным характеристики линейных и нелинейных электронных цепей;

Владеть: первичными навыками расчета характеристик электронных цепей, работы с технической литературой по анализу и расчету электронных цепей для основных видов сигналов, работы с основными электроизмерительными приборами и аппаратурой для радиотехнических измерений

2 Самостоятельная работа студентов (СРС).

Таблица 1 Самостоятельная работа студента (СРС)

№ раздела (темы)	Наименование раздела дисциплины	Срок выполн ения	Время, затрачиваемое на выполнение СРС, час
1	2	3	4
1.	Введение. Полупроводниковые	1-2	14
	элементы (устройство и принцип	недели	
	действия, особенности		
	применения низковольтных,		
	высоковольтных, малой и		
	большой мощности диодов)		
2.	Выпрямители. Тиристоры (расчет	2-3	10
	и проектирование	недели	
	выпрямительных устройств с		
	использованием п/п диодов:		
	- низкочастотного и		
	высокочастотного типов;		
	- импульсных выпрямительных и		
	стабилизирующих устройств;		
	- умножителей напряжения)		
3.	Транзисторы	4-5	10
	(основные принципы построения	недели	
	и функционирования:		
	- особенности применения малой,		
	средней и большой мощности		
	транзисторов;		
	- особенности проектирования		
	усилительных устройств		
	низкочастотного и		
	высокочастотного типов;		
	- каскадные усилители с		
	применением полупроводниковых		
	приборов различной		
	проводимости)		
4.	Полевые транзисторы и их	6-8	10
	применение (полевые, МДП и	недели	
	КМОП транзисторы, их		
	использование в электронных		
	устройствах и устройствах		

	вычислительной техники)		
5	Устройства специального	15-18	17.85
	применения с использованием ОУ	недели	
	(- специальные применения		
	операционных усилителей:		
	- схемотехнические решения с		
	высоким входным		
	сопротивлением;		
	- ОУ с микропотреблением		
	энергии от автономных		
	источников питания;		
	- компараторы, их		
	разновидности, точностные ха-		
	рактеристики;		
	- ОУ с одним источником		
	питания		
Итого			61,8

3. Содержание дисциплины, структурированное по темам (разделам)

Таблица 2. Содержание дисциплины, структурированное по темам (разделам)

$N_{\underline{0}}$	Раздел (тема)	Содержание
Π/Π	дисциплины	Содержание
1	2	3
1	Введение.	Значение электроники для научно-
	Полупроводнико-	технического прогресса и ее развитие как
	вые элементы	науки. Содержание и структура модуля.
		Формы и процедура текущего и
		промежуточного контроля знаний.
		Полупроводниковые элементы электроники.
		Диоды, эквивалентная схема, в/а
		характеристики, типы диодов, их параметры;
		стабилитроны, электрические схемы под-
		ключения, достоинства и недостатки.
		Фотодиоды, приборы с зарядовой связью
	_	(ПЗС)
2	Выпрямители. Тиристоры	В/а характеристики вентильных диодов.
		Выпрямители с использованием
		полупроводниковых диодов, основные схемы
		построения. Тиристоры, структурная и
		имитационная модели. Базовая формула для
		тока, проходящего через тиристор в открытом
		состоянии, графическое представление
		пусковых в/а характеристик. Запираемые и
		симметричные тиристоры, динисторы,
		семисторы; управление по катоду и по аноду.
		Схемотехническое изображение тиристоров с
		различными характеристиками
3	Транзисторы	Эквивалентная схема, вольтамперные
		характеристики, аналитические и графические
		представления. Эквивалентная схема
		реального транзистора, эффект запаздывания,
		инерционные свойства транзисторов. Схемы
		включения транзисторов, основные
		математические соотношения для входных и
		выходных характеристик

1	Полевые	
7		Принцип работы, конструктивные
	транзисторы и их применение	особенности, эквивалентная схема,
		использование в качестве усилителя, его
		эквивалентная схема и принцип работы, схема
		включения. МДП - транзисторы: устройство,
		конструкция, принципы работы, основное
		применение в электронных устройствах,
		обозначение в принципиальных схемах
5	Операционные усилители (ОУ)	•
		Назначение ОУ, принцип работы, обозначение
		в принципиальных схемах; инвертирующий и
		неинвертирующий режимы работы, основное
		выражение для входных и выходных
		характеристик схемы включения;
		переключатель тока, основные соотношения
		для токов и напряжений в цепях, генератор
		тока и его назначение, использование в цепях
		дифференциального усилителя (ДУ), рабочая
		схема ДУ, принцип работы, принципиальная
		схема выходных характеристик
6	Особенности	Практическое применение ДУ, типовая схема
	применения ОУ	ОУ, особенности схемотехнического
		построения, роль положительной и
		отрицательной обратных связей, частотная
		коррекция, идеальный ОУ, основные
		аналитические выражения для описания
		базовых параметров и характеристик,
		регулировка усиления, основные схемные
		решения
7	Устройства	Дифференцирующие устройства, идеальное и
	специального	практическое решения; интегратор, принцип
	применения с	работы, основные математические выражения,
	использованием	принципиальные схемы: с заземленным
	ОУ	конденсатором, с большой постоянной време-
		ни; мостовые усилители с линейной и
		нелинейной характеристиками; усилители
		переменного напряжения; фазовращатели,
		избирательные усилители НЧ и ВЧ; практиче-
		ские схемы, перспективные решения
<u> </u>	1	

Студенты могут при самостоятельном изучении отдельных тем и вопросов дисциплин пользоваться учебно-наглядными пособиями, учебным оборудованием и методическими разработками кафедры в рабочее время, установленное Правилами внутреннего распорядка работников.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по данной дисциплине организуется:

библиотекой университета:

- библиотечный фонд укомплектован учебной, методической, научной, периодической, справочной и художественной литературой в соответствии с УП и данной РПД;
- имеется доступ к основным информационным образовательным ресурсам, информационной базе данных, в том числе библиографической, возможность выхода в Интернет.

кафедрой:

- путем обеспечения доступности всего необходимого учебнометодического и справочного материала;
- путем предоставления сведений о наличии учебнометодической литературы, современных программных средств.
 - путем разработки:
- методических рекомендаций, пособий по организации самостоятельной работы студентов;
 - тем рефератов;
 - вопросов к зачету;
- -методических указаний к выполнению лабораторных работ и т.д.

типографией университета:

- помощь авторам в подготовке и издании научной, учебной и методической литературы;
- -удовлетворение потребности в тиражировании научной, учебной и методической литературы.

4 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

4.1 Основная учебная литература

- 1. Марченко, А. Л. Основы электроники [Текст] : учебное пособие для ву-зов / А. Л. Марченко. М.: ДМК-Пресс, 2012. 296 с.
 - 2. Электротехника и электроника [Электронный ресурс] :

- учебное по-собие / М. В. Бобырь [и др.]. Курск : КурскГТУ, 2009 .Кн. 1: Электротехника / Курский государственный технический университет. 153 с.
- 3. Электротехника и электроника [Текст] : учебное пособие / М. В. Бобырь [и др.]. Курск : КурскГТУ, 2009 . Кн. 1 : Электротехника / Курский государственный технический университет. 153 с.
- 4. Электротехника и электроника [Текст] : учебное пособие / М. В. Бобырь [и др.]. Курск : КурскГТУ, 2009 . Кн. 2 : Электроника / Курский государственный технический университет. 240 с.
- 5. Электротехника и электроника [Электронный ресурс] : учебное по-собие / М. В. Бобырь [и др.]. Курск : КурскГТУ, 2009 Кн. 2: Электроника / Курский государственный технический университет. 240 с.
- 6. Рекус, Г.Г. Основы электротехники и электроники в задачах с реше-ниями [Электронный ресурс] : учебное пособие / Г.Г. Рекус. М. : Директ-Медиа, 2014. 344 с. // Режим доступа //biblioclub.ru/index.php?page=book&id=233698

8.2 Дополнительная литература

- 7. Базовые лекции по электронике [Текст] : сборник / под общ. ред. В. М. Про- лейко. М.: Техносфера, 2009 .Т.1: Электронная, плазменная и квантовая электроника. 480 с.
- 8. Умрихин, В. В. Физические основы электроники [Текст] : учебное пособие / В. В. Умрихин. М.: Альфа-М, 2012. 304 с.
- 9. Попов, В. П. Основы теории цепей [Текст] : учеб. для вузов / В. П. Попов. 3-е изд., испр. М. : Высшая школа, 2000. 575 с.
- 10. Практикум по электротехнике и электронике [Текст]: учебное пособие / под ред. В.В. Кононенко. Ростов-на-Дону: Феникс, 2007. 384 с.

4.4 Другие учебно-методические материалы

Отраслевые научно-технические журналы в библиотеке университета:

Вопросы медицины Врачебное дело Актуальнее вопросы медицины Медицинская техника

5 Перечень ресурсов информационнотелекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. http://window.edu.ru/library Информационная система «Единое окно доступа к образовательным ресурсам»
- 2. http://biblioclub.ru Электронно-библиотечная система «Университетская библиотека онлайн».
- 3. http://www.consultant.ru Официальный сайт компании «Консультант Плюс».

Основная цель самостоятельной работы студента при изучении «Функциональная диагностика» дисциплины теоретические знания, полученные в процессе лекционных занятий, а также сформировать практические навыки самостоятельного анализа особенностей дисциплины. Своевременнее изучение дисциплины успешно студенту подготовиться позволяет промежуточной аттестации в форме зачета. Зачет проводится в виде бланкового тестирования.

Для тестирования используются контрольно-измерительные материалы (КИМ) — вопросы и задания в тестовой форме, составляющие банк тестовых заданий (БТЗ) по дисциплине, утвержденный в установленном в университете порядке.

Для проверки знаний используются вопросы и задания в различных формах:

- закрытой (с выбором одного или нескольких правильных ответов),
 - открытой (необходимо вписать правильный ответ),
 - на установление правильной последовательности,
 - на установление соответствия.

Умения, навыки (или опыт деятельности) и компетенции проверяются с помощью компетентностно-ориентированных задач (ситуационных, производственных или кейсового характера) и конструкторов. различного Bce являются вида задачи Некоторые многоходовыми. задачи, проверяющие уровень сформированности компетенций, являются многовариантными. Часть умений, навыков и компетенций прямо не отражена в формулировках задач, но они могут быть проявлены обучающимися при их решении.

В каждый вариант КИМ включаются задания по каждому проверяемому элементу содержания во всех перечисленных выше

формах и разного уровня сложности. Такой формат КИМ позволяет объективно определить качество освоения обучающимися основных элементов содержания дисциплины и уровень сформированности компетенций.

Примеры типовых заданий для проведения промежуточной аттестации обучающихся

Вопросы для собеседований

Тема 1. Введение. Полупроводниковые элементы

Значение электроники для научно-техничес-кого прогресса и ее развитие как науки.

Полупроводниковые элементы электроники.

Диоды, эквивалентная схема, в/а характеристики, типы диодов, их параметры.

Стабилитроны, электрические схемы подключения стабилитронов.

Фотодиоды, приборы с зарядовой связью (ПЗС).

Тема 2. Выпрямители. Тиристоры

В/а характеристики вентильных диодов.

Выпрямители с использованием полупроводниковых диодов, основные схемы построения.

Тиристоры, структурная и имитационная модели.

Базовая формула для тока, проходящего через тиристор в открытом состоянии, графическое представление пусковых в/а характеристик.

Запираемые и симметричные тиристоры, динисторы, семисторы; управление по катоду и по аноду.

Схемотехническое изображение тиристоров с различными характеристиками.

Тема 3. Транзисторы

Эквивалентная схема, вольтамперные характеристики, аналитические и графические представления.

Эквивалентная схема реального транзистора, эффект запаздывания, инерционные свойства транзисторов.

Схемы включения транзисторов, основные математические соотношения для входных и выходных характеристик.

Тема 4. Полевые транзисторы и их применение

Принцип работы, конструктивные особенности,

Эквивалентная схема транзистора, использование в качестве усилителя, принцип работы.

Схема включения полевого транзистора.

МДП - транзисторы: устройство, конструкция, принципы работы, основное применение в электронных устройствах, обозначение в принципиальных схемах

Тема 5. Операционные усилители (ОУ)

Назначение ОУ,

Принцип работы ОУ, обозначение в принципиальных схемах;

Инвертирующий и неинвертирующий режимы работы ОУ,

Основное выражение для входных и выходных характеристик схемы включения;

Переключатель тока, основные соотношения для токов и напряжений в цепях,

Генератор тока и его назначение,

Использование в цепях дифференциального усилителя (ДУ), рабочая схема ДУ, принцип работы,

Принципиальная схема выходных характеристик

Тема 6. Особенности применения ОУ

Практическое применение ДУ,

типовая схема ОУ,

Особенности схемотехнического построения ОУ,

Роль положительной и отрицательной обратных связей,

Идеальный ОУ,

Основные аналитические выражения для описания базовых параметров и характеристик, регулировка усиления. ОУ.

Тема 7. Устройства специального применения с использованием ОУ

Дифференцирующие устройства, идеальное и практическое решения;

Интегратор, принцип работы, основные математические выражения, принципиальные схемы: с заземленным конденсатором, с большой постоянной времени;

Мостовые усилители с линейной и нелинейной характеристиками;

Усилители переменного напряжения;

Фазовращатели.

Избирательные усилители НЧ и ВЧ; практические схемы, перспективные решения.