Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Ряполов Петр Алексеевич

Аннотация рабочей программы по дисциплине

Должность: декан ЕНФ

Дата подписания: 07.09.2023 15:27:39

«Реагенты в органической и неорганической химии»

Уникальный программный ключ: efd3ecdbd183f7649d0e3a **33.23b . dbp. 40.72 po. 1.23b . dbp. 40.72b . dbp. 4**

Формирование основ знаний курса «Реагенты в органической и неорганической химии», которые раскрывают общие закономерности, определяющие условия и способы синтеза веществ в зависимости от их строения. Сформулировать общие подходы к планированию и выбору наиболее целесообразного пути синтеза веществ; показать, как в эксперименте проявляются наиболее важные химические свойства, характерные для функциональных групп, определяющих реакционную способность органических и неорганических соединений.

Задачи дисциплины:

- обучение и расширение знаний о строении органических веществ и применении веществ в органическом и неорганическом синтезе;
- получение опыта участия в научно-исследовательских работах в области органического и неорганического синтеза;
- изучение свойства реагентов, используемых в органическом синтезе, особенности их действия и условия применения;
- формирование навыков организации выводов, заключений, отчетов в области органического и неорганического синтеза;
 - овладевания методиками проведения органического синтеза.

Компетенции, формируемые в результате освоения дисциплины:

ПК-2-способен организовывать выполнение фундаментальных и прикладных научно-исследовательских работ в области химии веществ и материалов

ПК-3 - способен определять сферу применения и внедрять результаты научноисследовательских и опытно конструкторских работ в области химии веществ и материалов

Разделы дисциплины:

Выбор оптимального пути синтеза органического соединения.

Единичная стадия синтеза. Субстрат, реагент, растворитель, катализатор.

Гидрирование кратных связей.

Гомогенное гидрирование.

Реагенты окисления

Литий- и магнийорганические соединения.

Создание двойной углерод-углеродной связи.

Особенности кремнийорганических соединений по сравнению с их углеродными аналогами.

Защитные группы в органическом синтезе.

Реакционноспособные интермедиаты органических реакций.

Документ подписан простой электронной подписью

Информация о владельце:

минобрнауки россии

ФИО: Ряполов Петр Алексеевич

Должность: декан ЕНФ

дата подписания: 13.09.2022 16:38:43 Юго-Западный государственный университет

Уникальный программный ключ:

efd3ecdbd183f7649d0e3a33c230c6662946c7c99039b2b268921fde408c1fb6

УТВЕРЖДАЮ:
Декан естественно-научного фа-
культета
(наименование ф-та полностью)
<u>П.А. Ряполов</u> (подпись, инициалы, фамилия)
« H » PS 2020 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

	Реагенты в органической и неорганической химии
	(наименование дисциплины)
ОПОП ВО_04.04	4.01 Химия
	шифр и наименование направления подготовки (специальности)
направленность (профиль, специализация) «Фундаментальная и прикладная химия ве- пов»
	наименование направленности (профиля, специализации)
форма обучения_	очная
	(очная, очно-заочная, заочная)

Рабочая программа дисциплины «Реагенты в органической и неорганической химии» составлена в соответствии с ФГОС ВО —магистратура по направлению подготовки (специальности) 04.04.01Химия на основании учебного плана ОПОП ВО04.04.01Химия направленность (профиль, специализация) «Фундаментальная и прикладная химия веществ и материалов», одобренного Ученым советом университета (протокол №11 «29» 06, 2020г.).

Рабочая программа дисциплины «Реагенты в органической и неорганической химии» обсуждена и рекомендована к реализации в образовательном процессе для обучения студентов по ОПОП ВО04.04.01 Химия на основании учебного плана ОПОП ВО 04.04.01 Химия, направленность (профиль, специализация) «Фундаментальная и прикладная химия веществ и материалов» на заседании кафедры фундаментальной химия и химической технологии№ «13» 26.06, 2020 г.

прикладная химия веществ и материалов» н	а заседании кафедры фундаментальной
химии и химической технологии№ «13» 26.0	6. 2020 r.
(напменование кафедры,	дата, номер протокога)
1	5
Зав. кафедрой	Кувардин Н.В.
Разработчик программы	L Vincenium U.D.
К.Х.Н., ДОЦЕНТ (ученая степень и учение зартие, ф. н. о.)	Уувардин Н.В.
	_^
Директор научной библиотеки 🧷	МакаровскаяВ.Г.
	08
химии» пересмотрена, обсуждена и рекомен, процессе на основании учебного плана на 04.04.01 Химия, направленность (профиль, сп кладная химия веществ и материалов», одоб	основании учебного плана ОПОП ВО ециализация) «Фундаментальная и при- ренного Ученым советом университета
протокол № 6«26» 02 2021., на заседании кафи	ЭДРЫ <u>ФХИХТ, 3В.06.2021 с, иротокол</u> NI <u>дати м</u> омер примоками)
Зав. кафедрой	& B. Kylapgur
химии» пересмотрена, обсуждена и рекомен, процессе на основании учебного плана на 04.04.01 Химия, направленность (профиль, сп кладная химия веществ и материалов», одоб протокол № « » 20 г., на заседании кафе	основании учебного плана ОПОП ВО ециализация) «Фундаментальная и при- ренного Ученым советом университета
Зав. кафедрой	W

реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия
веществ и материалов», одобрено Ученым советом университета протокол № $9 < 24 > 02$ 20 <u>23</u> на заседании кафедры ФХ и ХТ $< 29 > 06$ 20 <u>23</u> г., протокол № <u>13</u>
Зав. кафедрой ФХ и ХТ — З.В. Курардия
Рабочая программы дисциплины пересмотрена, обсуждена и рекомендована к реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия
веществ и материалов», одобрено Ученым советом университета протокол № «»
Зав. кафедрой ФХ и ХТ
Рабочая программы дисциплины пересмотрена, обсуждена и рекомендована к реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия веществ и материалов», одобрено Ученым советом университета протокол № «»20 протокол №
Зав. кафедрой ФХ и ХТ Рабочая программы дисциплины пересмотрена, обсуждена и рекомендована к реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия веществ и материалов», одобрено Ученым советом университета протокол № «»20г., протокол №
Зав. кафедрой ФХ и XT
Рабочая программы дисциплины пересмотрена, обсуждена и рекомендована к реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия веществ и материалов», одобрено Ученым советом университета протокол № «»20
Зав. кафедрой ФХ и XT
Рабочая программы дисциплины пересмотрена, обсуждена и рекомендована к реализации в образовательном процессе на основании учебного плана ОПОП ВО направления подготовки 04.04.01 Химия, профиль «Фундаментальная и прикладная химия веществ и материалов», одобрено Ученым советом университета протокол № «» 20г., протокол №
Зав. кафедрой ФХ и ХТ

1 Цель и задачи дисциплины. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

1.1 Цель дисциплины

Формирование основ знаний курса «Реагенты в органической и неорганической химии», которые раскрывают общие закономерности, определяющие условия и способы синтеза веществ в зависимости от их строения. Сформулировать общие подходы к планированию и выбору наиболее целесообразного пути синтеза веществ; показать, как в эксперименте проявляются наиболее важные химические свойства, характерные для функциональных групп, определяющих реакционную способность органических и неорганических соединений.

1.2 Задачи дисциплины

- обучение и расширение знаний о строении органических веществ и применении веществ в органическом и неорганическом синтезе;
- получение опыта участия в научно-исследовательских работах в области органического и неорганического синтеза;
- изучение свойства реагентов, используемых в органическом синтезе, особенности их действия и условия применения;
- формирование навыков организации выводов, заключений, отчетов в области органического и неорганического синтеза;
- овладевания методиками проведения органического синтеза.

1.3 Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

Таблица 1.3 – Результаты обучения по дисциплине

Планируемые результаты освоения		Код	Планируемые результаты
основной профессиональной		и наименование	обучения по дисциплине,
	ельной программы	индикатора	соотнесенные с индикаторами до-
(компетен	щии, закрепленные	достижения	стижения компетенций
3a à	исциплиной)	компетенции,	ŕ
код	наименование	закрепленного	
компетен-	компетенции	за дисциплиной	
ции			
ПК-2	ПК-2-способен орга-	ПК-2.2 Разрабаты-	Знать: основные положения и ас-
	низовывать выпол-	вает и оформляет	пекты синтеза органических ве-
	нение фундамен-	научно-техниче-	ществ, применение реагентов в не-
	тальных и приклад-	скую документа-	органической химии, основные
	ных научно-исследо-	цию для сопровож-	этапы проведения органического
	вательских работ в	дения исследова-	синтеза, основы оформления
	области химии ве-	тельских работ и	научно-технической документации
	ществ и материалов	опытно-конструк-	для сопровождения исследователь-
		торских разработок	ских работ

Планируемые результаты освоения основной профессиональной образовательной программы (компетенции, закрепленные за дисциплиной) код наименование компетенции		Код и наименование индикатора достижения компетенции, закрепленного за дисциплиной	Планируемые результаты обучения по дисциплине, соотнесенные с индикаторами достижения компетенций
ции		на всех этапах их проведения.	Уметь: пользоваться сформированными знаниями в области органического синтеза и применения неорганических реагентов, составлять научно-техническую документацию для сопровождения исследовательских работ на всех этапах их проведения Иметь опыт: применять знания в области органического синтеза, составлять научно-техническую документацию для сопровождения исследовательских работ на всех этапах их проведения
		ПК-2.3Обобщает и анализирует опыт проектирования	Знать: основные пункты организации выполнения фундаментальных и прикладных научно-исследовательских работ в области органического синтеза Уметь: обобщать и анализировать полученные знания, результаты научных исследований Владеть: навыками обобщения и анализа полученных знаний, результатов научных исследований
ПК-3	ПК-3- способен определять сферу применения и внедрять результаты научно-исследовательских и опытноконструкторских работ в области химии веществ и материалов	ПК-3.3 Формирует отчет о практической реализации результатов научных исследований и опытно-конструкторских разработок.	Знать: сферу применения и внедрения результатов научно-исследовательских работ в области органического синтеза Уметь: Формировать отчет о практической реализации результатов научных исследований в органического синтеза Владеть: опытом применения и внедрения результатов научно-исследовательских работ в области органического синтеза, формирования отчета о практической реализа-

Планируемые результаты освоения		Код	Планируемые результаты
основной профессиональной		и наименование	обучения по дисциплине,
образоват	ельной программы	индикатора	соотнесенные с индикаторами до-
(компетен	щии, закрепленные	достижения	стижения компетенций
за д	исциплиной)	компетенции,	
код	наименование	закрепленного	
компетен-	компетенции	за дисциплиной	
ции			
			ции результатов научных исследо-
			ваний в области органического син-
			теза

2 Указание места дисциплины в структуре основной профессиональной образовательной программы

Дисциплина «Реагенты в органической и неорганической химии» входит в часть формируемую участниками образовательных отношений блока 1 «Дисциплины (модули») основной профессиональной образовательной программы — программы магистратуры 04.04.01. Химия, направленность (профиль, специализация) «Фундаментальная и прикладная химия веществ и материалов». Дисциплина изучается на 2 курсе в 3 семестре.

3 Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся

Общая трудоемкость (объем) дисциплины составляет 3 зачетные единицы (з.е.), 108 академических часов.

Таблица 3 - Объем дисциплины

Виды учебной работы	Всего,
Виды учестой рассты	часов
Общая трудоемкость дисциплины	108

Виды учебной работы	Всего,
Виды учесной рассты	часов
Контактная работа обучающихся с преподавателем по видам учебных за-	54,1
нятий (всего)	
в том числе:	
лекции	18
лабораторные занятия	0
практические занятия	36
Самостоятельная работа обучающихся (всего)	53,9
Контроль (подготовка к экзамену)	0
Контактная работа по промежуточной аттестации (всегоАттКР)	0,1
в том числе:	
зачет	0,1
зачет с оценкой	не предусмотрен
курсовая работа (проект)	не предусмотрена
экзамен (включая консультацию перед экзаменом)	не предусмотрен

4 Содержание дисциплины, структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебных занятий 4.1 Содержание дисциплины

Таблица 4.1.1– Содержание дисциплины, структурированное по темам (разделам)

	1	Сологический Содержание дисциплины, структурированное по темам (разделам)
$N_{\underline{0}}$	Раздел (тема)	Содержание
	дисциплины	
1	2	3
	Выбор оп-	Количество стадий, доступность реагентов, однозначность протекания
	тимального	реакций и другие факторы, влияющие на этот выбор. Селективность: субстра-
	пути син-	тоселективность, продуктоселективность. Хемоселективность реагента. Реги-
1	теза орга-	оселективность реакций. Стереоселективность реакций в огранической химии.
1	нического	Понятие о скрытой функциональной группе и синтетическом эквиваленте реа-
	соедине-	гента. Практическое проведение синтеза. Требования к реагентам и аппаратуре.
	ния.	Синтезы "in one pot ", матричный метод Меррифилда. Понятие о темплатном
		синтезе, тандемных и домино-реакциях.
	Единичная	Субстрат, реагент, растворитель, катализатор. Кислотно-основные свой-
	стадия син-	ства растворителей, автопротолиз. Понятие о суперкислотах, примеры реакций
	теза. Суб-	в суперкислых средах. Основания, используемые в органическом синтезе: ще-
2	страт, реа-	лочи, гидриды, амиды, замещенные амиды щелочных металлов, третичные
	гент, рас-	амины. Димсил-натрий (метилсульфинилметилнатрий). Понятие о суперосно-
	творитель,	ваниях: растворы гидроксида калия и трет-бутилата калия в ДМСО, смесь
	катализа-	"LICKOR". Суперкритические жидкости (флюиды) как растворители. Раство-
	тор.	рители, используемые в органическом синтезе.
	Гидрирова-	Типы катализаторов гидрирования: черни, окиси (катализатор Адамса),
	ние крат-	катализаторы на носителях. Металлы платиновой группы, никель Ренея, его
	ных связей.	разновидности, катализатор Лэзира (хромит меди). Борид никеля (P-1-Ni и P-2-
3		Ni). Катализаторы для гидрирования при низком и высоком давлении. Зависи-
		мость скорости гетерогенного гидрирования от кислотности среды. Относи-
		тельная скорость гидрирования функциональных групп и кратных связей.
		Представление о механизме гидрирования. Гидрогенолиз связей углерод-гете-

		поэтом маханизм пронасов Понятно об оннин или молинасову моточнов Из
		роатом, механизм процесса. Понятие об аллильных комплексах металлов. Ис-
		пользование гидрогенолиза в синтезе. Хемоселективность гидрирования. Ката-
		литические яды. Модифицированные палладиевые катализаторы
		Линдлара и Розенмунда. Диастереоселективность каталитического гидри-
		рования. Зависимость скорости и стереохимии процесса гидрирования от при-
		роды катализатора и строения субстрата.
	Гомоген-	Катализаторы, механизм (на примере катализатора Уилкинсона) и селек-
	ное гидри-	тивность. Восстановление гидридами бора и алюминия. Оксигенофильность
	рование.	бора и алюминия. Энтальпии образования борана и алана в сравнении с энталь-
		пиями образования гидридов щелочных металлов. Боран и алан как кислоты
		Льюиса. Комплексы борана с простыми эфирами, аминами и сульфидами. Гид-
		роборирование алкенов: регио- и стереоселективность реакции. Взаимодей-
		ствие диборана со стерически затрудненными алкенами: получение ди- и три-
		сиамилборана, тексил- и дитексилборана. Реагенты гидроборирования, исполь-
		зуемые в синтезе: диборан и его комплексы, дисиламил- и тексилбораны, 9-
		BBN, пирокатехинборан. Восстановление дибораном функциональных групп в:
		альдегидах, кетонах, карбоновых кислотах. Обратимость гидроборирования,
		изомеризация алкильных групп. Гидроборирование енонов: (гидроборирова-
		ние-дезоксиборирование-регидроборирование). Особенности гидроборирова-
4		ния алкинов с терминальным положением тройной углерод-углеродной связи.
•		Диизобутилалюминий-гидрид (ДИБАЛ-Н) как восстановитель, его получение.
		Гидроалюминирование алкинов, его обратимость и стереоселективность. Вос-
		становление альдегидов, кетонов, енолов, сложных эфиров и нитрилов с помо-
		щью ДИБАЛ-Н. <i>транс</i> -Гидроалюминирование спиртов пропаргилового типа.
		Комплексные гидриды металлов как восстановители. Борогидрид натрия и
		алюмогидрид лития, их применение в синтезе. Восстановление ароматических
		соединений щелочными металлами в жидком аммиаке (Бёрч): закономерности
		реакции, ее механизм. Дезоксигенирование спиртов. Использование тозилатов
		и мезилатов, триметилсилил-иодида и цинка, фосфора и иода. Дезоксигениро-
		вание спиртов через ксантогенаты под действием трибутилолово-гидрида (Бар-
		тон). Дезоксигенирование альдегидов и кетонов. Методы Клемменсена и Киж-
		нера-Вольфа, границы применимости этих методов, связанные с наличием дру-
		гих функциональных групп. Дезоксигенирование через 1,3-дитиоланы, тозил-
		гидразоны. Применение гидридов алюминия и бора.
	Реагенты	Соединения марганца и хрома, пероксиды, надкислоты, диоксид селена,
	окисления.	озон, диметилсульфоксид, дихлородицианохинон (DDQ), хлоранил. Окисление
		вторичных спиртов до кетонов соединениями Cr(VI). Стадии реакции, участие
		соединений Cr(V) и Cr(IV) в процессе окисления. Примеры известных соедине-
		ний Cr(V) и Cr(IV). Побочные реакции при окислении бихроматом в кислой
		среде. Окисление в двухфазной системе: методы Физера и Джонса. Синтез аль-
		дегидов окислением первичных спиртов. Использование реагентов Сарретта и
5		Коллинза (комплекс СгО ₃ с пиридином); достоинства и недостатки этого ме-
		тода. Окисление первичных и вторичных спиртов до альдегидов и кетонов ги-
		похлоритом натрия в двухфазной системе; ограничения этого метода.
		Окисление с помощью диметилсульфоксида: превращение алкилгалоге-
		нидов (Корнблюм), тозилатов и спиртов в альдегиды и кетоны. Методы Моф-
		фетта (дициклогексилкарбодиимид) и Сверна (трифторуксусный ангидрид, ок-
		салилхлорид). Синтез ароматических альдегидов из бензилгалогенидов через
		четвертичные аммониевые соли (Соммле). Окисление по связи С-Н: получение
		ароматических альдегидов, окисление по аллильному положению хромовым
		

ангидридом, трет-бутилпербензоатом, диоксидом селена (понятие о еновой реакции). Взаимодействие непредельных карбоновых кислот с галогеном в присутствии основания (бромо- и иодолактонизация). Эпоксидирование алкенов. Эпоксидирующие агенты: надуксусная, трифторнадуксусная, мононадмалеиновая и м-хлорнадбензойная (МСРВА) кислоты.

Трет-бутилгидропероксид как эпоксидирующий агент. Эпоксидирование аллиловых спиртов. Диастереоселективность реакции в присутствии комплексов ванадия. Энантиоселективное эпоксидирование по Шарплессу (в присутствии изопропилата титана и эфира винной кислоты). Реакция Байера-Виллигера и ее конкуренция с эпоксидированием по связи С=С. Относительные скорости этих двух реакций. Катализ реакции Байера-Виллигера минеральными кислотами. Гидрокарбонат натрия как катализатор селективного проведения реакции Байера-Виллигера в случае кетонов, содержащих связь С=С. Эпоксидирование непредельных кетонов. Окислительное расщепление связи углерод-углерод. Окисление алкенов перманганатом до карбоновых кислот (в том числе в условиях межфазного катализа) и до альдегидов. Расщепление 1,2-диолов йодной кислотой и тетраацетатом свинца. Озонолиз алкенов, механизм реакции. Восстановительное и окислительное расщепление озонидов (1,2,4-триоксоланов). Селективность озонирования, связанная с электронными эффектами заместителей при двойной связи.

Литий- и магнийор- ганические соедине- ния.

Получение из органогалогенидов и металла. Особенности синтеза винильных и аллильных литий- и магнийорганических соединений. Использование магния Рике для синтеза магнийорганических соединений. Синтез магнийорганических соединений реакцией "с сопровождением". Получение литийорганических соединений реакцией органогалогенидов и оловоорганических соединений с литийалкилами. Цитирование органических субстратов. Шкала СН-кислотности углеводородов. Особенности синтеза винильных и аллильных литий- и магнийорганических соединений. Строение литийорганических соединений: кластеры. Строение магнийорганических соединений с водой, кислородом, диоксидом углерода, альдегидами, кетонами, сложными эфирами, нитрилами, эпоксидами, орто-эфирами, третичными амидами. Взаимодействие магний- и литийорганических соединений с алкилгалогенидами. Особенности галогенидов аллильного и бензильного типа. Получение бифенилов по Ульману. Медьорганические реагенты в синтезе.

Создание двойной углерод-углеродной связи.

7

6

Создание двойной углерод-углеродной связи реакциями элиминирования от алкилгалогенидов, тозилатов, мезилатов. Основания, используемые при этом: *теме* бутилат калия, диэтиланилин, производные пиридина и хинолина, амидины (ДБН, ДБУ). Дегидратация спиртов. Дегидратирующие агенты. Ограничения синтетического использования реакции. Региоселективные методы создания двойной связи углерод-углерод. Синтез алкенов термолизом ксантогенатов (Чугаев), N-окисей третичных аминов (Коуп). Стереоселективный синтез цис- и транс-алкенов из 1, 2-диолов (Кори, Уинтер). Региоселективный синтез алкенов из тозилгидразонов. (Шапиро). Реакция Виттига как региоспецифический метод синтеза алкенов. Получение илидов фосфора из солей фосфония. Основания, используемые в реакции. Природа связи фосфор-углерод в илидах (р- у*-стабилизация). Стабилизированные, нестабилизированные и полустабилизированные илиды. Гидролиз и окисление илидов фосфора. Механизм и стереохимия реакции Виттига. Образование Z- и E-алкенов в реакциях нестабилизированных и стабилизированных и илидов. Направленное получение Z - и E-ал-

		кенов: роль солей лития, бессолевой метод. Хемоселективность реакции Виттига. Требования к реагентам и аппаратурному оформлению синтеза. Растворители. Техника. Региоспецифические методы получения енолятов из силиловых
		эфиров енолов (Сторк) и енонов и галогенкетонов. Применение простран-
		ственно затрудненных амидов. Строение енолятов (олигомерные структуры).
		Кинетически и термодинамически контролируемые процессы енолизации,
		условия их осуществления. Методы региоселективного генерирования еноля-
		тов из кетонов и енаминов. Алкилирование енолятов. Влияние полярности растворителя на региоселективность процесса. Особенности алкилирования еноля-
		тов непредельных кетонов. Альдольная конденсация, ее механизм. Межмоле-
		кулярная и внутримолекулярная и реакции. Направленная альдольная конден-
		сация: использование литиевых енолятов кетонов; применение литиевых и маг-
		ниевых производных оснований Шиффа в случае альдегидов (метод Виттига).
		Конденсация силиловых эфиров енолов с альдегидами и кетонами. Использование формильных (гидроксиметиленовых) производных для региоселектив-
		ного алкилирования кетонов. Метиленирование кетонов трифторацетатом ме-
		тиленметилфениламмония. Конденсация по Михаэлю. Механизм реакции. До-
		норы и акцепторы Михаэля. Катализаторы реакции, ее обратимость, побочные
		процессы. Ретрореакция. Региоселективность присоединения нуклеофилов к
		непредельным карбонильным соединениям. Выбор оптимальной комбинации реагентов. Региоселективность реакции несимметричных кетонов. Енамины,
		как доноры Михаэля. Термическая реакция Михаэля. Основания Манниха и
		другие синтетические эквиваленты акцепторов Михаэля. Синтез 2-нитроалке-
		нов из 1-нитроалканов. Хлорэтил- и хлорвинилкетоны, их синтез ацилирова-
		нием алкенов и алкинов (Кондаков). Реакции аннелирования. Вариант Робин-
		сона. Применение хлоркетонов, оснований Манниха, силилированных винилкетонов (Сторк) в качестве эквивалентов енонов. Реагент Назарова и его ис-
		пользование в создании карбо- и гетероциклических структур. Аннелирование
		через енамины. Дилитиевые производные пропаргиловых спиртов в реакциях
	0.5	аннелирования с образованием пятичленного карбоцикла.
	Особенно-	По сравнению с их углеродными аналогами. Склонность атома кремния к
	сти крем- нийоргани-	образованию связей с атомами O, C1 и F. Нуклеофильное замещение при атоме кремния. Фторид-ион как высокоселективный агент десилилирования. Влияние
	ческих со-	атома кремния на стабильность карбениевого центра и карбанионного центра.
	единений	Стерический эффект группы Me ₃ Si. Использование триметилхлорсилана в аци-
8	по сравне-	лоиновой конденсации. Триметилсилилцианид: его получение и применение в
	нию с их	синтезе аминоспиртов и в-гидроксинитрилов. Синтез амидов с помощью триметилсилил-азида. Силиловые эфиры енолов, их получение из кетонов, енонов,
	углерод- ными ана-	дикетонов, эфиров кетокислот. Генерирование литиевых и тетраметиламмони-
	логами.	евых енолятов из силиловых эфиров енолов. Применение силиловых эфиров
		енолов в альдольной конденсации, реакциях Манниха и Михаэля.
	Защитные	Защита С-Н-связей в алкинах, ее применение в синтезах ди- и полиинов
	группы в	(Глазер, Кадьо-Ходкевич). Синтезы на основе 3-бромпропиоловой кислоты. За-
	органиче-	щита спиртовой НО-группы. Защитные группы: бензильная, п-метоксибензильная, тритильная, ди(п-метокси)тритильная, триметилсилильная, и др. Защита
9	тезе.	НО-группы в гликолях: изопропилиденовая, бензилиденовая, этилиденовая за-
		щитные группы. Циклические карбонаты. Защита НО-группы в фенолах: мети-
		ловые, тетрагидропираниловые, фенацетиловые, триметил-
		силиловые эфиры фенолов. Метилендиокси-защитная группа для двухатомных фенолов. Защита карбонильной группы в альдегидах и кетонах: циклические
	<u> </u>	фенолов. Защита кароонильной группы в альдегидах и кетонах. циклические

ацетали и тиоацетали. Селективная защита одной из неравноценных карбонильных групп в молекуле. Защита карбоксильной группы: бензиловые и метоксибензиловые эфиры. Защита аминогруппы. Защитные группы: ацетильная, фталоильная, сукциноильная, бензилоксикарбонильная, трет-бутилоксикарбонильная (БОК). Применение бензолсульфохлорида и бензальдегида для защиты аминогруппы и ее модификации. Стратегия использования защитных групп.

Реакционноспособные интермедиаты органических реакций.

10

Свободные радикалы. Алкильные радикалы; строение и основные способы генерирования. Обнаружение и установление строения свободных радикалов. Спектры ЭПР. Спин-ловушки. Радикальные пары и эффекты ХПЯ в спектрах ЯМР; σ- и π-радикалы. Основные радикал-радикальные реакции: рекомбинация, диспропорционирование. Окисление и восстановление свободных радикалов. Стабильные радикалы. Карбены и нитрены. Конфигурационные взаимодействия в карбенах. Синглетные и триплетные карбены, их геометрия, различимость по тесту Скелла. Строение метилена и дифторметилена. Спектроскопия матричной изоляции. Способы генерации карбенов. Нитрены и ионы нитрения. Примеры реакций с их участием. Карбокатионы. Карбониевые и карбениевые ионы. Строение катионов CH_3^+ и CH_5^+ . Генерация *трет*.-бутильного катиона в суперкислых средах. Факторы, влияющие на стабильность карбениевых ионов. Аллильные, бензильные и полиарилметильные катионы. Катион тропилия и его свойства. Шкала стабильности карбениевых ионов рК_{R+}. Объяснение стабилизирующего эффекта метильной, фенильной и циклопропильной групп, галогенов, кислород-, азот- и серусодержащих заместителей. Неклассические карбокатионы.

Свободные карбанионы в газовой фазе. Их исследование методами ионциклотронного резонанса и масс-спектрометрии высокого давления. Получение карбанионов в растворах в суперосновных средах, σ - и π -карбанионы. Факторы, влияющие на стабильность карбанионов. Роль среды и противо-иона. Контактные и сольватноразделенные ионные пары. СН-Кислоты. Кинетическая и термодинамическая кислотность. Амбидентные анионы и форма их МО. Ароматические ион-радикалы. Генерирование катион-радикалов (КР) и анионрадикалов (АР): химическое, фотохимическое, электрохимическое. Реакции КР: диспропорционирование, присоединение нуклеофилов, отщепление протона. Реакции АР: с донорами протонов, диспропорционирование, отщепление нуклеофильной группы. Ион-радикальные соли. Теория КПЗ. SET-Механизм в органических реакциях и его обнаружение методом ХПЯ. Примеры таких реакций. Одноэлектронный сдвиг. Механизм электрофильных перегруппировок к электроноизбыточному центру как одноэлектронный сдвиг. Стабильные ионрадикалы (голубой Вюрстера, кетилы и др.)

Таблица 4.1.2 – Содержание дисциплины и его методическое обеспечение

		Виды	деятел	ьности		Формы теку-	
№ п/п	Раздел (тема) дисци- плины	лек.,	<u>№</u>		Учебно-методиче- ские материалы	щего кон-	
		час	ас лаб.	пр.	_	(по неделям семестра)	

1	Выбор оптимального пути синтеза органического соединения.	1	1	У-1, У-2	1 T	ПК-2 ПК-3
2	Единичная стадия синтеза. Субстрат, реагент, растворитель, катализатор.	1	2	У-1, У-2 МУ-1	2 T	ПК-2 ПК-3
3	Гидрирование кратных связей.	1	3	У-1, У-2 МУ-1	3 T	ПК-2 ПК-3 2
4	Гомогенное гидрирование.	2	4-5	У-1, У-2 МУ-1	4,5 T	ПК-2 ПК-3
5	Реагенты окисления.	4	6-8	У-1, У-2 МУ-1 МУ-2	6,8 T	ПК-2 ПК-3
6	Литий- и магнийор- ганические соедине- ния.	1	9-10	У-1, У-2 МУ-1 МУ-2,3	9,10 T	ПК-2 ПК-3
7	Создание двойной углерод-углеродной связи.	4	11-12	У-1, У-2 МУ-1 МУ-2	11,12 T	ПК-2 ПК-3
8	Особенности кремнийорганических соединений по сравнению с их углеродными аналогами.	1	13-14	У-1, У-2 МУ-1 МУ-2 К-1	13, 14 T	ПК-2 ПК-3
9	Защитные группы в органическом синтезе.	1	15-16	У-1, У-2 МУ-2	15, 16 T	ПК-2 ПК-3
10	Реакционноспособные интермедиаты органических реакций.	2	17-18	У-1, У-2 МУ-2, 3	17, 18 T	ПК-2 ПК-3

К-коллоквиум, Т – тестирование – защита (проверка) рефератов.

4.2 Лабораторные работы и (или) практические занятия

4.2.1 Практические занятия

Таблица 4.2.1 – Практические занятия

№	Наименование практического занятия	Объем, час.
1	Выбор оптимального пути синтеза органического соединения.	2
2	Единичная стадия синтеза. Субстрат, реагент, растворитель, ка-	2.
	тализатор.	

3	Гидрирование кратных связей.	2
4	Гомогенное гидрирование.	4
5	Реагенты окисления.	6
6	Литий- и магнийорганические соединения.	4
7	Создание двойной углерод-углеродной связи.	4
8	Особенности кремнийорганических соединений по сравнению с	1
	их углеродными аналогами.	4
9	Защитные группы в органическом синтезе.	4
10	Реакционноспособные интермедиаты органических реакций.	4
Итого		36

4.3 Самостоятельная работа студентов (СРС)

Таблица 4.3 – Самостоятельная работа студентов

№ раздела	Наименование раздела (темы) дисциплины	Срок вы-	Время, затрачиваемое на выполне-
(темы)		полнения	ние СРС, час
1	2	3	4
1.	Выбор оптимального пути синтеза органиче-	1-2-я не-	6
	ского соединения	деля	
2	Единичная стадия синтеза. Субстрат, реагент,	3-4-я не-	8
	растворитель, катализатор.	деля	
3.	Гидрирование кратных связей. Гомогенное	5-8-я не-	8
	гидрирование.	деля	
4.	Реагенты окисления.	9-12-я не-	4
		деля	
5.	Литий- и магнийорганические соединения.	13-15-я не-	6
		деля	
6.	Создание двойной углерод-углеродной связи.	16-я неделя	6
7.	Особенности кремнийорганических соедине-	17-я неделя	8
	ний по сравнению с их углеродными анало-		
	гами.		
8.	Защитные группы в органическом синтезе. Ре-	18-я неделя	7,9
	акционноспособные интермедиаты органиче-		
	ских реакций.		
Итого			53,9

5 Перечень учебно-методического обеспечения для самостоятельной работы обучающихся по дисциплине

Студенты могут при самостоятельном изучении отдельных тем и вопросов дисциплин пользоваться учебно-наглядными пособиями, учебным оборудованием и методическими разработками кафедры в рабочее время, установленное Правилами внутреннего распорядка работников.

Учебно-методическое обеспечение для самостоятельной работы обучающихся по данной дисциплине организуется:

библиотекой университета:

- библиотечный фонд укомплектован учебной, методической, научной, периодической, справочной и художественной литературой в соответствии с УП и данной РПД;
- имеется доступ к основным информационным образовательным ресурсам, информационной базе данных, в том числе библиографической, возможность выхода в Интернет.

кафедрой:

- путем обеспечения доступности всего необходимого учебно-методического и справочного материала;
- путем предоставления сведений о наличии учебно-методической литературы, современных программных средств.
 - путем разработки:
- методических рекомендаций, пособий по организации самостоятельной работы студентов;
 - тем рефератов;
 - вопросов к зачету;
 - -методических указаний к выполнению лабораторных работ и т.д. *типографией университета*:
- помощь авторам в подготовке и издании научной, учебной и методической литературы;
- –удовлетворение потребности в тиражировании научной, учебной и методической литературы.

6 Образовательные технологии

Реализация компетентностного подхода предусматривает широкое использование в образовательном процессе активных и интерактивных форм проведения занятий в сочетании с внеаудиторной работой с целью формирования универсальных, общепрофессиональных и профессиональных компетенций обучающихся. Врамках дисциплины предусмотрены встречи с экспертами и специалистами Комитета по труду и занятости населения Курской области.

Таблица 6.1 – Интерактивные образовательные технологии, используемые при проведении аудиторных занятий

No	Наименование раздела (темы лекции,	Используемые интерактивные	Объем,
71⊻	практического или лабораторного занятия)	образовательные технологии	час.
1	2	3	4
2	Выбор оптимального пути синтеза орга-	Лекция с разбором конкретных	2
	нического соединения.	ситуаций	
Ито	го: лекционных занятий		2
		Семинар-беседа. Разбор кон-	2
1	Реагенты окисления.	кретных ситуаций.	

2	Литий- и магнийорганические соединения.	Семинар-конференция. Решение практических задач.	2
3	Особенности кремнийорганических соединений по сравнению с их углеродными аналогами.	Семинар-конференция. Решение практических задач.	2
4	Защитные группы в органическом синтезе.	Семинар-беседа. Разбор конкретных ситуаций.	2
Ито	го: практических занятий		8

7 Фонд оценочных средств для проведения промежуточной аттестации обучающихся по дисциплине

7.1 Перечень компетенций с указанием этапов их формирования в процессе освоения основной профессиональной образовательной программы

Таблица 7.1 – Этапы формирования компетенций

Код и наименование компетенции	Этапы формирования компетенций и дисциплины (модули)и практики, при изучении/ прохождении которых формируется данная компетенция				
	начальный	основной	завершающий		
1	2	3	4		
ПК-2 Способен организовывать выполнение фундамен-	Производственная практик бота)	а (научно-ис	следовательская ра-		
тальных и прикладных научно- исследовательских работ в об- ласти химии веществ и матери- алов			Биоорганическая хи- мия и основы биоло- гии		
ПК-3Способен определять сферу применения и внедрять результаты на учно-исследователя ских и опутномонструк	Производственная практик бота)	а (научно-ис	следовательская ра-		
тельских и опытноконструкторских работ в области химии веществ и материалов	Химия гетероцикличе- ских соединений				
		Современные методы исследов ния веществ и материалов			
			Производственная преддипломная практика		

7.2 Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Таблица 7.2 – Показатели и критерии оценивания компетенций, шкала оценивания

Код	Показатели		пла оценивания компете	енции, шкала оценивания енций
компе- тен- ции/ этап	оценивания компетенций	Пороговый уровень («удовлетворительно)	Продвинутый уровень (хорошо»)	Высокий уровень («отлично»)
1	2	3	4	5
ПК2 началь- ный, основ- ной, завер- шаю- щий	ПК-2.2 Выполняет разработку и оформление научнотехнической документации для сопровождения исследовательских работ и опытноконструкторских разработок на всех этапах их проведения ПК-2.3 Проводит обобщение и анализ опыта проектирования	Знать: основные теоретические положения в избранной области химии. Уметь: применять на практике общие теоретические положения в избранной области химии. Владеть: навыками применения общих теоретических положений в избранной области химии.	Знать: в целом теоретические положения в избранной области химии. Уметь: применять на практике теоретические положения в избранной области химии. Владеть: навыками применения теоретических положений в избранной области химии.	Знать: в совершенстве теоретические положения в избранной области химии. Уметь: в совершенстве применять на практике теоретические положения в избранной области химии. Владеть: в совершенстве навыками применения теоретических положений в избранной области химии.
ПК3	ПК-3.3 Формирует отчет о практической реализации результатов научных исследований и опытно-конструкторских разработок	•	Знать: сферу применения результатов научно-исследовательских работ в области применения различных реагентов в органической и неорганической химии Уметь: Формировать основные пункты отчета о практической реализации результатов научных исследований в области применения различных	Знать: сферу применения и внедрения результатов научно-исследовательских работ в области применения различных реагентов в органической и неорганической химии Уметь: Формировать отчет о практической реализации результатов научных исследований в области применения различных реагентов в органической и неорганической химии Владеть: опытом применения и внедрения результатов

Код	Показатели	Критерии и шка	ала оценивания компете	енций
компе- тен- ции/ этап	оценивания компетенций	Пороговый уровень («удовлетворительно)	Продвинутый уровень (хорошо»)	Высокий уровень («отлично»)
1	2	3	4	5
		научных ис- следований в области при- менения раз- личных реа- гентов в орга- нической и неорганиче- ской химии Владеть: опытом при- менение ре- зультатов научно-иссле- довательских работ в обла- сти примене- ния различ- ных реагентов в органиче- ской и неорга- нической хи- мии .	реагентов в органической и неорганической химии Владеть: опытом применение результатов научно-исследовательских работ в области биоорганических исследований, формирования отчета о практической реализации результатов научных исследований в применения различных реагентов в органической и неорганической химии	научно-исследовательских работ в области результатов научных исследований в области применения различных реагентов в органической и неорганической химии

7.3 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения основной профессиональной образовательной программы

Таблица 7.3 - Паспорт комплекта оценочных средств для текущего контроля успеваемости

№ п/п	Раздел (тема) дисциплины 2 Выбор оптимального пути синтеза органического соеди-	Код контролируемой компетенции (или ее части) 3 ПК-2 ПК-3	Технология формирования 4 Практические занятия, СРС Лекционные занятия	Оценочнь средства наименование 5 БТЗ	ле <u>№№</u> заданий 6 1-10	Описание шкал оценивания 7 Согласно табл.7.2
2	нения Единичная стадия син- теза. Суб- страт, реа- гент, раство- ритель, ката- лизатор.	ПК-2 ПК-3	Практиче- ские заня- тия, СРС Лекционные занятия.	БТ3	11-20	Согласно табл.7.2
3	Гидрирование кратных связей. Гомогенное гидрирование.	ПК-2 ПК-3	Практиче- ские заня- тия, СРС Лекционные занятия.	БТЗ Во- просы для со- беседо- вания	21-40 1-10	Согласно табл.7.2
4	Реагенты окисления	ПК-2 ПК-3	Практиче- ские заня- тия. СРС Лекционные занятия.	БТ3	41-60	Согласно табл.7.2
5	Литий- и магнийорга- нические со- единения.	ПК-2 ПК-3	Практические занятия, СРС Лекционные занятия.	БТ3	61-70	Согласно табл.7.2
6		ПК-2 ПК-3		БТЗ	71-80	Согласно табл.7.2

<u>№</u> π/π	Раздел (тема) дисциплины 2 Создание двойной углеродной связи.	Код контролируемой компетенции (или ее части) 3	Технология формирования 4 Практические занятия, СРС Лекционные занятия.	Оценочны средства наименование 5 Вопросы для собеседования	e №№ заданий 6 11-20	Описание шкал оценивания
7	Особенно- сти крем- нийоргани- ческих со- единений по сравнению с их углерод- ными анало- гами.	ПК-2 ПК-3	Практические занятия, СРС Лекционные занятия.	БТЗ Вопросы для собеседования	81-90 21-30	Согласно табл.7.2
8	Защитные группы в органическом синтезе. Реакционноспособные интермедиаты органических реакций.	ПК-2 ПК-3	Практические занятия, СРС Лекционные занятия.	БТ3	91-100	Согласно табл.7.2

БТЗ – банк вопросов и заданий в тестовой форме.

Примеры типовых контрольных заданий для проведения текущего контроля и успеваемости

Вопросы в тестовой форме по разделу (теме) 1. «Выбор оптимального пути синтеза органического соединения».

Что включает в себя подготовку исходных реагентов?:

- 1. Очистку от возможных примесей;
- 2. Тесты на растворимость;
- 3. Определение температуры плавления;
- 4. Определение температуры кипения.

Вопросы для собеседования по разделу (теме) 2. «Единичная стадия синтеза.

Субстрат, реагент, растворитель, катализатор.»

- 1. Катализаторы и селективность.
- 2. Восстановление гидридами бора и алюминия.
- 3. Оксигенофильность бора и алюминия.
- 4. Боран и алан как кислоты Льюиса.
- 5. Гидроборирование алкенов: регио- и стереоселективность реакции.

Полностью оценочные материалы и оценочные средства для проведения текущего контроля успеваемости представлены в УММ по дисциплине.

Типовые задания для проведения промежуточной аттестации обучающихся

Промежуточная аттестация по дисциплине проводится в форме зачета. Зачет проводится в виде бланкового или компьютерного тестирования.

Для тестирования используются контрольно-измерительные материалы (КИМ) – вопросы изадания в тестовой форме, составляющие банк тестовых заданий (БТЗ) по дисциплине, утвержденный в установленном в университете порядке.

Проверяемыми на промежуточной аттестации элементами содержания являются темы дисциплины, указанные в разделе 4 настоящей программы. Все темы дисциплины отражены в КИМ в равных долях (%). БТЗ включает в себя не менее 100 заданий и постоянно пополняется. БТЗ хранится на бумажном носителе в составе УММ и электронном виде в ЭИОС университета.

Для проверки знаний используются вопросы и задания в различных формах:

- закрытой (с выбором одного или нескольких правильных ответов),
- открытой (необходимо вписать правильный ответ),
- на установление правильной последовательности,
- на установление соответствия.

Умения, навыки(или опыт деятельности) и компетенции проверяются с помощью компетентностно-ориентированных задач (ситуационных, производственных или кейсового характера) и различного вида конструкторов. Все задачи являются многоходовыми. Некоторые задачи, проверяющие уровень сформированности компетенций, являются многовариантными. Часть умений, навыков и компетенций прямо не отражена в формулировках задач, но они могут быть проявлены обучающимися при их решении.

В каждый вариант КИМ включаются задания по каждому проверяемому элементу содержания во всех перечисленных выше формах и разного уровня сложности. Такой формат КИМ позволяет объективно определить качество освоения обучающимися основных элементов содержания дисциплины и уровень сформированности компетенций.

Примеры типовых контрольных заданий для проведения текущего контроля успеваемости

Задание в закрытой форме:

Конфигурационные взаимодействия в карбенах. Синглетные и триплетные карбены, их геометрия, различимость по тесту Скелла.

Задание в открытой форме:

Главное требование к аппаратуре: 1. Она должна быть инертной и не изменяться в ходе реакции; 2. Прочной и не разбиваться при ударе; 3. Только кварцевое стекло; 4. Только молибденовое стекло.

Задание на установление правильной последовательности:

Расхождение с расчетными данными при определении элементного состава допускается: 1. В пределах 0.4 % по углероду и 0.2 % по водороду; 2. В пределах 1 % по углероду и 0.5 % по водороду; 3. В пределах 0.2 % по углероду и 0.1 % по водороду; 4. В пределах 0.1 % по углероду и 0.1 % по водороду.

Задание на установление соответствия:

Региоселективность реакции — это: 1. Реакция происходит преимущественно по одному из двух (или более) положений субстрата; 2. Реакция происходит по нескольким равноправным положениям субстрата; 3. Реакция происходит преимущественно по одному из двух (или более) положений реагента; 4. Реакция происходит по нескольким равноправным положениям реагента.

Компетентностно-ориентированная задача:

Карбонильная группа легко восстанавливается при проведении реакции в следующем реагенте?

Полностью оценочные материалы и оценочные средства для проведения промежуточной аттестации обучающихся представлены в УММ по дисциплине.

7.4 Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций

Процедуры оценивания знаний, умений, навыков и (или) опыта деятельности, характеризующих этапы формирования компетенций, регулируются следующими нормативными актами университета:

- положение П 02.016–2018Обалльно-рейтинговой системе оценивания результатов обучения по дисциплинам (модулям) и практикам при освоении обучающимися образовательных программ;
- методические указания, используемые в образовательном процессе, указанные в списке литературы.

Для *текущего контроля успеваемости* по дисциплине в рамках действующей в университете балльно-рейтинговой системы применяется следующий порядок начисления баллов:

Таблица 7.4 – Порядок начисления баллов в рамках БРС

Форма контроля		мальный балл		Максимальный балл	
	балл	примечание	балл	примечание	
1	2	3	4	5	
Выбор оптимального пути синтеза органического соединения. Единичная стадия синтеза. Субстрат, реагент, растворитель, катализатор.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
Гидрирование кратных связей. Гомогенное гидрирование. Реагенты окисления.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
Литий- и магнийорганические соединения.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
Создание двойной углерод-углеродной связи.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
Особенности кремнийорганических соединений по сравнению с их углеродными аналогами.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
Защитные группы в органическом синтезе. Реакционноспособные интермедиаты органических реакций.	2	Доля правильных ответов менее 50 %	4	Доля правильных ответов более 50 %	
CPC	12		24		
Итого	24		48		
Посещаемость	0		16		
Зачет	0		36		
Итого	24		100		

Для промежуточной аттестации обучающихся, проводимой в виде тестирования, используется следующая методика оценивания знаний, умений, навыков и (или) опыта деятельности. В каждом варианте КИМ –16 заданий (15 вопросов и одна задача).

Каждый верный ответ оценивается следующим образом:

– задание в закрытой форме – 2балла,

- задание в открытой форме 2 балла,
- задание на установление правильной последовательности 2 балла,
- задание на установление соответствия 2 балла,
- решение компетентностно-ориентированнойзадачи 6 баллов.

Максимальное количество баллов за тестирование –36 баллов.

8 Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

8.1 Основная учебная литература

- 1. Травень В. Ф. Органическая химия: учебное пособие / В. Ф. Травень. 2-е изд., перераб. и доп. Москва: БИНОМ. Лаборатория знаний, 2013 . (Учебник для высшей школы). Текст: непосредственный. В 3-х т. Т. 1. 368 с.
- 2. Травень В. Ф. Органическая химия : учебное пособие / В. Ф. Травень. 2-е изд. перераб. и доп. Москва : БИНОМ. Лаборатория знаний, 2013 . (Учебник для высшей школы). Текст : непосредственный. В 3-х т. Т. 2. 517 с. : ил.
- 3. Травень В. Ф. Органическая химия : учебное пособие / В. Ф. Травень. 2-е изд. перераб. и доп. Москва : БИНОМ. Лаборатория знаний, 2013 . (Учебник для высшей школы). Текст : непосредственный. В 3-х т. Т. 3. 388 с. : ил.
- 4. Неорганическая химия : в 2 т. / под ред. Ю. Д. Третьякова. М. : Академия, 2004 . (Высшее профессиональное образование). Текст : непосредственный. Т. 1 : Физико-химические основы неорганической химии. 240 с.

8.2 Дополнительная учебная литература

- 5. Артеменко, А. И. Органическая химия : учебник / А. И. Артеменко. 7-е изд., стер. М. : Высшая школа, 2009. 559 с. : ил.
- 6. Неорганическая химия: в 3 т. / под ред. Ю. Д. Третьякова. М.: Академия, 2004 -
- . (Высшее профессиональное образование). Текст : непосредственный. Т. 2 : Химия непереходных элементов. 368 с.
- 7. Физико-химические свойства органических соединений : справочник / под общ. ред. А. М. Богомольного. М. : Химия, 2008. 543 с.
- 8. Смит, В. А. Основы современного органического синтеза / В. А. Смит, А. Д. Дильман. М.: БИНОМ. Лаборатория знаний, 2009. 750 с.: ил.

8.3 Перечень методических указаний

1. Реакции нуклеофильного замещения, протекающие по механизмам SN1 и SN2 : методические указания к самостоятельной работе и практическим занятиям по курсу «Механизмы органических реакций» для студентов направления подготовки

04.04.01 «Химия» / Юго-Зап. гос. ун-т ; сост. Л. М. Миронович. - Электрон. текстовые дан. (561 КБ). - Курск : ЮЗГУ, 2020. - 13 с. - Загл. с титул. экрана. - Б. ц. - Текст : электронный.

- 2. Нуклеофильное замещение в производных карбоновых кислот : методические указания к самостоятельной работе и практическим занятиям по курсу «Механизмы органических и гетероциклических реакций» для студентов направления подготовки 04.04.01 «Химия» / Юго-Зап. гос. ун-т ; сост. Л. М. Миронович. Электрон. текстовые дан. (497 КБ). Курск : ЮЗГУ, 2020. 15 с. Загл. с титул. экрана. Б. ц. Текст : электронный.
- 3. Актуальные проблемы современной химии : методические указания к выполнению индивидуальных и самостоятельных работ для студентов направлений 04.04.01 Химия / Юго-Зап. гос. ун-т ; сост. С. Д. Пожидаева. Электрон. текстовые дан. (265 КБ). Курск : ЮЗГУ, 2020. 19 с. Загл. с титул. экрана. Б. ц. Текст : электронный.

8.4 Другие учебно-методические материалы

доступ к книгам абонемента, статьям периодической печати (Журнал органической химии, Журнал общей химии), базе данных трудов ученых ЮЗГУ (Известия ЮЗГУ).

9 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины

- 1. Интернет тренажеры по химии (i-exam.ru)
- 2. Научная электронная библиотека eLIBRARY.RU (elibrary.ru)
- 3. Федеральный портал «Российское образование»: http://www.edu.ru/
- 4. Химические сайты: http://www.xumuk.ru/, http://www.alximik.ru/, http://www.chemistry.ru/, http://anchem.ru/, http://www.rusanalytchem.org/, http://window.edu.ru/resource/664/50664/

10 Методические указания для обучающихся по освоению дисциплины

Основными видами аудиторной работы студента при изучении дисциплины «Реагенты в органической и неорганической химии» являются лекции и практические занятия. Студент не имеет права пропускать занятия без уважительных причин.

Студенты, прослушав лекции по тематике, обязаны самостоятельно с использованием основной и дополнительной литературы, информационно-телекоммуникационной сети Интернет углубленно изучить данную тему. Для углубленного изучения материала преподаватель выдает задания по теме и вопросы для изучения (изданы методические указания для самостоятельной работы, в которых приведены тестовые задания). Студент обязан самостоятельно ответить на тестовые задания.

Качество учебной работы студентов преподаватель оценивает по результатам тестирования, собеседования.

13 Особенности реализации дисциплины для инвалидов и лиц с ограниченными возможностями здоровья

При обучении лиц с ограниченными возможностями здоровья учитываются их индивидуальные психофизические особенности. Обучение инвалидов осуществляется также в соответствии с индивидуальной программой реабилитации инвалида (при наличии).

Для лиц с нарушением слуха возможно предоставление учебной информации в визуальной форме (краткий конспект лекций; тексты заданий, напечатанные увеличенным шрифтом), на аудиторных занятиях допускается присутствие ассистента, а так же сурдопереводчиков и тифлосурдопереводчиков. Текущий контроль успеваемости осуществляется в письменной форме: обучающийся письменно отвечает на вопросы, письменно выполняет практические задания. Доклад (реферат) также может быть представлен в письменной форме, при этом требования к содержанию остаются теми же, а требования к качеству изложения материала (понятность, качество речи, взаимодействие с аудиторией и т. д.) заменяются на соответствующие требования, предъявляемые к письменным работам (качество оформления текста и списка литературы, грамотность, наличие иллюстрационных материалов и т.д.). Промежуточная аттестация для лиц с нарушениями слуха проводится в письменной форме, при этом используются общие критерии оценивания. При необходимости время подготовки к ответу может быть увеличено.

Для лиц с нарушением зрения допускается аудиальное предоставление информации, а также использование на аудиторных занятиях звукозаписывающих устройств (диктофонов и т.д.). Допускается присутствие на занятиях ассистента (помощника), оказывающего обучающимся необходимую техническую помощь. Текущий контроль успеваемости осуществляется в устной форме. При проведении промежуточной аттестации для лиц с нарушением зрения тестирование может быть заменено на устное собеседование по вопросам.

Для лиц с ограниченными возможностями здоровья, имеющих нарушения опорно-двигательного аппарата, на аудиторных занятиях, а также при проведении процедур текущего контроля успеваемости и промежуточной аттестации могут быть предоставлены необходимые технические средства (персональный компьютер, ноутбук или другой гаджет); допускается присутствие ассистента (ассистентов), оказывающего обучающимся необходимую техническую помощь (занять рабочее место, передвигаться по аудитории, прочитать задание, оформить ответ, общаться с преподавателем).

Преподаватель уже на первых занятиях объясняет студентам, какие формы обучения следует использовать при самостоятельном изучении дисциплины: конспектирование учебной литературы и лекций, составление словарей понятий и терминов и т. п.

В процессе обучения преподаватели используют активные формы работы со студентами: чтение лекций, привлечение студентов к творческому процессу на лекциях, промежуточный контроль путем отработки студентами пропущенных лекций, участие в групповых и индивидуальных консультациях (собеседовании). Эти формы способствуют выработке у студентов умения работать с учебником и литературой. Изучение литературы составляет значительную часть самостоятельной работы студента. Это большой труд, требующий усилий и желания студента. В самом начале работы над книгой важно определить цель и направление этой работы. Прочитанное следует закрепить в памяти. Одним из приемов закрепление освоенного материала является конспектирование, без которого немыслима серьезная работа над литературой. Систематическое конспектирование помогает научиться правильно, кратко и четко излагать своими словами прочитанный материал.

Самостоятельную работу следует начинать с первых занятий. От занятия к занятию нужно регулярно прочитывать конспект лекций, знакомиться с соответствующими разделами учебника, читать и конспектировать литературу по каждой теме дисциплины. Самостоятельная работа дает студентам возможность равномерно распределить нагрузку, способствует более глубокому и качественному усвоению учебного материала

Основная цель самостоятельной работы студента при изучении дисциплины закрепить теоретические знания, полученные в процессе лекционных занятий и сформировать навыки самостоятельного анализа применения реагентов в органической и неорганической химии.

11 Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости)

Libreoffice операционная система Windows Антивирус Касперского (или ESETNOD)

12Описание материально-технической базы, необходимой для осуществления образовательного процесса по дисциплине

Аудитория для проведения занятий лекционного и семинарного типа, групповых и индивидуальных консультаций, текущего, контроля, промежуточной аттестации. Доска, столы и стулья обучающихся, стол, стул преподавателя.

Мультимедиацентр: ноутбук ASUS X50VL PMD T2330/14"/1024Mb/ 160Gb/ сумка/проектор inFocus IN24+. Переносной экран.

14 Лист дополнений и изменений, внесенных в рабочую программу дисциплины

Номер Номера страниц						Основание для	
Номер измене-	изма	заме-			Всего стра-	Дата	изменения и подпись
нзмене-	изме- ненных	ненных	аннулиро- ванных	HO-	ниц	дата	лица, проводившего изме-
111171	ПСППЫХ	Пенных	Бинных	вых	nnia,		нения