Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 04.02.2021 18:59:27

Уникальный программный ключ: МИНОЬРНА У I 9ba7d3e34c012eba476ffd2d064cf2781953be730df2374d16f3c0ce536f0fc6

МИНОБРНАУКИ РОССИИ

Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра высшей математики

ЧИСЛЕННОЕ РЕШЕНИЕ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ. МЕТОД АДАМСА И РУНГЕ-КУТТА

Методические указания по выполнению лабораторной работы

УДК 519 Составитель Е.А.Бойцова

Рецензент Кандидат пед. наук, доцент Л.И. Студеникина

Численное решение дифференциальных уравнений. Метод Адамса и Рунге-Кутта: методические указания по выполнению лабораторной работы/ Юго-Зап. гос. ун-т; сост.: Е.А.Бойцова. Курск, 2013. 12 с.: ил. 4, табл. 1. Библиогр.: с.18.

Излагаются основные численные методы решения задачи Коши обыкновенного дифференциального уравнения: метод Адамса и метод Рунге-Кутта. Проводится разбор примеров с применением программного продукта МАТНСАD.

Методические указания предназначены для студентов всех специальностей.

Текст печатается в авторской редакции

Подписано в печать Формат 60х84 1/16. Усл. печ. л. 0,7. Уч.-изд. л. 0,6. Тираж ____ экз. Заказ ____. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

Содержание

I. Краткие теоретические положения	4
1. Основные понятия. Задача Коши	4
2. Метод Рунге-Кутта для решения задачи Коши	5
3. Метод Адамса для решения задачи Коши	6
II. Задание	7
1. Образец выполнения задания	8
Контрольные вопросы	18
Библиографический список	18

Цель работы: 1. Изучение основных положений теории дифференциальных уравнений.

- 2. Изучение основных численных методов решения задачи Коши обыкновенного дифференциального уравнения.
- 3. Изучение методов Адамса и Рунге-Кутта решения обыкновенного дифференциального уравнения.
- 4. Разработка алгоритма, программы и решение на ЭВМ обыкновенного дифференциального уравнения методами Рунге-Кутта и Адамса.

І. КРАТКИЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

1. Основные понятия. Задача Коши.

Определение: Дифференциальным уравнением называется уравнение, связывающее функцию y(x), аргумент x и производные функции $y', y'', ..., y^{(n)}$.

В общем случае дифференциальное уравнение можно записать в виде $F(x,y',y',...,y^{(n)})=0$.

Так как искомая функция y=y(x), фигурирующая в уравнении, есть функция одного аргумента, то дифференциальное уравнение называют в этом случае обыкновенным дифференциальным уравнением.

Дифференциальное уравнение первого порядка имеет вид F(x,y,y')=0. Уравнение первого порядка, разрешенное относительно производной, будет иметь вид:

$$y'=f(x,y)$$
 или $\frac{dy}{dx}=f(x,y)$ (1.1)

Обычно такое уравнение имеет бесконечно много решений y = y(x), и выделение одного конкретного (частного) решения осуществляется предъявлением к решению дополнительных требований. Часто, например, ставится так называемая задача Коши: среди всех решений дифференциального уравнения

$$y'=f(x,y)$$

найти такое решение y = y(x), которое при заданном значении $x = x_0$ аргумента принимает заданное значение y_0 :

$$y(x_0) = y_0 {(1.2)}$$

Числа x_0, y_0 называются при этом начальными данными, а условие (1.2) - начальным условием.

Равенство $\Phi(x, y, C) = 0$, неявно задающее общее решение, называется общим интегралом дифференциального уравнения.

Определение: Частным решением называется любая функция $y = \varphi(x, C_0)$, которая получается из общего решения $y = \varphi(x, C)$, если в последнем придать C конкретное значение $C = C_0$.

Соотношение $\Phi(x, y, C_0) = 0$ называется в этом случае частным интегралом.

2. Метод Рунге-Кутта для решения задачи Коши

Пусть дано дифференциальное уравнение первого порядка y'=f(x,y) (2.1)

при начальном условии $y=y_0$ при $x=x_0$.

Требуется на данном промежутке $x_0 \le x \le X$ найти решение y(x) уравнения (2.1) с заданной степенью точности ε . Для этого выберем шаг вычислений $h = \frac{X - x_0}{n}$, деля отрезок $[x_0, X]$ на n равных частей

так, чтобы $h^4 < \varepsilon$. Точки деления отрезка определим по формуле $x_i = x_0 + i \cdot h$ (i = 0, 1, 2, 3, ..., n). Соответствующие значения $y_i = y(x_i)$ искомой функции по методу Рунге-Кутта последовательно вычисляются по формулам:

$$y_{i+1} = y_i + \Delta y_i,$$
 где $\Delta y_i = \frac{1}{6} \left(k_1^{(i)} + 2k_2^{(i)} + 2k_3^{(i)} + k_4^{(i)} \right), i = 0, 1, 2, \dots, n,$

$$k_{1}^{(i)} = f(x_{i}, y_{i}) \cdot h,$$

$$k_{2}^{(i)} = f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{1}^{(i)}}{2}\right) \cdot h,$$

$$k_{3}^{(i)} = f\left(x_{i} + \frac{h}{2}, y_{i} + \frac{k_{2}^{(i)}}{2}\right) \cdot h,$$

$$k_{4}^{(i)} = f\left(x_{i} + h, y_{i} + k_{3}^{(i)}\right) \cdot h.$$
(2.2)

Грубую оценку погрешности метода Рунге-Кутта на данном промежутке $[x_0, X]$ можно получить, исходя из принципа Рунге:

 $R = \frac{|y_{2m} - \widetilde{y}_m|}{15}$, где n = 2m, y_{2m} , \widetilde{y}_m результаты вычислений по схеме (2.2) с шагом h и 2h .

3. Метод Адамса для решения задачи Коши

Для решения уравнения (2.1) по методу Адамса, исходя из начальных условий $y(x_0) = y_0$ мы находим методом Рунге-Кутта следующие три значения искомой функции y(x):

$$y_1 = y(x_1) = y(x_0 + h)$$
, $y_2 = y(x_2) = y(x_0 + 2h)$, $y_3 = y(x_3) = y(x_0 + 3h)$
Находим далее величины

$$q_0 = h \cdot y_0 = h \cdot f(x_0, y_0),$$
 $q_1 = h \cdot y_1 = h \cdot f(x_1, y_1),$
 $q_2 = h \cdot y_2 = h \cdot f(x_2, y_2),$ $q_3 = h \cdot y_3 = h \cdot f(x_3, y_3).$

Составим диагональную таблицу конечных разностей значений q:

x_n	y_n	$\Delta y_n =$	$y_n' =$	$q_n =$	$\Delta q_n =$	$\Delta^2 q_n =$	$\Delta^3 q_n =$
		$= y_{n+1} - y_n$	$=f(x_n,y_n)$	$=y'_n\cdot h$	$=q_{n+1}-q_n$	$= \Delta q_{n+1} - \Delta q_n$	$=\Delta^2 q_{n+1} - \Delta^2 q_n$
x_0	y_0	Δy_0	$f(x_0,y_0)$	q_0	Δq_0	$\Delta^2 q_0$	$\Delta^3 q_0$
x_1	y_1	Δy_1	$f(x_1,y_1)$	q_1	Δq_1	$\Delta^2 q_1$	$\Delta^3 q_1$
x_2	y_2	Δy_2	$f(x_2,y_2)$	q_2	Δq_2	$\Delta^2 q_2$	$\Delta^3 q_2$
x_3	<i>y</i> ₃	Δy_3	$f(x_3,y_3)$	q_3	Δq_3	$\Delta^2 q_3$	
\mathcal{X}_4	<i>y</i> ₄	Δy_4	$f(x_4,y_4)$	q_4	Δq_4		
χ_5	<i>y</i> ₅	Δy_5	$f(x_5,y_5)$	q_5			
x_6	<i>y</i> ₆		$f(x_6,y_6)$				

Метод Адамса заключается в продолжении диагональной таблицы разностей с помощью формулы Адамса

$$\Delta y_i = q_i + \frac{1}{2} \Delta q_{i-1} + \frac{5}{12} \Delta^2 q_{i-2} + \frac{3}{8} \Delta^3 q_{i-3}$$
 (3. 1)

Полагая в формуле (3.1) i=3, вычисляем

$$\Delta y_3 = q_3 + \frac{1}{2}\Delta q_2 + \frac{5}{12}\Delta^2 q_1 + \frac{3}{8}\Delta^3 q_0$$
. Найдя Δy_3 , вычисляем $y_4 = y_3 + \Delta y_3$.

Зная x_4 и y_4 , находим q_4 =h $f(x_4,y_4)$ и вносим значения y_4 , Δy_3 и q_4 в таблицу разностей и пополняем её конечными разностями Δq_3 , $\Delta^2 q_2$, $\Delta^3 q_1$, расположенными вместе с q_4 по новой диагонали, параллельно прежней и т.д. Аналогично находится диагональ q_5 , Δq_4 , $\Delta^2 q_3$, $\Delta^3 q_2$. С помощью этой диагонали мы находим значение y_6 искомого решения y(x).

II. ЗАДАНИЕ

Решить задачу Коши для дифференциального уравнения первого порядка

Таблица 1

		т иолици т
$N_{\underline{0}}$	Уравнение	Начальные условия
1	$y' = \frac{y+1}{y'}$	y=0 при $x=0$
	\mathcal{X}	
2	$2xy y' + x^2 - y^2 = 0$	<i>y</i> =0 при <i>x</i> =1
3	$e^{x-y}y'=1$	<i>y</i> =1 при <i>x</i> =1
4	y'ctgx+y=2	<i>y</i> =2 при <i>x</i> =0
5	$e^{y}(y'+1)=1$	<i>y</i> =0 при <i>x</i> =0
6	y'+y=cosx	<i>y</i> =0,5 при <i>x</i> =0
7	y' -2 y =- x^2	<i>y</i> =0,25 при <i>x</i> =0
8	y'+y=2x	y=-1 при $x=0$
9	xy'=y	y=1 при $x=1$
10	2x y'=y	<i>y</i> =1 при <i>x</i> =1
11	$2xy y' + x^2 - y^2 = 0$	<i>y</i> =0 при <i>x</i> =0
12	xy'=y	<i>y</i> =0 при <i>x</i> =0
13	2x y'=y	<i>y</i> =0 при <i>x</i> =0
14	$2xy y' + x^2 - y^2 = 0$	<i>y</i> =1 при <i>x</i> =0
15	$xy'+y-e^x=0$	<i>y</i> =1 при <i>x</i> =0

III. ПРИМЕР ВЫПОЛНЕНИЯ ЗАДАНИЯ

Решить задачу Коши для дифференциального уравнения первого порядка $y'-\frac{y}{1-x^2}-1-x=0$, при заданных начальных условиях y=0 при x=0. Требуется на данном промежутке $0 \le x \le 1$ найти решение y(x) уравнения $y'-\frac{y}{1-x^2}-1-x=0$ с заданной степенью точности $\varepsilon=0,001$. Для этого выберем шаг вычислений $h=\frac{1-0}{6}=\frac{1}{6}$, деля отрезок [0,1] на 6 равных частей так, чтобы $h^4<\varepsilon$ (0,00077<0,001). Точки деления отрезка определим по формуле $x_i=0+i\cdot0,167$ $(i=0,1,2,3,\ldots,6)$. Соответствующие значения $y_i=y(x_i)$ искомой функции по методу Рунге-Кутта последовательно вычисляются по формулам: $y_{i+1}=y_i+\Delta y_i$, где $\Delta y_i=\frac{1}{6}\left(k_1^{(i)}+2k_2^{(i)}+2k_3^{(i)}+k_4^{(i)}\right)$, $i=0,1,2,\ldots,6$, $k_1^{(i)}=f\left(x_i+\frac{h}{2},y_i+\frac{k_1^{(i)}}{2}\right)\cdot h$, $k_2^{(i)}=f\left(x_i+\frac{h}{2},y_i+\frac{k_2^{(i)}}{2}\right)\cdot h$, $k_3^{(i)}=f\left(x_i+h,y_i+k_3^{(i)}\right)\cdot h$.

Применение программного продукта MathCad

$$f(x,y) := 1 + x + \frac{y}{1 - x^2}$$

$$x_0 := 0 \qquad y_0 := 0 \qquad h := \frac{1}{6} \qquad h = 0.167 \qquad i := 0..6 \qquad x_1 := x_0 + i \cdot h$$

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0.167 \\ 0.333 \\ 0.5 \\ 0.667 \\ 0.833 \\ 1 \end{pmatrix}$$

вычисляем коэффициенты:

$$k_1^{(i)} = f(x_i, y_i) \cdot h,$$

$$k_2^{(i)} = f\left(x_i + \frac{h}{2}, y_i + \frac{k_1^{(i)}}{2}\right) \cdot h,$$

$$k_3^{(i)} = f\left(x_i + \frac{h}{2}, y_i + \frac{k_2^{(i)}}{2}\right) \cdot h,$$

$$k_4^{(i)} = f\left(x_i + h, y_i + k_3^{(i)}\right) \cdot h.$$

Для i := 0 найдём

$$k_{1} := f(x_{0}, y_{0}) \cdot h \qquad k_{1} = 0.167$$

$$k_{2} := f\left[\left(x_{0} + \frac{h}{2}\right), y_{0} + \frac{k_{1}}{2}\right] \cdot h \qquad k_{2} = 0.195$$

$$k_3 := f\left[\left(x_0 + \frac{h}{2}\right), y_0 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 0.197$

$$k_4 := f[(x_0 + h), y_0 + k_3] \cdot h$$
 $k_4 = 0.228$

Тогда
$$\Delta Y_0 := \frac{1}{6} \cdot \left(k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4 \right)$$
 $\Delta Y_0 = 0.196$
$$y_1 := y_0 + \Delta Y_0 \qquad \qquad y_1 = 0.196$$

Для і:=1 найдём

$$k_1 := f(x_1, y_1) \cdot h$$
 $k_1 = 0.228$
 $k_2 := f(x_1 + \frac{h}{2}), y_1 + \frac{k_1}{2} \cdot h$ $k_2 = 0.264$

$$k_3 := f\left[\left(x_1 + \frac{h}{2}\right), y_1 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 0.267$

$$k_4 := f[(x_1 + h), y_1 + k_3] \cdot h$$
 $k_4 = 0.309$

Тогда
$$\Delta Y_1 := \frac{1}{6} \cdot \left(k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4 \right)$$
 $\Delta Y_1 = 0.266$ $y_2 := y_1 + \Delta Y_1$ $y_2 = 0.463$

Для і:=2 найдём

$$k_1 := f(x_2, y_2) \cdot h$$
 $k_1 = 0.309$ $k_2 := f(x_2 + \frac{h}{2}), y_2 + \frac{k_1}{2} \cdot h$ $k_2 = 0.361$

$$k_3 := f\left[\left(x_2 + \frac{h}{2}\right), y_2 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 0.366$

$$k_4 := f[(x_2 + h), y_2 + k_3] \cdot h$$
 $k_4 = 0.434$

Тогда
$$\Delta Y_2 := \frac{1}{6} \cdot \left(\mathbf{k}_1 + 2 \cdot \mathbf{k}_2 + 2 \cdot \mathbf{k}_3 + \mathbf{k}_4 \right)$$
 $\Delta Y_2 = 0.366$ $\mathbf{y}_3 := \mathbf{y}_2 + \Delta Y_2$ $\mathbf{y}_3 = 0.828$

Для і:=3 найдём

$$k_1 := f(x_3, y_3) \cdot h$$
 $k_1 = 0.434$ $k_2 := f(x_3 + \frac{h}{2}), y_3 + \frac{k_1}{2} \cdot h$ $k_2 = 0.528$

$$k_3 := f\left[\left(x_3 + \frac{h}{2}\right), y_3 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 0.54$

$$k_4 := f[(x_3 + h), y_3 + k_3] \cdot h$$
 $k_4 = 0.688$

Тогда
$$\Delta Y_3 := \frac{1}{6} \cdot \left(k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4 \right)$$
 $\Delta Y_3 = 0.543$ $\Delta Y_4 := y_3 + \Delta Y_3$ $\Delta Y_4 = 1.371$

Для і:=4 найдём

$$k_1 := f(x_4, y_4) \cdot h$$
 $k_1 = 0.689$

$$k_2 := f\left[\left(x_4 + \frac{h}{2}\right), y_4 + \frac{k_1}{2}\right] \cdot h$$
 $k_2 = 0.945$

$$k_3 := f\left[\left(x_4 + \frac{h}{2}\right), y_4 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 0.994$

$$k_4 := f[(x_4 + h), y_4 + k_3] \cdot h$$
 $k_4 = 1.596$

Тогда
$$\Delta Y_4 := \frac{1}{6} \cdot \left(k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4 \right)$$
 $\Delta Y_4 = 1.027$ $y_5 := y_4 + \Delta Y_4$ $y_5 = 2.399$

Для i := 5 найдём

$$k_1 := f(x_5, y_5) \cdot h$$
 $k_1 = 1.614$ $k_2 := f(x_5 + \frac{h}{2}), y_5 + \frac{k_1}{2} \cdot h$ $k_2 = 3.665$

$$k_3 := f\left[\left(x_5 + \frac{h}{2}\right), y_5 + \frac{k_2}{2}\right] \cdot h$$
 $k_3 = 4.735$

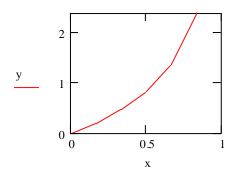
$$k_4 := f[(x_5 + h), y_5 + k_3] \cdot h$$
 $k_4 = 5.354 \times 10^{15}$

Тогда
$$\Delta Y_5 := \frac{1}{6} \cdot \left(k_1 + 2 \cdot k_2 + 2 \cdot k_3 + k_4 \right)$$
 $\Delta Y_5 = 8.924 \times 10^{14}$ $y_6 := y_5 + \Delta Y_5$ $y_6 = 8.924 \times 10^{14}$

Окончательно имеем:

$$\mathbf{x} = \begin{pmatrix} 0 \\ 0.167 \\ 0.333 \\ 0.5 \\ 0.667 \\ 0.833 \\ 1 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 0 \\ 0.196 \\ 0.463 \\ 0.828 \\ 1.371 \\ 2.399 \\ 8.924 \times 10^{14} \end{pmatrix} \qquad \Delta \mathbf{Y} = \begin{pmatrix} 0.196 \\ 0.266 \\ 0.366 \\ 0.543 \\ 1.027 \\ 8.924 \times 10^{14} \end{pmatrix}$$

Построим график искомой функции на отрезке [0,1]



Для решения по методу Рунге-Кутта можно воспользоваться так же готовой программой в среде MathCad «Метод Рунге-Кутта», которая имеет следующий вид:

$$f(x,y) := \frac{y}{1-x^2} + 1 + x \qquad a := 0 \qquad b := 1 \qquad x_0 := a \qquad n := 6 \qquad y_0 := 0$$

$$h := \frac{b-x_0}{n} \qquad \qquad h = 0.167 \qquad i := 0..6 \qquad \qquad x_1 := x_0 + i \cdot h$$

$$\mathbf{k} := \mathbf{M}_{1} \qquad \Delta \mathbf{y} := \mathbf{M}_{2} \qquad \mathbf{y} := \mathbf{M}_{3}$$

$$\mathbf{k} = \begin{pmatrix} 0 & 0.167 & 0.195 & 0.197 & 0.228 \\ 0 & 0.228 & 0.264 & 0.267 & 0.309 \\ 0 & 0.309 & 0.361 & 0.366 & 0.434 \\ 0 & 0.434 & 0.528 & 0.54 & 0.688 \\ 0 & 0.689 & 0.945 & 0.994 & 1.596 \\ 0 & 1.614 & 3.665 & 4.735 & 5.354 \times 10^{15} \end{pmatrix} \qquad \Delta \mathbf{y} = \begin{pmatrix} 0 & 0.196 & 0.196 \\ 0.266 & 0.366 & 0.366 \\ 0.366 & 0.543 & 0.828 \\ 1.371 & 0.399 & 0.361 & 0.366 \\ 0.543 & 0.543 & 0.543 \\ 1.027 & 0.399 & 0.361 & 0.366 \\ 0.543 & 0.828 & 0.371 & 0.399 \\ 0.543 & 0.543 & 0.828 & 0.371 \\ 0.543 & 0.828 & 0.371 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.543 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828 & 0.399 & 0.399 \\ 0.544 & 0.828$$

Рассмотрим далее решение этой задачи по методу Адамса, исходя из начальных условий y(0) = 0 мы запишем, найденные методом Рунге-Кутта, следующие три значения искомой функции y(x):

$$y_0 = y(0) = 0$$
, $y_1 = 0.196$, $y_2 = 0.463$, $y_3 = 0.828$

Находим далее величины

$$q_0 = h \cdot y_0' = h \cdot f(x_0, y_0),$$
 $q_1 = h \cdot y_1' = h \cdot f(x_1, y_1),$
 $q_2 = h \cdot y_2' = h \cdot f(x_2, y_2),$ $q_3 = h \cdot y_3' = h \cdot f(x_3, y_3).$

Используя программный продукт MathCad найдём

$$\begin{aligned} \mathbf{q}_0 &:= \mathbf{h} \cdot \mathbf{f} \Big(\mathbf{x}_0, \mathbf{y}_0 \Big) & \mathbf{q}_0 &= 0.167 \\ \mathbf{q}_1 &:= \mathbf{h} \cdot \mathbf{f} \Big(\mathbf{x}_1, \mathbf{y}_1 \Big) & \mathbf{q}_1 &= 0.228 \\ \mathbf{q}_2 &:= \mathbf{h} \cdot \mathbf{f} \Big(\mathbf{x}_2, \mathbf{y}_2 \Big) & \mathbf{q}_2 &= 0.309 \\ \mathbf{q}_3 &:= \mathbf{h} \cdot \mathbf{f} \Big(\mathbf{x}_3, \mathbf{y}_3 \Big) & \mathbf{q}_3 &= 0.434 \end{aligned}$$

Составим диагональную таблицу конечных разностей значений q:

	x_n	\mathcal{Y}_n	$\Delta y_n =$	$y'_n =$	$q_n =$	$\Delta q_n =$	$\Delta^2 q_n =$	$\Delta^3 q_n =$
			$= y_{n+1} - y_n$	$= f(x_n, y_n)$	$=y'_n\cdot h$	$=q_{n+1}-q_n$	$= \Delta q_{n+1} - \Delta q_n$	$\Delta^3 q_n = $ $= \Delta^2 q_{n+1} - \Delta^2 q_n$
0	0	0	0,196	1	0,167	0,061	0,02	0,24
1	0,167	0,196	0,266	1,365	0,228	0,081	0,044	
2	0,333	0,463	0,366	1,85	0,309	0,125		
3	0,5	0,828		2,598	0,434			
4	0,667							
5	0,833							
6	1							

Метод Адамса заключается в продолжении диагональной таблицы разностей с помощью формулы Адамса

$$\Delta y_i = q_i + \frac{1}{2}\Delta q_{i-1} + \frac{5}{12}\Delta^2 q_{i-2} + \frac{3}{8}\Delta^3 q_{i-3}$$

Используя программный продукт MathCad найдём

$$\begin{aligned} q_3 &= 0.434 & \Delta q_2 &:= 0.434 & \Delta 2q_1 &:= 0.044 & \Delta 3q_0 &:= 0.24 \\ \Delta y_3 &:= q_3 + \left(\frac{1}{2}\right) \cdot \Delta q_2 + \left(\frac{5}{12}\right) \cdot \Delta 2q_1 + \left(\frac{3}{8}\right) \cdot \Delta 3q_0 \\ \Delta y_3 &= 0.759 & y_4 &:= y_3 + \Delta y_3 & y_4 &= 1.588 \\ q_4 &:= h \cdot f(x_4, y_4) & q_4 &= 0.754 \end{aligned}$$

вносим значения y_4 =1,588, Δy_3 =0,759 и q_4 =0,754 в таблицу разностей и пополняем её конечными разностями Δq_3 , $\Delta^2 q_2$, $\Delta^3 q_1$, расположенными вместе с q_4 по новой диагонали, параллельно прежней.

	x_n	\mathcal{Y}_n	$\Delta y_n =$	$\dot{y_n} =$	$q_n =$	$\Delta q_n =$	$\Delta^2 q_n = $ $= \Delta q_{n+1} - \Delta q_n$	$\Delta^3 q_n =$
			$= y_{n+1} - y_n$	$y_n = f(x_n, y_n)$	$=y'_n\cdot h$	$= q_{n+1} - q_n$	$= \Delta q_{n+1} - \Delta q_n$	$=\Delta^2 q_{n+1} - \Delta^2 q_n$
0	0	0	0,196	1	0,167	0,061	0,02	0,24
1	0,167	0,196	0,266	1,365	0,228	0,081	0,044	0,151
2	0,333	0,463	0,366	1,85	0,309	0,125	0,195	
3	0,5	0,828	0,759	2,598	0,434	0,32		
4	0,667	1,588		4,515	0,754			
5	0,833							
6	1							

Аналогично находится диагональ $q_5, \Delta q_4, \Delta^2 q_3, \Delta^3 q_2$.

$$\begin{aligned} q_4 &= 0.754 & \Delta q_3 &:= 0.32 & \Delta 2 q_2 &:= 0.195 & \Delta 3 q_1 &:= 0.151 \\ \Delta y_4 &:= q_4 + \left(\frac{1}{2}\right) \cdot \Delta q_3 + \left(\frac{5}{12}\right) \cdot \Delta 2 q_2 + \left(\frac{3}{8}\right) \cdot \Delta 3 q_1 \\ \Delta y_4 &= 1.052 & y_5 &:= y_4 + \Delta y_4 & y_5 &= 2.64 \\ q_5 &:= h \cdot f(x_5, y_5) & q_5 &= 1.746 \end{aligned}$$

	x_n	\mathcal{Y}_n	$\Delta y_n =$	$y'_n =$	$q_n =$	$\Delta q_n =$	$\Delta^2 q_n =$	$\Delta^3 q_n =$
			$= y_{n+1} - y_n$	$=f(x_n,y_n)$	$=y'_n\cdot h$	$=q_{n+1}-q_n$	$= \Delta q_{n+1} - \Delta q_n$	$=\Delta^2 q_{n+1} - \Delta^2 q_n$
0	0	0	0,196	1	0,167	0,061	0,02	0,24
1	0,167	0,196	0,266	1,365	0,228	0,081	0,044	0,151
2	0,333	0,463	0,366	1,85	0,309	0,125	0,195	0,531
3	0,5	0,828	0,759	2,598	0,434	0,32	0,682	
4	0,667	1,588	1,052	4,515	0,754	1,002		
5	0,833	2,64		10,515	1,756			
6	1							

С помощью этой диагонали мы находим значение y_6 искомого решения y(x).

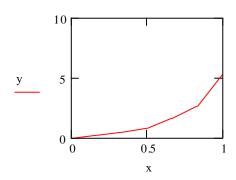
$$\begin{aligned} q_5 &= 1.746 & \Delta q_4 := 1.002 & \Delta 2 q_3 := 0.682 & \Delta 3 q_2 := 0.53 \\ \Delta y_5 &:= q_5 + \left(\frac{1}{2}\right) \cdot \Delta q_4 + \left(\frac{5}{12}\right) \cdot \Delta 2 q_3 + \left(\frac{3}{8}\right) \cdot \Delta 3 q_2 \\ \Delta y_5 &= 2.73 & y_6 := y_5 + \Delta y_5 & y_6 = 5.37 \end{aligned}$$

	x_n	\mathcal{Y}_n	$\Delta y_n =$	$y_n' =$	$q_n =$	$\Delta q_n =$	$\Delta^2 q_n =$	$\Delta^3 q_n =$
			$= y_{n+1} - y_n$	$=f(x_n,y_n)$	$= y'_n \cdot h$	$=q_{n+1}-q_n$	$= \Delta q_{n+1} - \Delta q_n$	$= \Delta^2 q_{n+1} - \Delta^2 q_n$
0	0	0	0,196	1	0,167	0,061	0,02	0,24
1	0,167	0,196	0,266	1,365	0,228	0,081	0,044	0,151
2	0,333	0,463	0,366	1,85	0,309	0,125	0,195	0,531
3	0,5	0,828	0,759	2,598	0,434	0,32	0,682	
4	0,667	1,588	1,052	4,515	0,754	1,002		
5	0,833	2,64	2,73	10,515	1,756			
6	1	5,37						

Получили искомую функцию, заданную таблично.

X	0	0,167	0,333	0,5	0,667	0,833	1
у	0	0,196	0,463	0,828	1,588	2,64	5,37

Построим график искомой функции на отрезке [0,1]



IV. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Что называется дифференциальным уравнением?
- 2. Какое уравнение называется обыкновенным дифференциальным уравнением?
- 3. Какое уравнение называется линейным дифференциальным уравнением?
- 4. Определение частного и общего решения дифференциального уравнения.
- 5. Задача Коши.
- 6. Метод Рунге-Кутта.
- 7. Метод Адамса.

Библиографический список

- 1. Пискунов Н. С. Дифференциальное и интегральное исчисления [Текст] : учебное пособие. Т. 1 / Н. С. Пискунов. изд., стер. М. : Интеграл-Пресс, 2007. 416 с. ISBN 5-89602-012-0
- 4. Запорожец Г. И. Руководство к решению задач по математическому анализу [Текст] : учебное пособие / Григорий Иванович Запорожец. 6-е изд., стер. СПб. : Лань, 2010. 464 с. : ил. (Учебники для вузов. Специальная литература). ISBN 978-5-8114-0912-9 .