Мьо Мин Тан

Микро- и наноразмерное структурирование конденсированных сред в неравновесных состояниях

Специальность: 01.04.07 – Физика конденсированного состояния

АВТОРЕФЕРАТ диссертации на соискание ученой степени доктора физико-математических наук

Курск – 2021

Работа выполнена в Юго-Западном государственном университете

Научный консультант: доктор физико-математических наук, профессор, почетный работник высшей школы РФ Кузьменко Александр Павлович

Официальные оппоненты: Костишин Владимир Григорьевич

доктор физико-математических наук, профессор, член-корр., академии инженерных наук РФ, Национальный исследовательский технологический университет «МИСиС», заведующий кафедрой технологии материалов электроники

Федоров Виктор Александрович

доктор физико-математических наук, профессор, Тамбовский государственный университет имени Г.Р. Державина, Институт математики, физики и информационных технологий, профессор кафедры теоретической и экспериментальной физики

Волков Степан Степанович

доктор физико-математических наук, профессор, Рязанское гвардейское высшее воздушно-десантное ордена Суворова дважды Краснознаменное командное училище имени генерала армии В.Ф. Маргелова, профессор кафедры автомобильной техники

Ведущая организация: Тверской государственный университет

Защита диссертации состоится «9» сентября 2021 г. в 12-00 часов на заседании диссертационного совета 24.2.435.01 (Д 212.105.04) при Юго-Западном государственном университете по адресу: 305040, г. Курск, ул. 50 лет Октября, 94, конференц-зал.

С диссертацией можно ознакомиться в научной библиотеке и на официальном сайте Юго-Западного государственного университета <u>https://www.swsu.ru</u>.

Автореферат разослан «__» ____ 2021 г.

Учёный секретарь диссертационного совета 24.2.435.01 (Д 212.105.04) к.ф.-м.н., доцент

Кочура А. В.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности

Поверхностно-пластическое деформирование (ПД) и его разновидность статико-импульсная обработка (СИО) относятся к категории эффективных методов изменения механико-прочностных параметров металлов, сплавов и изделий из них [1-4]. Достигаемая этими методами объемная структурная перестройка приводит к росту твердости металлов до 6.5 ГПа, обусловлена как поверхностным деформированием, так и его распределением по глубине вплоть до размеров обрабатываемых образцов. При установлении взаимосвязи прочностных характеристик материалов со структурными изменениями под воздействием, в том числе, ударных волн в процессе ПД необходим учет возникновения и существования многочисленных каналов диссипации подводимой упругой энергии, что вызывает динамическую рекристаллизацию, дислокационно-дисклинационные процессы, фазовые превращения и выделение скрытой теплоты деформационного происхождения. Для экспериментального определения места и времени зарождения дефекта при ПД пространственновременное разрешение должно быть на уровне 10⁻¹⁴ с и 10⁻⁹ м. Разрешение просвечивающего электронного микроскопа 250 фс позволяет изучать кинетику процессов, возникающих при ПД. Основные механизмы структурной перестройки в процессе ПД анализируются по отношению температур $T_{\rm MПД}$ – мегапластической деформации и Т_{пл} – плавления: Т_{МПЛ}/Т_{пл}. На этой основе, в частности, установлен термофлуктуационный механизм формирования концентраторов напряжений в условиях ПД в структуре поверхностного слоя.

Общепризнанной и устоявшейся тенденцией в изучении самого широкого класса объектов в физике конденсированного состояния является признание основополагающей роли поверхностей. В этой связи исследования плёночных структур и покрытий оказались весьма востребованными практически во всех областях науки и техники [5, 6]. В частности, можно отметить исследования и разработки в области информационного аппаратного обеспечения, строящегося на пленочных *h-tech* элементах и тонкопленочных транзисторах, физического материаловедения, где важную роль выполняют микро- и наноразмерные плёночные структуры на различных функциональных материалах (селективные химические и биологические сенсоры и датчики, длинноволновые рентгеновские дифракционные решетки, нанокатализаторы для топливных элементов, светоотражающие, теплосберегающие и самоочищающиеся, мемристоры, тонкопленочные структуры для фотовольтаики). Среди методов формирования таких поверхностных слоев заметное место занимают физические (в частности, элионные) технологии, благодаря которым достигаются параметры недостижимые другими тонкопленочными технологиями.

Начиная с 2004 года, продолжает нарастать исследовательский интерес к углеродным материалам, мир которых оказался насыщенным массой новых квантоворазмерных физико-химических эффектов, что расширило горизонты как фундаментальной, так и прикладной значимости [8 – 10]. Многочисленные обзоры отмечают, что специфика структурирования углеродных материалов заключена в тесной взаимосвязи с явлениями самоорганизации и самосборки, которые общепризнанно выступают в качестве безальтернативной основы становления и развития как нано-электроники с уменьшением размера в транзисторных элементах до пороговых фи-

зических размеров, так и наноматериаловедения. Развернуто промышленное производство одностенных углеродных нанотрубок, которые активно используются в новых источниках электрической энергии, терапии канцерогенных образований, создании высокоэффективных мембран, холодно-полевых источников электронной эмиссии, мониторов, рентгеновских трубок, усилителей в CBЧ-диапазоне, исследования тонкопленочного полевого транзистора с асимметричным затвором (с оксидным слоем из HfO_2). На их основе создаются коммутаторы между стоком и истоком в щели нанометровых размеров, пленочные сенсоры из высокоупорядоченных углеродных нанотрубок с высокой контрастностью и перезаписью с высоким быстродействием до нескольких сотен раз, поляризационные и модуляционные материалы, отличающиеся высокой стабильностью и анизотропией. Созданы углеродные структуры с электропроводностью, сопоставимой с медной, фильтрационные мембраны, на медных подложках нанометровых толщин получены высокие плотности токов за счет использования вертикально ориентированных углеродных нанотрубок.

Стремительное развитие телекоммуникационных и информационных систем, резкое возрастание потребностей в высокоскоростной обработке и бессбойном хранении все возрастающих массивов информации стимулировало исследования материалов, в которых имеют место смешивания магнитных, электрических и упругих свойств, формирование доменов, гистерезисные явления, аномалии поведения вблизи фазовых переходов. Мультиферроики становятся самыми востребованными объектами исследований, к которым относятся магнетики, обладающие *d*-магнитным упорядочением, в частности, магнитные жидкости, обладающие целым рядом уникальных функциональных свойств [11 – 13, 16].

Объединяет все представленные достаточно разноплановые материалы проявление новых размерных физико-химических эффектов и явлений структурирования, установление механизмов их возникновения на всех уровнях, включая наноразмерный, процессы самоорганизации и самосборки. Все последние перспективные исследования и разработки элементов техники нового поколения, как электронной техники, так и новых наноструктурированных материалов оказались тесно связанными с использованием уже сложившихся синергетических представлений, что указывает на актуальность представленных результатов, их общенаучную важность, и практическую значимость.

Цель диссертационной работы

Целью работы является анализ многоуровневого микро- и наноразмерного структурирования при внешних воздействиях в конденсированных средах в виде металлических образцов с заданной формой и размерами, металлических магне-тронных нанопленок, коллоидных систем из много- и одностенных углеродных нанотрубок, ферромагнитной жидкости.

Объект исследования – образцы стали 45 с заданными размерами после статико-импульсной обработки, металлические магнетронные нанопленки Al, Cr, Ni, Cu и Hf, много- и одностенные углеродные нанотрубки и нанотрубчатые структуры из оксидов меди и никеля, ферромагнитные жидкости на основе магнетита.

Предмет исследования – процессы и явления микро - и наноструктурирования, возникающие:

при статико-импульсном деформировании сталей;

в процессе магнетронного распыления металлических мишеней;

в коллоидных систем с много- или одностенными углеродными нанотрубками и трубчатыми наноструктурами из CuO и NiO в постоянных электрических полях;

в коллоидных системах из магнитных жидкостей на основе Fe₃O₄, в том числе, с адсорбированными на поверхностях магнитных наночастиц медьсодержащими соединениями.

Для достижения поставленной цели необходимо было решить следующие задачи

в условиях интенсивного пластического деформирования

1. Провести анализ влияния всех размеров образцов в форме параллелепипеда из стали 45 на формирование микро- и наноструктурных изменений в условиях стати-ко-импульсного ударно-волнового пластического деформирования.

2. Установить закономерности многоуровневого структурирования в поперечных сечениях образцов из стали 45 в зависимости от направления статико-импульсного ударно-волнового пластического деформирования.

3. Методами современного наноинструментария провести комплексные аналитические исследования и характеризацию многоуровневых микро- и наноструктурных образований, возникающих в результате статико-импульсного ударно-волнового пластического деформирования образцов.

4. Провести анализ волновых процессов, инициируемых в образцах, в условиях статико-импульсного пластического деформирования.

5. Установить и опытно обосновать физическую модель микро- и наноструктурирования при ударно-волновых деформационных воздействиях.

в магнетронных металлических нанопленках

1. По комплексным аналитическим исследованиям морфологии и фазовых структурных превращений в металлических (Al, Cr, Ni Cu и Hf) магнетронных нанопленках, установить закономерности их наноструктурирования на поверхностях подложек из ситалла, поликора и монокристаллического кремния в зависимости от режимов распыления.

2. Изучить процессы наноструктурирования в магнетронных металлических нанопленках в условиях искусственной деградации после нагревания на воздухе при температуре отжига на воздухе – T_{an} , превышающей температуру Debye – T_{D} , но ниже температуры плавления – T_{m} : $T_{D} < T_{an} < T_{m}$.

3. Определить взаимосвязи и влияние условий и режимов магнетронного распыления на формирование наноструктур в металлических магнетронных нанопленках Al, Cr, Ni, Cu и Hf.

4. Построить физический механизм наноструктурирования в металлических магнетронных нанопленках Al, Cr, Ni, Cu и Hf.

5. В рамках модельных расчетов *ab initio* проверить адекватность представленной модели структуризации магнетронной нанопленки из Al.

в углеродных много- и одностенных нанотрубках

1. Разработать методики функционализации многостенных и одностенных углеродных нанотрубок (*f*-MWCNT и *f*-SWCNT) с высокостабильным существованием водных коллоидных систем на их основе. 2. Изучить процессы структурирования в капле коллоидной системы из *f*-MWCNT и *f*-SWCNT в свободном состоянии и под воздействием постоянного электрического поля.

3. Установить закономерности и условия формирования микро- и наноструктур в капле коллоидной системы из *f*-MWCNT и *f*-SWCNT.

4. Построить качественную физическую модель, описывающую процессы многоуровневого микро- и наноструктурирования в капле коллоидной системы из *f*-MWCNT и *f*-SWCNT.

5. Электрохимическим методом сформировать на поверхности *f*- MWCNT оксидные фазы Cu и Ni, разработать методики их отделения в виде нанотрубок и провести их комплексную характеризацию.

6. Исследовать фотокаталитические свойства, вновь созданных нанотрубчатых композитов CuO/*f*- MWCNT и NiO/*f*- MWCNT.

в ферромагнитных жидкостях

1. Исследовать изменения плотности тока в кювете магнитной жидкостью с наночастицами Fe_3O_4 стабилизированными олеиновой кислотой (MF OA MNPs из Fe_3O_4) в постоянном магнитном поле (1.2 Тл), вращаемом относительно направления постоянного электрического поля (до 5×10⁵ В/м), приложенного между медными или титан-ванадиевыми электродами.

2. Изучить изменения морфологии поверхностей медных и титан-ванадиевых электродов, возникающие при электрохимических реакциях в коллоидной системе MF OA MNPs из Fe₃O₄ в постоянном электрическом поле.

3. Провести модельный эксперимент по исследованию процессов микро и наноструктурирования в капле коллоидной системы MF OA MNPs из Fe_3O_4 в слое (шириной не более 1 мм с субмикронной толщиной) между медными электродами, нанесенными методом магнетронного распыления.

4. Определить роль и вклад магнитодипольного, стерического и Van der Waals взаимодействий.

5. Построить качественную физическую модель, объясняющую процессы многоуровневого микро и наноструктурирования в коллоидной системе MF OA MNPs из Fe₃O₄ под действием постоянного электрического поля.

Методология и методы исследования

Объекты для исследований были подобраны с учетом сложившегося в мире уровня научного и практического интереса к ним, который был установлен по материалам отечественной и зарубежной периодики, а также возможностей аналитического аппаратного обеспечения и технологического оснащения Регионального центра нанотехнологий при теоретической интерпретации и анализе экспериментально обнаруженных явлений многоуровневого структурирования в исследованных объектах с учетом уже сложившихся представлений:

об иерархии и многоуровневости физической мезомеханики (от микро- к мезои вплоть до макроуровней), в условиях пластического деформирования, включая ударно-волновое и статико-импульсное, когда в условиях потери сдвиговой устойчивости, включается дислокационная динамика; о кластерном структурировании с расчетами фрактальной размерности (по Hausdorf-Bezikovic), развивающими принятую структурную зонную модель формирования магнетронных (на примере металлических) нанопленок;

о динамических процессах упорядочения в диффузионно-ограниченных условиях в процессе испарения капли коллоидной системы *f*-MWCNT и *f*-SWCNT (типичная открытая диссипативная система) с учетом всех типов капиллярных конвективных (потоков Marangoni, Rayleigh-Benard) и компенсационных течений, а при включении электрического поля – электрофоретической силы;

о взаимодействиях в коллоидной системе MF OA MNPs из Fe₃O₄ с учетом расклинивающего давления (по теории Deryagin - Landau - Vervey - Overbeck) в магнитных и электрических полях в неравновесных условиях с нарушениями стабильности, сопровождаемой агрегированием.

Решение поставленных задач достигнуто с привлечением самого широкого набора оборудования для подготовки поверхностей: плазменная установка низкого давления PICODiener, ионная чистка; инструментальных аналитических методов: атомно-силовой и магнито-силовой (AFM и MFM), конфокальной микроскопии (CM), сканирующей электронной (SEM) и просвечивающей электронной микроскопии (TEM), дифракции обратно-рассеянных электронов (EBSD), электронной дифрактометрии (ED), малоуглового рентгеновского рассеяния (SAXS), элементного энергодисперсионного (EDX) и лазерного спектрометрического, рентгенофазового (XRD) анализов, включая *in situ* нагрев в высотемпературной ячейке «PAAR HTK-16», термогравитометрического (TGA) анализа, измерения микротвердости, FTIR спектроскопии и комбинационного (рамановского) рассеивания света (RS), рентгеновской фотоэлектронной спектроскопии (XPS), спектральной эллипсометрии (ES).

Научная новизна работы

1. Впервые систематически на наноразмерном уровне изучены процессы самоорганизованного многоуровневого структурирования в различных конденсированных средах, включая металлические образцы в форме параллелепипеда со строго заданными 3D размерами под ударно-волновым воздействием; в процессах кластерного формирования металлических магнетронных нанопленок; в коллоидных системах из f-MWCNT и f-SWCNT, а также агрегирования MF OA MNPs из Fe₃O₄ в диффузионно-ограниченных условиях под воздействием постоянного электрического поля.

2. Впервые, опытно обоснован механизм интерференционного 3D микро и наноструктурирования и фазовых превращений в металлических образцах в форме параллелепипеда с размерами, удовлетворяющими пространственной и временной когерентности между волнами, возбуждаемыми при статико-импульсном пластическом деформировании.

3. Доказано, что аддитивные вклады кластерных баллистической коалесценции и кинетической агрегации являются доминирующими механизмами наноструктурирования в процессе распыления чистых металлов и формирования магнетронных нанопленок.

4. Неравновесное микро - и наноструктурирование в испаряющейся капле коллоидной системы *f*-MWCNT и *f*-SWCNT, обусловленное гидродинамическими, диффузионными, тепловыми и электрофоретическими потоками в постоянном электрическом поле, имеет характер флуктуаций, вызывающих формирование фрактальных, кластерных и линейных структур, как дополнительных каналов диссипации энергии.

5. Впервые в субмикронном слое коллоидной системы магнитных наночастиц (OA MNPs из Fe_3O_4) в постоянном электрическом поле, приложенном между параллельными магнетронными медными пленками, одновременно наблюдалось микро- и наноструктурирование, вызванное как дальнодействующими магнитодипольными и электродипольными взаимодействиями – с образованием агрегатов и тороидальных структур, так и близкодействующими стерическими и Van der Waals взаимодействиями – с образованием нитеподобных цепочек и агломератов из них.

Положения, выносимые на защиту

1. При статико-импульсном ударно-волновом пластическом деформировании металлических образцов в форме параллелепипеда возникает размерный эффект объемного периодического микро- и наноструктурирования, зависящий от направления деформации относительно поверхностей и расстояния между ними.

2. Взаимосвязь периодов и размеров микро- и наностуктур с размерами областей рентгеновской когерентности, коэффициентами текстурированности и равновесностью деформационных межплоскостных изменений, а также с возникновением локализованных волн Luders, фазовых превращений γ -Fe $\rightarrow \alpha$ -Fe (FCC \rightarrow BCC – фазовый переход первого рода) и сфероидальных цементных включений (Fe₃C).

3. 3D микро- и наноструктурирование происходит в результате интерференции волн акустических, пластических и разгрузки, которые инициируются статико-импульсным ударно-волновым пластическим деформированием металлических образцов в форме параллелепипеда с поперечными размерами, кратными длине возбуждаемой стоячей волны.

4. Особенности влияния управляющих параметров (мощности и времени) магнетронного распыления мишеней из Al, Cr, Ni, Cu и Hf на процесс кластерообразования наноструктур в нанопленках на размеры, измеренные на атомно-силовом микроскопе, которые всегда коррелировали с размерами когерентности по дифрактограммам, в том числе, после деградации при нагреве на воздухе при температурах отжига – T_{an} , превышающей температуры Debye – T_{D} , но ниже температур плавления – T_{m} : $T_{D} < T_{an} < T_{m}$.

5. Самоорганизованное нанокластерное трехмерное формирование магнетронных металлических пленок, подтвержденное ростом коэффициента текстурированности и межплоскостными искажениями (по данным XRD), вызванными деформациями: сжимающей ($\Delta a < 0$) – при кинетической агрегации и растягивающей ($\Delta a > 0$) – при кластерной баллистической коалесценции, с линейной зависимостью фрактальной размерности от толщины и согласующиеся с *ab-initio* модельными расчетами структуры и энергии диссоциации свободных кластеров из атомов алюминия, с несколькими минимумами полной энергии (даже для трех атомов) в зависимости от структурирования на поверхностях (100), (110) и (111).

6. Режимы функционализации и результаты комплексной наноинструментальной характеризации многостенных и одностенных углеродных нанотрубок (*f*-MWCNT и *f*-SWCNT) с высокостабильным существованием (до нескольких лет) в водных коллоидных системах и особенности структурирования, возникающего в капле при испарении в свободном состоянии и в постоянном электрическом поле, а также при

электрохимическом осаждении на их поверхностях оксидов меди и никеля с образованием нанокомпозитов CuO/*f*- MWCNT или NiO/*f*- MWCNT.

7. Закономерности, возникающие в формировании фрактальных, кластерных и линейных структур при испарении капли водной коллоидной системы *f*-MWCNT или *f*-SWCNT под действием гидродинамических, диффузионных, тепловых потоков как в свободном состоянии в зависимости от концентрации, материала подложки и температуры, так и в постоянном электрическом поле за счет собственной проводимости, в том числе, в зависимости от хиральности SWCNT.

8. Флуктуационный механизм роста фрактальных и линейных структур в испаряющейся капле водной коллоидной системы из *f*-MWCNT и *f*-SWCNT в постоянном электрическом поле с длиной, обратно пропорциональной напряжению $d_{C\Phi,CЛ} \sim 1/U$, и скоростью роста, квадратично зависящей от напряжения $V_{C\Phi,CЛ}(t) \sim V_0 + BE^2$ и скачкообразно возрастающей по времени $V_{C\Phi,CЛ}(t) \sim f(t^2)$.

9. Повышение фотокаталитической активности нанотрубчатых оксидов меди (II) и никеля (II), получаемых при отжиге синтезированных электрохимическим методом нанокомпозитов CuO/*f*-MWCNT и NiO/*f*-MWCNT, в которых углеродные нанотрубки исполняют роль прекурсорной каркасной основы.

10. Анизотропия зависимости плотности тока в кювете с MF OA MNPs из Fe_3O_4 , помещенной в постоянное магнитное поле (1.2 Tл), вращаемое относительно направления постоянного электрического поля (задаваемое до 5×10^5 B/м) между электродами из титан-ванадиевого сплава и меди, учитывающая элементный состав и структурные изменения поверхности медного электрода при электрохимических реакциях.

11. Результаты исследования самоорганизованного микро- и наноструктурирования в коллоидной системы MF OA MNPs из Fe_3O_4 в постоянном электрическом поле на модельном объекте в виде слоя субмикронной толщины и шириной не более 1 мм между магнетронными медными нанопленочными электродами.

12. Опытное обоснование качественной физической модели процессов микро - и наноструктурирования в коллоидной системе MF OA MNPs из Fe₃O₄ под действием постоянного электрического поля, согласно которой формирование агрегатов и тороидальных структур обусловлено магнитодипольными и электродипольными вза-имодействиями, а нитеподобных цепочек и агломератов из них – стерическим и Van der Waals взаимодействиями.

Теоретическая значимость работы

Результаты комплексных исследований микро- и наноструктурирования в открытых конденсированных системах, выполненные соответствующими разрешениями: с пространственным наноразмерным и с временным, сопоставимым или меньшим времен релаксации, в неравновесных состояниях при внешних деформационных, электрических, магнитных воздействиях, в диффузионно-ограниченных или с заданными размерами условиях, позволившие установить: механизмы соответствующего структурирования, сопровождаемые процессами самосборки и самоорганизации; управляющие параметры и параметры порядка, будут способствовать расширению общенаучных представлений в этой динамично развивающейся области физики.

Практическая значимость работы

Выявленные закономерности формирования и взаимосвязи самоорганизованного микро- и наноструктурированного упорядочений в конденсированных средах были положены в основу разработки технических решений:

проблем упрочнения металлических материалов при ударно-волновом пластическом деформировании;

формирования высокоупорядоченных кластерных структур в магнетронных металлических нанопленках с учетом установленного критерия качества их поверхности;

создания нанопроводов из упорядоченных в электрическом поле *f*-MWCNT и *f*-SWCNT;

сенсоров и нанокатализаторов с высокой фотокаталической активностью на основе нанотрубчатых оксидов переходных металлов;

формирования в электрических полях высокостабильных микро и наноразмерных цепочечных и тороидальных структур из агрегатов в MF OA MNPs из Fe₃O₄ с примесными включениями на основе медьсодержащих соединений.

Достоверность результатов, представленных в диссертационной работе, обосновывается повторяемостью всех экспериментальных данных и их согласованностью с теоретическими и модельными (*ab initio*) расчетами, получением материалов для исследований на типовом технологическом оборудовании, проведением измерений на современном сертифицированном аналитическом оборудовании, с использованием взаимодополняющих методов и методик, согласием всех полученных экспериментальных данных и выводов с данными в предметных областях исследований по материалам отечественных и зарубежных публикаций.

Апробация и внедрение результатов работы

Основные результаты работы были представлены на следующих конференциях: Основные результаты работы были представлены на следующих конференциях: «Математика и ее приложения в современной науке и практике», Курск, 2015; 2-ая Международная научно-практическая конференция «Физика и технология наноматериалов и структур», Курск, 2015; XIII Междунар. конф. «Перспективные технологии, оборудование и аналитические системы для материаловедения и наноматериалов» Курск, 2016; 3-ья Международная научно-практическая конференция «Физика и технология наноматериалов и структур», Курск, 2017, III International Conference on Modern Problems in Physics of surfaces and nanostructure, Ярославль, 2017, 2018 3rd International Conference on Materials Engineering and Nanotechnology (ICMEN 2018) Japan, 3th Всероссийской научной конференции перспективных разработок молодых ученых, «Молодежь и наука: шаг к успеху», Курск, 2019; Х Всероссийская научнопрактическая конференция «Нанотехнологии: образование, наука, инновации», Курск, 2019; International Conference on Applied Physics, Power and Material Science, India, 2019; The Second International Conference on Physics, Mathematics and Statistics, China, 2019.

Публикации

Общим числом 51. Из них: ВАК – 22, Scopus – 10, Web of Science – 2, Патенты РФ – 2, монографии – 2, другие научные статьи – 13.

Личный вклад автора. Содержание диссертации и основные положения, выносимые на защиту, отражают персональный вклад автора в опубликованные работы. Подготовка к публикации полученных результатов проводилась совместно с соавторами. Автором были выполнены экспериментальные работы по всем образцам, а также их комплексному исследованию и всестороннему анализу результатов, полученных с применением широкого арсенала методов и средств аналитических исследований, подавляющая часть которых выполнена лично автором или при его непосредственном участии.

Соответствие паспорту научной специальности

Диссертация соответствует требованиям, установленным пунктом 14 Положения о присуждении ученых степеней, паспорту научной специальности 01.04.07 «Физика конденсированного состояния» по следующим пунктам: п. 1; п. 2; п. 6.

Структура и объем диссертации

Диссертационная работа состоит из введения, пяти глав основного содержания, заключения и списка литературы – 718 наименований. Общий объем работы составляет 478 листов, содержит 163 рисунка и 27 таблиц.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении обоснована актуальность темы диссертационной работы и степень ее разработанности, сформулированы цель и задачи исследования с подразделением по объектам исследований, описана методология и указаны методы исследования, отражена научная новизна, изложены положения, выносимые на защиту, теоретическая и практическая значимость, достоверность полученных результатов, отражены апробация и внедрение результатов, отмечены личный вклад и соответствие паспорту научной специальности.

В разделе 1 «Интенсивное пластическое деформирование» проведен аналитический обзор исследований волновых взаимодействий, возникающих при ударном воздействии на металлические железосодержащие образцы по материалам многочисленных научных статей и монографий (гл. 1.1). Ударные воздействия затрагивают не только поверхностные слои, но и распределяются как по глубине, так и в объеме, подвергая серьезной структурной перестройке практически весь металлический образец, сопровождаются ориентационными кристаллографическими изменениями (п. 1.1.1.2). Структурирование при пластическом деформировании (ПД) образцов, имеет многоуровневый характер, является нелинейным, вызывает необратимые фазовые превращения и формирование в несколько стадий дефектных образований в зависимости от степени ПД. Из хаоса (п. 1.1.1.3) формируются дислокационные структуры, начиная от их клубков или скоплений, изменяющиеся по размерам от 0.2 с плотностью 10^6 см⁻² и вплоть до образования нанокристаллической и аморфной структуры с размерами до 100 нм – мкм и с плотностью 10¹³ см⁻² [1]. Методы регистрации структурных изменений проанализированы в п. 1.1.3. Ударно-волновое ПД (разд. 1.1.4) рассмотрено в рамках синергетического подхода [2] проведен систематизированный анализ локализации и эволюции структуры ВСС, FCC и НСР за счет дислокационного скольжения, двойникования и мартенситного превращения. При этом краевые дислокации инициируются продольными волнами (V_{swl}), а винтовые – поперечными (сдвиговыми) волнами (V_{swt}).

В гл. 1.2 содержатся результаты комплексного исследования структурных изменений под действием статико-импульсного пластического деформирования (СИД), а далее в разд. 5 в гл. 5.1 представлено их качественное описание и обосновыван механизм интерференционного 3D микро и наноструктурирования и фазовых превращений в металлических образцах в форме параллелепипеда с кратно изменяемыми размерами. Исследования выполнены на образцах, изготовленных из стали 45. Их длина (A) составляла 150, 100 и 50, 40 мм, а ширина (B) и толщина (C) варьировалась, принимая значения – 40, 20, 15, 10 и 5 мм. Использовалось обозначение $(A \times B \times C)$ согласно рис. 1, a - I. В нашей работе было исследовано многоуровневое структурирование в образцах после ПД при комбинированном воздействии постоянного статического давления $P_{\rm st} = 0.1$ ГПа и СИД ($P_{\rm chs} = 20$ ГПа, $E_{\kappa} = 25$ Дж, $V_{\rm ch} = 6$ м/с, $\tau_{\text{имп}} \sim 3 \times 10^{-5}$ с, f = 23 Гц, зона перекрытия 30 %), которое выполнялось по оригинальной методике [3] в Муромском филиале Владимирского госуниверситета (под руководством профессора А.В Киричека), где также было зарегистрировано периодическое увеличение локальной микротвердости на 85 % вдоль направления ударного воздействия – P_{chs}. Для СИД использовался ролик длиной 7 мм и диаметр 10 мм, который вдавливался на ~ 0.25×10^{-3} м при следе окружности ~ 10^{-3} м. Использовался также и модельный ударник в форме шара – 19 мм, E_{κ} = 150 Дж, P_{chs} = 140 ГПа для деформирования образца в форме куба (40 мм). Кинетическая энергия по профилю сжатия определялась $E_{\rm k} = \rho V_{\rm cils,sfs} V_{\rm m}^2/2$, где $V_{\rm cilch}$, $V_{\rm sfch}$ – изменение объема при ударе, V_m – массовая скорость, р – плотность стали. Вызванное ею изменение внутренней энергии учитывало энергию сжатия, нагрева и дефектообразования (образование дислокаций): $E_{int} = E_s + E_T + E_{disl}$. Объемы сжатия для каждого ударника определялись по деформационному следу с учетом его геометрии по формулам: для сферического – $V_{\text{sfch}} = \pi R^2 \arccos(1 - h/R)$, для цилиндрического – $V_{\rm cilch}$ a $=\pi R^2 \arccos(1 - h/R)$. Оценочные расчеты энергии сжатия свидетельствовали о том, что могли возникать локальные структурные фазовые переходы, характерные для сталей: α(BCC), γ(FCC), ε(HCP), в соответствии с выводами [4]. Однако, как после тестового одиночного удара с максимальной энергией сжатия, так и после СИД на тыльной стороне всех образцов не наблюдались отколы, то есть сжатие не превышало предел прочности для этой стали – $\sigma_{\rm B} \sim 0.6 \ \Gamma \Pi a$.

По всей толщине образца после одиночного удара изучено ориентационное структурирование по конфокальным микроскопическим (КМ) изображениям на микро- и макроуровнях через 1 мм и 330 микрон с увеличениями ×505 и ×2830 и на сканирующем электронном микроскопе (SEM) на наноуровне (рис. 1, δ) как вдоль направления деформирования, так и под углами ±45°. На микро и макро уровнях наблюдалась типичная равновесная феррит-перлитная зеренная структура (P и F) с цементитными включениями (C), когда размеры зерен и их площади практически равны: $D_P = D_F$ и $S_P = S_F$ На нано уровне по SEM изображениям внутри перлита, начиная с глубины свыше 300 мкм, возникали полосовые субструктуры. Ориентировались они преимущественно по касательным в каждой точке сферического фронта ударного воздействия, а их размеры изменялись в пределах от 100 до 800 нм. В приповерхностной области полосовые субструктуры еще оказались несформированными, имели минимальные размеры в десятки нм и были достаточно разупорядочены. Можно заключить, что структурные изменения оказались многоуровневыми на всех

глубинах. Это позволяло предложить концепцию, согласно которой каждое продемонстрированное изображение на рис. 1, *б* может рассматриваться как запись реально-временных откликов материала (на примере стали 45) на внешнее деформационное воздействие.

Рис. 1 – К анализу структурирования после одиночного удара и СИД деформирования образца $100 \times 20 \times 20 \text{ мм}^3$: *а* – многоуровневые изменения после однократного СИД (сферический ударник, сверху вниз) на указанных глубинах образца из стали 45 в форме куба с отмеченным масштабом, полученные с помощью СМ – *a*, *б* и SEM микроскопии – *в*; *б* – I – схема обозначений и направление удара; ориентация и фотография шлифов относительно удара: II – вдоль, III – под ±45°, IV – и 90° к направлению удара

В п. 1.2.2 изучены размерные эффекты с учетом влияния толщины (С) образцов, с выделением межударных областей и изменения ориентации поперечных шлифов, что позволило сделать вывод о трехмерности структурирования в условиях СИД. Ориентационная направленность структурных изменений относительно направления СИД проанализирована на примере образца $100 \times 20 \times 20$ мм³ (рис. 1, *a*): вдоль – II, под углом 45° – III и перпендикулярно относительно удара – IV. Морфология структурных изменений на поверхности шлифов изучена по девяти точкам, указанным на фотографиях (по краям и по центру), с обозначениями, к примеру, от 1.45° до 9.45° и от 1.90° до 9.90°. Обнаружены существенные многоуровневые изменения структуры в каждой точке в плоскости всех шлифов как по ширине -B, так и по толщине образца – С, что прямо доказывало их объемность. По SEM изображениям внутри зерен перлита обнаружены полосовые субструктуры, начиная с глубины свыше 300 мкм, также как и при одиночном ударе (рис. 2, a - e). Анализ показал, что ширина образцов вызывала увеличение в 3 раза наблюдаемой толщины перлитных линий с типичной 50 нм до 150 нм в точках вблизи $B - \ll 3-90$ », «9-90», которое было обусловлено их наклоном. Длина перлитных пластин в наибольшей степени изменялась во фрагменте под углом 45° в точках вблизи ударного воздействия в интервале 3.5÷10 мкм, который сужался по мере удаления от нее до-1÷6 мкм.

Подобный же характер изменений был присущ и длине перлитных пластин во фрагменте, вырезанном перпендикулярно к ударным воздействиям. Однако диапазон их изменений сократился. Проведенный энергодисперсионный анализ в области пластинчатого перлита согласовывался с классическим определением перлитных субструктур, согласно которому они по стехиометрическому соотношению представлены преимущественно цементитом – Fe₃C и ферритом. СИД воздействие на

субструктурном уровне сопровождается не только структурными изменениями, перераспределением но И элементного состава в структурных образованиях. Слезаключить, дует что при СИД многоуровневое на структурирование наиболее существенно влияют поперечные размеры образцов, обозначенные В и С.

Рис. 2 – SEM изображения упорядочения пластинчатого перлита вдоль направления удара по фрагментам из образца $100 \times 20 \times 20$ мм³ в точках: *а*, *б*, *в* –«1-45», «2-45» и «3-45»; *г*, *д*, *e* – «1-90», «2-90», «3-90»

Структурирование после СИД на макро, микро и нано уровнях в образцах, поперечные размеры (*B* и *C*) которых отличались кратно (не менее, чем в 2 раза), радикально изменилось. На всех уровнях в поперечных шлифах возникла сильно неравновесная полосовая *F-P* структура. Установлено совпадение кратности в соотношениях размеров *B* и *C* и полосовых структур. К примеру, для образца с размерами $150\times20\times10 \text{ мм}^3$ (*B*/*C* = 2) $D_P > D_F$, $S_P > S_F$ с кратностью 2, тогда как в образце $150\times10\times20 \text{ мм}^3$ (*B*/*C* = 1/2) – $D_F > D_P$, $S_F > S_P$ с той же кратностью 2. Помимо поперечных размеров было выявлено и влияние длины образцов, которое проявлялось при ее наименьшей величине *A* = 50 мм. Так в образце $50\times10\times20 \text{ мм}^3$ в размерах структур, в отличие от образцов с *A* = 150 и 100 мм, выполнялось неравенство $D_P > D_F$, $S_P > S_F$, хотя соотношение поперечных сторон составило *B*/*C* = 1/2, точно также как в образце $50\times20\times10 \text{ мм}^3$, когда *B*/*C* = 2, то $D_F > D_P$, $S_F > S_P$.

Отметим, что в этих образцах кратность структур также совпадала с кратностью поперечных размеров, но претерпела изменения по типу полосовых структур: между *F* и *P*. Характерно, что в образце $50 \times 20 \times 20$ мм³ (*B*= *C*) структурирование было равновесным, а его нарушение обнаружено только на наноуровне по SEM изображениям. Все описанные микроструктурные изменения проиллюстрированы рис. 3

Рис. 3 – Панорамные изображения изменений *F-P* микроструктуры по толщине образцов вдоль направления СИД (слева-направо)

в виде серии панорамных КМ изображений, полученных в указанных образцах на разных глубинах, то есть вдоль C, исключая только приповерхностные области с размерами в пределах 300 мкм, где структурирование неявно и не упорядочено. Типичные результаты количественного анализа ориентации пластинчатого перлита $P \perp$ к направлению СИД для образцов с разной длиной A представлены в табл. 1.

Табл. 1 Характерные количество и размеры структур вдоль СИД

Параметр	50×20×10 мм ³	100×20×10 мм ³	150×20×10 мм ³
$P \perp $ СИД,	>80	30	<3
%			
$F(\alpha$ -Fe),	100-600	350	min 40
HM			
$P(\text{Fe}_3\text{C}),$	100-300	350	min 40
HM			

В микроструктуре образцов после СИД отмечено образование зерен сфероидального цементита (от 1 до 5 мкм) и линий Chernov-Luders угол < 20° к СИД толщиной >15 мкм, аналогичных обнаруживаемым в условиях ударного нагружения образцов.

В п. 1.2.3 микроструктурирование на поверхности шлифа образца $100 \times 20 \times 10 \text{ мм}^3$ методом дифракции обратно-рассеянных электронов EBSD определены ориентация зерен вблизи *F-P* полос и их заметная однонаправленность вдоль ориентаций (101) и (001), а также равноосность зеренной структуры, что соответствует FCC структуре. Между *F-P* полосами имело место незначительная переориентация зерен вдоль (111) к ВСС структуре. Фазовый анализ данных EBSD после СИД на 100% подтвердил наличие *F-P* структур, с доминированием малоугловых межзеренных границ (от 2[°] до 15[°]) – до 63.6 %, тогда как доля большеугловых Табл. 2 – Данные XRD образцов стали 45 для эталона (>15[°]) – 35.4%. Результаты (п. 1.2.4)

Размеры	θ, град	Ι,	Τ,	FWHM,
образцов,		пр.ед	отн.ед.	β, рад
MM ³				
Эталон	44.7643(110)	999	0.77	
ст. 45	65.1641(200)	117		
	82.5283(211)	180		
0×40×10	44.790	653	0.83	0.249
	65.151	47		0.307
	82.419	79		0.307
150×20×10	43.410	26	0.86	0.404
	44.751	567		0.269
	50.589	16		0.320
	65.092	50		0.320
	82.393	88		0.323

и после СИД

рентгенофазового анализа (XRD) по эталонному образцу для стали 45, и их типичные характеристик, на приобразцов 50×40×10 мере И 150×20×10 обобщены в табл. 2. Расчет пространственной когерентности ($L = 0.9\lambda/(\beta \cos\theta)$) по всем опытным данным дал близкие значения, составившие порядка ~ 180 нм, что практически совпало с размерами субструктур пластинчатого перлита, обнаруженных по SEM изображени-ЯМ.

Наиболее сильное изменение ширины дифракционных рефлексов на уровне 0.5 FWHM отмечалось вдоль плоскости (110), как основной плоскости скольжения в решетке железа. Во всех исследованных образцах изменение решеточных параметров ($\Delta a = ((a (hkl) - a^0(hkl))/a^0(hkl)))$ на основных линиях было незначительным и лежало в пределах погрешности измерений до 0.2%. В образцах (50×40×20), (50×40×10) и (100×20×20) после СИД новые пики не наблюдались. По сравнению с эталонным образцом отмечалось некоторое возрастание $T = I(hkl)/\Sigma I_i(hkl)$, однако T < 1, что указывало на отсутствие текстурных изменений в процессе СИД.

В разд. 5 (гл. 5.1 и 5.2) все выявленные объемные нано-, микро и макроструктурные изменения («реально-временные» отклики) в образцах проанализированы с учетом как выше указанных параметров и режимов СИД, так и всех волновых возбуждений при этом: акустических: $V_{swl} = 5940$ м/с (по *C*) и $V_{swt} = 3250$ м/с (по *A* и *B*), пластинчатой $V_{wp} = 10^{-2}V_{swl} \approx 20$ ÷60 м/с и автоволны $V_{aw} \approx 10^{-4}$ ÷10⁻⁵м/с. Число ударов по длине *A* с расстоянием между ними $S = 0.3 \times 10^{-2}$ м составляет от 30 до 120. При длительности каждого 30 мкс верхняя граница временной когерентности составит $\tau_{cog} \sim 1$ мкс ($f = V_{swt,swl}/S \sim 1 \div 2 \times 10^6$ Гц). Период ударов P_{ya} по толщине $T = 2C/V_{swl} = 12$ мкс, а по ширине $T = 2B/V_{swt} = 7$ мкс, то есть был одного порядка с временной когерентностью τ_{cog} . СИД имело характер двухтактного нагружения (сжатие-растяжение). Ударные волны после СИД ($P = 10^8$ Па движутся с массовой скоростью [A4]: $V_{ml} = P/(\rho V_{swl}) \sim 500$ м/с и $V_{mt} = P/(\rho V_{swt}) \sim 300$ м/с, которые за время удара распространяются на $S_1 = 5$ мм и $S_t = 3$ мм, что объясняет отсутствие полосового структурирования на микроуровне при одиночном ударе. Высокое затухание P_{ya} компенсировалось частотой (23 Гц). Время уменьшения давления при СИД (от $P_N(0) = 20$ ГПа) до предела упругости для сталей (модуль Jung E = 2 ГПа) для V_{swl} и V_{swt} скоростей составляло $t_1 = \ln(P_N(0)/E)/(V_{swl}\delta_1) \sim 20$ мкс и $t_t = \ln(P_N(0)/E)/(V_{swt}\delta_t) \sim 120$ мкс (при характерных затуханиях для стали $\delta_1 \sim 2 \times 10^{-3}$ дБ/мм и $\delta_t \sim 6 \times 10^{-3}$ дБ/мм), то есть оказывались выполненными условия для возбуждения как бегущих, так и

Рис. 4 – Схематичное изображение волн разгрузки вперед (в виде овалов) при СИД по толщине (*C*) образцов стали 45 в форме параллелепипеда (частота 23 Гц): овальные линии 1, 2, 3, 4 соответствуют волновым фронтам, области интерференции: 5 – от одного удара, 6 – от двух соседних, наложение волн разгрузки вперед и назад, а также ударной деформации, 7 – межударное расстояние, 8 – области без воздействия

стоячих волн сопоставимых с поперечразмерам образцов ными $(2\lambda_{stwl} = V_{swl}/f \sim 40$ мм и $2\lambda_{stwt} = V_{swt}/f 20$ мм). В процессе многократной СИД в образце возбуждались волны разгрузки интенсивностью вперед – $I_{\sigma f}$ и назад – $I_{\sigma b}$, как это схематично представлено на фрагменте поверхности образца вдоль толщины образца (С) для трех ударов (рис 4). В местах их суперпозиции как от каждого отдельного удара (з. 5), так и от двух соседних ударов (з. 6) будет происходить сжатие образца. Деформационное напряжение при СИД на свободной поверхности σ_{fs} не превышало откольную прочность (отколы в опытах отсутствовали) – σ^* исследуемой стали 45,

равной пределу прочности при сжатии $\sigma_B = 600 \text{ МПа}$, то есть $\sigma_{fs} < \sigma^*$, тем не менее структуры, характерные для СИД возникали в з. 7 (рис. 2 и 3).

Выполнение в условиях СИД пространственной и временной когерентности, в соответствии с принципом суперпозиции интенсивностей позволяет записать формулу для интерференции волн I_{of} и I_{ob} , число которых определяется длиной (разм. *A*) и совпадает с числом ударов по образцу – *N* (рис. 4): $I = \sum_{i=1}^{N} N[(I_{\text{of}} + I_{\text{ob}})_i + 2(I_{\text{of}} \times I_{\text{ob}})_i \cos \Delta \varphi_i].$

Максимумы интерференции возникают, когда $\Delta \phi_i = 0$ и вызовут модуляцию dU/dt, что приведет как к трансляционным дислокациям и формированию полосовой *F* и *P* структуры, так и $d\omega_i/dt$ – дислокациям кручения–изгиба внутри *P* структур. При $\Delta \phi_i = \pi$ результирующая интенсивность становится минимальной, то есть интерференция отсутствует, микроструктура сохраняет равновесность $D_P = D_F$, $S_P = S_F$. В этой связи трехмерные записи «реально-временных» откликов на СИД на нано-, микро- и макро- структурном уровнях в зависимости от размеров ($A \times B \times C$)

служат основой опытного обоснования интерференционного механизма ударноволнового деформационного 3D структурирования.

В разд. 2 («Магнетронные нанопленки») в обзорной части (гл. 2.1) представлен аналитический обзор возможностей и перспектив использования элионных методов формирования нанопленочных слоев (MF). Магнетронное распыление (MS) основано на последовательности стадий: перевод конденсированной мишени в газовую фазу, упорядоченное движение нейтральных и частично ионизированных атомов мишени в направлении «мишень – подложка», конденсация на подложке, рост островков на адатомах, играющих роль центров зародышеобразования, коалесценция таких островков и собственно рост нанопленки по одному из трех известных механизмов: островковому – Volmer-Weber, послойному – Frank van der Merwe и смешанному – Stransky-Krastanov. Адсорбция, десорбция и диффузия (применительно к ада-«зародышеобразование-> томам) реализуются В виде сценария островки-жоалесценция островков-жаналообразование-сплошная пленка». Реальновременной анализ MP [5] и просвечивающей электронной микроскопии (TEM) высокого разрешения (HR) установил, что кластерообразование начинается с магнетронной плазмы и до роста каждой образующей MF колонны [6].

Как показано в гл. 2.2 процесса всестороннего комплексного анализа, было исследовано структурирование, в нанопленках в зависимости от режимов магнетронного распыления (мишени 0.9999 из Al, Cr, Ni, Cu, Hf) и в процессе деградации пленочных структур после отжига на воздухе. МF наносились на установке MBУ TM – «Магна Т» (постоянное напряжение U = -650 В, $B = 0.03 \div 0.1$ Тл, Ar $P_{\rm G} = 0.5$ Па, $T_{\rm s}$ = 323 K) на подложки из монокристаллического кремния КДБ-10 (111). Управляющими параметрами были выделены только мощность и время MS: P_{MS} и t_{MD}. Были установлены зависимости получаемых характеристик структуры MF от P_{MS} и/или t_{MD} одна из них сохранялась постоянной, тогда как вторая варьировалась в значительных пределах: по $P_{\rm MS}$ диапазон изменений лежал от 70 до 800 Вт, а по $t_{\rm MD}$ – 20 ÷360 с. Таким образом, для каждой МF были установлены зависимости от времени и мощности толщины (средней и среднеквадратичной) – $h_{\rm MF}(P_{\rm MS}, t_{\rm MD})$ и шероховатостей $R_a(P_{MS}, t_{MD}), R_q(P_{MS}, t_{MD})$. Достоверность комплексной характеризации структурирования MF обеспечена контролем их толщины и скорости роста, определяемыми по уступу, создаваемому ионным травлением или распылением через фотошаблон с последующим измерением на голографическом цифровом микроскопе (разрешение 30 пм), по оригинальной расчетной методике по зависимости отношений интенсивностей микрорентгеноспектральных рефлексов (по данным EDX).

По результатам атомно-силового микроскопического (AFM) анализа морфологии поверхности MF (разрешение 30 пм) для каждого из металлов по множеству значений средней R_a и среднеквадратичной шероховатостей R_q был предложен критерий качества $R_a = \min\{R_{ai}\}$ и/или $R_q = \min\{R_{qi}\}$, определены мощность (P_{MS}) и время распыления (t_{MD}). По XRD анализу всех полученных металлических MF на основании формулы Debye-Scherrer: $L = 0.9\lambda/(\beta cos \theta)$ получены области когерентности L для каждой MF, которые согласовывались с минимальными шероховатостями, что обосновало физическую сущность этого критерия. Установлены параметры P_{MS} и t_{MD} магнетронное нанесение (MD), при которых формируется наиболее качественные поверхности MF с минимальными R_a и/или R_q .

Был проведен анализ структурных деградационных изменений в MF из Cr, Ni, Си и Hf при температуре отжига на воздухе – T_{an} , превышающей температуру Дебая – $T_{\rm D}$, но ниже температуры плавления – $T_{\rm m}$: $T_{\rm D} < T_{\rm an} < T_{\rm m}$. Изменения структуры и фазового состава MF возникали в процессе in situ наревания с шагом 100 К вплоть до 1273 К в ячейке (PAAR HTK-16), встроенной в дифрактометр XRD. Был проведен комплексный анализ при каждом шаге с использованием методов AFM, XRD, комбинационного (рамановского) рассеивания света RS, рентгеновской фотоэлектронной спектроскопии (XPS), спектральной эллипсометрии (ES). Наблюдаемые микро- и наноструктурные изменения продемонстрированы на примере MF из Hf с ее нагревом до 973 К. Отметим, что металлический гафний имеет высокую температуру плавления – 2233 К, характеризуется поливалентностью – 0, 2, 3, 4 и полиморфизмом, обладая сингониями: моноклинной – ниже 1923°К, тетрагональной – от 1923 К до 2773 К и кубической – выше 2773 К. В каждом АFM изображении поверхностей MF представлены при постоянном t_{MD} , но при разных T_{an} . Из сравнения распределений N(d) на вставках к рис. 5, z - e наилучшее выполнение $R_a = \min\{R_{ai}\}$ достигалось при комнатной температуре – нормальное распределение по латеральным размерам с указанием интервала изменений по уровню 0.5 N(d) – $d \pm \Delta d \sim 60$ нм: $N(d) = 1/(2\pi\sigma^2)^{1/2} \exp(-(d - d_{av})^2/(2\sigma^2))$. Здесь $d_{av} = \Sigma d_i/N$ - среднее значение размера, $\sigma = (\Sigma (d_{av} - d_i)^2 / N(N-1))^{1/2}$ – среднеквадратичное отклонение от d_{av} размера наночастицы. При этой температуре MF была высоко сплошной и без трещин.

 $T_{\rm an} = 973 \ {\rm K}$ При поверхность полностью окислена и представлена только HfO₂ (по данным XRD) с несколькими размерами ше-Значения роховатости. Lоказались близкими к R_a , найденным по профилю для каждой MF (рис. 5, a - e) составило порядка 10 нм. Минимальный размер R_a сопоставим с *L* для HfO₂. Два других размера за счет агрегирования – до 50 нм и агломерирования – до 500 нм формируются из первичных наночастиц с размерами порядка 7 нм за счет самоорганизации. Дифрактограммы MF из Hf к в исходном состоянии (298 К) и после отжига представлены на рис. 6 (при 573 и 973 К).

Рис. 5 – АFM изображения MF из Hf: 3D (1×1 мкм) a, b, e с гранулометрическими распределениями и профилями поверхностей c, d, e при температурах: a, c – 398, b, d – 773, e, e – 973 K

Рефлексы (002) и (111) до 373 К, имели поликристаллическую структуру. При $T_{\rm an} > 373$ К отмечен структурный переход к кристаллическому состоянию, а свыше

773 К и до $T_{an} = 973$, возникал рефлекс от плоскости ($\bar{1}11$), моноклинной структуры HfO₂: Hf + O₂ \rightarrow HfO₂. Рефлексы от плоскостей – (002) и (111) отвечали гексагональной структуре HfO₂. Линия *I*(111) при температуре свыше 873 К исчезала, т.е. происходил структурный фазовый переход I-ого рода в поверхностном слое MF. Эти же выводы при отжиге MF из Hf подтверждены изменениями в спектре RS (с разрешением пространственным до 250 нм и спектральным до 0.8 см⁻¹) на линиях характерных HfO₂ – 140, 368 и 468 см⁻¹.

Рис. 6 – Изменения кристаллической структуры MF из Hf от температуры отжига на воздухе: a – при 298, 573 и 973 K; δ – интенсивности рефлексов Hf и HfO₂, e – интенсивности линий HfO₂ в спектре RS

Определенные на основании закона Wulff–Bragg ($2d\sin\theta = n\lambda$) знак и величина относительных изменений ($\Delta a > 0$) отвечали растяжению в элементарных ячейках только при $T_{an} = 973$ K, тогда как обычно возникало сжатие – $\Delta a < 0$. Изменения расчетных микро деформаций ($\varepsilon = \beta/(4tg\theta)$) в MF из Hf согласовывались со структурными перестройками при нагревании на воздухе MF из Hf (рис. 5) их расчетные значения ε и *L*, Δa и *D* – фрактальная размерность, приведены в табл. 3.

Гаол. $3 - Pасчетные значения L,$	ε, <i>D</i> и	Δa для нанопленок из НІ

Значе-	Изменения температуры, К							
ния	298	373	473	573	673	773	873	973(111)
<i>L</i> , нм	10	11	17	17	16	15	15	11
$\epsilon (10^{-3})$	1.1	1	0.7	0.6	0.7	1.9	1.7	0.8
D	2.1	2	2.3	2.3	2.3	2.1	2	2
$\Delta a, \%$	0.14	0.139	0.137	0.139	0.138	0.142	0.143	2.812
Примечание $\Lambda a > 0$ только при $T_{ap} = 973$ К, а при всех других								

 $\Delta a < 0.$

Анализ структурных изменений $R_{\rm a}$, L, сопровождающих отжиг MF из Hf также указывал на фазовый переход при $T_{\rm an} = 773$ К, так как слева dR_a/dT_{an} OT нее >0, $dL/dT_{an} > 0$, а справа $dR_a/dT_{an} < 0, dL/dT_{an} < 0.$

По аналогичному сценарию были изучены все остальные MF из Al, Cr, Ni, Cu.

В разд. 5 (гл. 5.2) с учетом кластеризации характерной на всех этапах MD нанопленок и неотъемлемости на этом уровне процессов самосборки и самоорганизации проведен анализ механизмов их структурирования при распылении всех изученных металлов. Были оценены размеры кластеров в магнетронной плазме по радиусам Wigner-Seitz $r_w = (3m_A/4\pi\rho)^{1/2}$ и относительные константы скорости адсорбции атома металла к кластеру $k_0 = \pi r_w 2(8T_s/m_A)^{1/2}$, что использовано для оценки размеров кластеров в MF $d_{\kappa n} = 0.31(k_0 V_{\text{моль}}/(KV_{\text{кам}}N_A))^{3/4}$, где $K = 3 \times 10^{-33}$ см⁶/с – константа скорости роста кластеров, $V_{\text{кам}} = 8 \, \pi$ – объем магнетронной камеры. Представленные в таблице расчетные размеров кластеров $d_{\kappa n}$ были одного порядка с измеренными с помощью AFM с пространственным разрешением ~ 30 пм.

Табл. 3 – Расчетные радиусы Wigner- Диффузия атомов существенна только в магне-Seitz – *r*_w, постоянные скоростей ад-

сорбции атомов к кластерам – k_0 , расчетные размеры кластеров – $d_{cp.}$ и измеренные размеры наночастии

mente provide provide mente						
Металл	$r_{\rm w}$,	$k_0 \times 10^-$	$d_{\rm cp.}$,	$d \pm \Delta d$,		
	A°	¹¹ ,см ³ /с	HM	HM		
Al	1.33	51	1.5	71±15		
Cr	1.17	30	1	89±15		
Ni	1.15	28	0.9	106±19		
Cu	1.18	28	0.9	109±24		
Hf	1.42	24	0.8	60±18		

тронной плазме. Энергия активации диффузии: $E_{\rm d} \sim 18 RT_{\rm m}$, а так как температура подложки в наших условиях постоянна ($T_{\rm s} = 323$ K), то по формуле Boltzmann-Arrhenius: $D_{\rm a} = D_0 \exp(-E_{\rm d}/RT_{\rm s})$ для Al $D_{\rm a} = 8.7 \times 10^{-17}$ см²/с, что согласуется с опытными данными. Аналогично коэффициенты диффузии Cu $D_{\rm a} - 4.7$, Ni–1.3, Cr–0.87, Hf–30×10⁻¹⁷ см²/с, т. е. диффузия осажденных атомов $D_{\rm a}$ по поверхности незначительна.

По формуле Томпсона $T_{\rm m}(r) = T_{\rm m}(1 - (rL/V\sigma) (r - радиус частицы, V - удельный объ$ $ем, L - удельная теплота плавления, <math>\sigma$ - поверхностное натяжение) для размеров осаждаемых кластеров $T_{\rm m}$ снижается. В таких условиях происходит гетерогенное плавление, рост адгезии и формирование кластеров с разными размерами, что подтверждено данными по AFM для нанопленок из меди, где были 26, 30, ~ 40 и ≥ 160 нм (рис. 5). Анализ показал, что с ростом $t_{\rm MD}$ размеры кластеров линейно увеличивались. Расчетное число атомов металла из наблюдаемых кластеров (с учетом атомарных объемах для Al и Cu – 1.2 и 1.7×10^{-11} нм³) составило для $n_{\rm AL} \sim 1.2 \times 10^8$ и $n_{\rm Cu} \sim 6 \times 10^8$. С учетом этого оценка скорости адсорбции атомов $k = k_0 n^{2/3}$ для $k_{\rm Al} \sim 11.28$ и $k_{\rm Cu} \sim 17.04 \times 10^{-6}$, с различием $k_{\rm Al}/k_{\rm Cu} \sim 66\%$, что согласуется с опытными данными и свидетельствует в пользу действия аддитивного вклада, как баллистической жидкоподобной коалесценции (начало), так и кинетической агрегации (при увеличенном $t_{\rm MD}$) малых и больших кластеров соответственно.

По методу Hausdorf-Bezikovic применительно к структурированию MF, как самоорганизованных структур, были определены фрактальные размерности. Объектом

Рис. 7 – Последовательное разбиение АFM изображения MF на фрагменты для определения фрактальной размерности

самоподобия выступал кластер с минимальными размерами $d_{\rm G}$ до десятков нм. Характерным размером служила площадь в виде квадрата: $L_{cl} = Nd_{Gr}$ при $N \rightarrow \infty$. Строились линейные зависимости между $\ln N$ и $\ln(L_{cl}/d_{Gr})$ в виде приближения: $N \sim (L_{\rm cl}/d_{\rm Gr})^{\rm D}$. Поверхности AFM изображений MF разбивались на площади с кратно увеличивающейся величиной $D = \ln N / \ln (L_{cl}/d_{Gr})$ (рис. 7). Определенные таким образом D для всех мишеней и режимов распыления лежали в пределах 3 > D > 2, т.е. МF были трехмерными и при одинаковых режимах значения D и величина шероховатости – R_a коррелировались коэффициентом линейно с ~ 0.988.

Это подтверждено также выполненными *ab-initio* расчетами структурирования пленок из алюминия на подложке из SiO₂, позволившими получить данные по адгезии и энергетической выгодности их формирования, в частности, за счет гетероэпитаксиального роста.

В разд. 3 (гл. 3.1) в аналитическом обзоре представлены особенности структуры и свойства углеродных одно- и многостенных нанотрубок (CNT), их полимор-

физм и практическое применение [7]. Проанализированы особенности структурирования СNT при электрических воздействиях. Подчеркнуто возникновение преимущественно соосной ориентации вдоль направления электрического поля, что обусловлено собственным дипольным моментом CNT: $P = \alpha_{\parallel} E_0 \cos \varphi$ и возникновением крутящего момента: $M = EP = \frac{1}{2} E_0^2 (\alpha_{\parallel} - \alpha_{\perp}) \sin 2\varphi$ ($\alpha_{\parallel} u \alpha_{\perp} - продольная и поперечная поляризуемости CNT$), сопровождаемого изгибом, несмотря на большой модуль Jung – $E = \sim 1$ TПа (SWCNT) и ~ 0.3÷1 ТПа (MWCNT). В таких условиях возбуждаются колебания с энергией $E_{el} >> (k_BT)/2$.

Как показано в гл. 3.2 для предотвращения агрегирования и агломерации наноразмерных объектов в виде CNT они функционализируются. Изучены многостенные углеродные трубки (MWCNT), синтезированные методом каталитического пиролиза (CCVD) в РЦН ЮЗГУ на установке CVDomna MWCNT I и «Nanocyl S.A.» (Бельгия) – МУНТ II, а также ОУНТ TUBALLTM (OCSiAl). Функционализация (*f*) CNT была двух типов либо ^{NH4OH+H2O2+MWCNT->-MWCNT-CO-C-} – I, либо HNO3+H2SO4 + CNT \rightarrow CNT – COOH – II. Характеризация *f*-CNT выполнялась методами колебательной спектроскопии ИК-Фурье (FTIR), RS и XRD (п. 3.2.2). В спектре RS для *f*-MWCNT – I имелись линии $D - A_{1g}$ (1337 см⁻¹) и $G - E_{2g}$ (1572 см⁻¹) с интенсивностью $I_D = 260$ и $I_G = 235$ о.е., характерные именно *f*-MWCNT. С помощью оценочного критерия $K_{CNT} = I_D/I_G$ выявлены наиболее качественные (с минимальной дефектностью) CNT, определена их гомогенность $L_{rom} = 4.4(I_G/I_D)$. Наилучшие K_{CNT} и L_{rom} для обоих типов *f*-MWCNT I и *f*-MWCNT II (табл. 4) соответствовали *f*-MWCNT I.

Табл. 4 – Влияние функционализации на изменения гомогенности и дефектности *f*-MWCNT II по данным RS

Образец <i>f</i> -CNT	K _{CNT}	$L_{\text{TOM.}}, \text{HM}$
<i>f</i> -MWCNT I- HNO ₃ +H ₂ SO ₄	1.11	3.98
<i>f</i> -MWCNT II -исх.	1.23	3.58
<i>f</i> -MWCNT II-	1.28	3.43
<i>f</i> -MWCNT II -HCl	1.21	3.64
<i>f</i> -MWCNT II- NO ₃ +H ₂ SO ₄	1.42	3.10

Особенности изменения гомогенности образцов $L_{\text{гом}}$ хорошо согласовывались с расчетными размерами областей когерентности по данным XRD, согласно которым $L_{\text{ког}} = 0.9\lambda/(\beta \cos\theta)$ изменялась от 3 нм – для *f*-MWCNT и до 27 нм – *f*-SWCNT. В спектре RS *f*-SWCNT появляются возбуждения в низкочастотной области на радиальных дыхательных модах – RBM, по которым из эмпирического соотношения: $d_i = 227 \text{ см}^{-1} \times \text{нм}/\omega_{iRBM}$

оценены диаметры SWCNT *d*_i, как в исходном состоянии, так и после функционализации, оказавшиеся близкими: 1.5 и 1.3 нм.

В гл. 3.3 с помощью СМ, AFM SEM исследовано структурирование в испаряющейся капле (с диаметром ~1.5 мм, высотой ~0.5 мм, время испарения 3-5 мин) коллоидной системы (КС) из *f*-MWCNT и *f*-SWCNT в условиях диффузионноограниченного агрегирования (DLA). В работе капля с КС, содержащая *f*-CNT, рассматривается, как своеобразный нанореактор, в котором в процессе испарения капли (СПИК) структурирование имеет выраженную центрально-осевую симметрию с пиннинговым кольцом, областями стагнации и центральной, как это проиллюстрировано рис. 8, *a*. Наличие градиента температур между верхней и нижней частями капли вызывает термофорез микро- и наночастиц сверху вниз внутри, центрально-осевые противоположно направленные компенсационные Rayleigh-Benard и поверх-

ностные капиллярные Marangoni потоки [8] в соответствии с критерием Marangoni $M_g = \frac{2R\Delta T (\alpha_{CNT} + \alpha_L)}{\eta_{CNT} + \eta_L} \times \frac{d(\sigma_{CNT} + \sigma_L)}{dT} \leq 1$, где α_{CNT} , η_{CNT} , σ_{CNT} и α_L , η_L , σ_L – известные коэффициенты теплопроводности, вязкости и поверхностного натяжения CNT и жидкостей, используемых в растворе КС как *f*-MWCNT, так и *f*-SWCNT. На структурирование в условиях СПИК существенно влияет жидкофазная составляющая КС, концентрации *f*-SWCNT – C_{KC} и время ультразвукового диспергирования (УЗД) – $t_{УЗД}$. Так, из КС с *f*-MWCNT на основе смеси кислот (H₂SO₄+HNO₃) формировались гигантские «бензольные кольца» (БК) (рис. 8, δ), структуры линейно-кусочные (СЛ) и структуры фрактальные (СФ) (рис. 8, c).

Рис. 8 – К анализу процессов СПИК с учетом выводов [8], проиллюстрированных фрагментами СМ изображений микроструктур в соответствующих областях; СПИК из КС (смесь – 1:1) $H_2SO_4 + HNO_3 - f$ -MWCNT: δ – SEM изображение гигантского «бензольного кольца» после $t_{Y3Д} < 10$ мин при $C_{KC} < 4\%$; e – CM изображение взаимно-перпендикулярных СЛ после УЗД в течение $t_{Y3Д} \ge 40$ мин с $C_{KC} \ge 4\%$

Установлена линейная зависимость размера БК от времени *t*узд и гиперболические зависимости – для размеров СФ от $t_{y_{3\Pi}}$, а для СЛ только в зависимости от концентрации Скс. Обнаружено, что длина СЛ удваивалась (3, 6, 12, 24, 48 мкм) на макроуровне. На наноуровне объектом самоподобия выступал цилиндр с минимальным диаметром *f*-MWCNT – 20 нм, и такой же длиной l = d. Длина СЛ образовывала ряд *l*, 2*l*, ..., *nl*. На СМ и АFM изображениях такие СЛ ориентировались практически взаимно перпендикулярно (рис. 8, в). Химическая структура СЛ, СК и СФ по данным RS полностью соответствовала f-MWCNT (рис. 9), что подтверждено как возбуждением в спектре характерных линий D и G, так и коэффициентами: $K_{CNT} = I_D/I_G$, которые составили для *f*-MWCNT: 1.11 – 1.42, тогда как для *f*-SWCNT – 0.08 – 0.1. Наблюдаемое структурирование в свободном состоянии может быть обусловлено взаимодействиями за счет энергий испарения и поверхностного натяжения и происходит под действием силы Van der Waals. Проведены оценочные расчеты границ энергий необходимых для структурирования в виде СЛ [9] с учетом постоянной Hamaker A_H, взятой равной взаимодействию *f*-MWCNT с поверхностью. Для роста СЛ в длину: $E_{\parallel} \sim -A_{\rm H} L_{\rm CJ} \sqrt{d/(24\sqrt{H^3})}$ при $H \ge H_{\rm c} = 3.4$ Å требуется от $E_{\parallel \rm max} \sim 9.3$ эВ до $E_{\parallel \min} \sim 0.003 \ \Im B.$

Рис. 9 – Спектры RS в области линий D и G, их второй гармоники от структур типа CЛ - 1, CK - 2, $C\Phi - 3$, образуемых в KC из *f*-MWCNT на основе водного раствора кремнезема. На вставке представлены изменения в области RBM

Это оказалось существенно выше, чем роста по толщине: $E_{\perp} \sim$ для ИХ $A_{\rm H} d/(12H)$ H < d. при когда $E_{\perp \max} = E_{\perp \min} \sim 0.16 \text{ } \Im \text{B}.$ Здесь Hрасстояние между *f*-MWCNT, а H_c – толщина углеродного слоя. Это объясняет взаимно-перпендикулярную ориентацию *f*-MWCNT в свободном состоянии (рис. 8, в) и подтверждено относительным изменением отношения интенсивностей $I || / I_{\perp}$ в спектре RS (от одной и той же точки на СЛ), возбуждаемых излучением со взаимно-перпендикулярной поляризацией. $I \parallel / I_{\perp}$ составило на *G*-линии

-60 %, на *D*-линии°-70 %, а в области RBM на линии 227 см⁻¹ оно возросло в 8 раз и лишь на линии 269 см⁻¹ $I|| = I_{\perp}$.

Табл. 5 – Частоты $\omega_{\Pi P}$ и $E_{\rm g}$ КС кремнезем + f-MWCNT от $C_{\rm KC}$ SiO₂

Название КС и С _{КС} ,мг/мл	ω _{ПР} , нм	<i>E</i> g, эВ
$SiO_2 + f$ -MWCNT, 1.08	205, 260	5.2, 6.6
$SiO_2 + f$ -MWCNT, 0.19	259	5.7
$SiO_2 + f$ -MWCNT, 0.12	260	5.6

По колебаниям в области RBM в спектре *f*-MWCNT после интенсивного УЗД на характерных для SWCNT частотах плазмонных резонансов – $\omega_{\Pi P}$ были определены $E_{\rm g}$, значения которых соответствовали полупроводниковой проводимости (табл. 5) и составили ~ 3.8 эВ.

В п. 3.3.1.3 представлены результаты структурирования на микро- и наноразмерном уровне в СПИК в капле КС с f-MWCNT обоих типов и f- SWCNT в электрическом поле (от 10 до 50 В) между медными электродами (1.5 мм). Наблюдалось резкое отличие структурирования в свободном состоянии между электродами и в постоянном электрическом поле, когда отмечался рост микро- и наноструктур из f-MWCNT строго ориентированный от « - « к «+». На видео фрейме СМ изображения в процессе структурирования в поле с напряжением U = 21 В (общее время – 180 с) на 13-ой секунде, формировались СЛ из f-MWCNT во всем межэлектродном промежутке (рис. 10, *a*). По SEM-изображению (×40000) СЛ имеет типичную дендритную структуру. По данным видеозаписей первыми возникали СЛ и лишь через 60 – 90 с начиналось формирование СФ. Как СЛ, так и СФ вначале зарождались у катода, тогда как СК вблизи анода. При минимальной концентрации КС (0.2 мг/мл), начиная с U = 35 В, возникал ток, величина которого на 90 с достигала 5.5 мА. Затем он плавно уменьшался почти до нуля по мере высыхания капли. Визуализация СЛ и СФ показала, что их длина резко возрастала при снижении C_{KC} f-MWCNT в KC, принимая следующий ряд значений: 0.31-6, 0.24-9, 0.2 мг/мл-16 мкм. По AFM и SEM изображениям размер частиц в составе СК и СФ стремился к min ~ 20 нм, то есть к диаметру f-MWCNT. Установлено, что с ростом U длина C $\Phi - d_{C\Phi}$ сокращалась по гиперболической зависимости – $d_{C\Phi} \sim f(1/U)$ (рис. 10, *в*) вплоть до их диаметра – 20 нм, а величина скорости формирования СФ изменялась скачкообразно в зависимости от времени (рис. 10, г).

Рис. 10 – Структурирование *f*-МWCNT: *a* – СМ и *б* – SEM изображения СЛ в СПИК при U = 21 В; *в* – рост длины СФ от *U* и *г* – дискретность скорости роста СФ Отмечено, что скорость роста СЛ была на 2 – 3 порядка выше, достигая $V_{CЛ} \ge 1500$ мкм/с.

Рис. 11 – Спектры RS в отмеченных точках на СЛ, СК и СФ в СПИК КС из *f*-MWCNT. Вынесены: A - 2D и D + G на частотах свыше 2200 см⁻¹; Б – в области RBM, В – в области основных линий D и G

В спектре RS линии D, G, 2D (2D линия двухфотонного неупругого рассеяния на вставке А) отвечали СМТ. Линия I_G для СЛ и СФ имела наибольшую интенсивность (вставка С на рис. 11) и включала сателлиты $G_1(G^+) - 1584$ и 1588 ст⁻¹ и $G_2(D') - 1620$ и 1606 ст⁻¹, а также $G^- - (1526 \text{ cm}^{-1})$. Линии G^- и G^+ ответственны за продольные колебания атомов во внешней оболочке относительно оси f-MWCNT и указывают на различие в типах проводимости [10]. Линия G^{-} характерна лля СЛ – металлическая проводимость. Линия G⁺ возбуждалась, как в СЛ, так и СК. Одновременное возбуждение всех тангенциальных колебаний G^{-} , $G_1(G^{+})$ $G_2(D')$ в спектре RS ранее не наблюдалось. Как правило, колебания RBM отсутствуют в

f-MWCNT, их возбуждение, очевидно, обусловлено интенсивным УЗД, при котором возникает структурный переход Все данные, полученные из анализа RS *f*-MWCNT представлены в табл. 6 с расчетами гомогенности, которая оказалась сопоставимой с областью когерентности – $L_{\text{ког}}$ у *f*-MWCNT (Debye- Scherrer для (002) – 2 θ = 25.92 Табл. 6 – Уровень дефектности, гомогенности, частоты на лифрактограмме, составив

RBM и диаметры, возникших при УЗД SWCNT в электрическом поле

Тип	RBM, cm^{-1}	<i>d</i> , нм	K _{MWCNT}	$I_{\rm 2D}/I_{\rm G}$	$L_{\rm gom}$, нм
структуры					
СЛ	280	0.9	1.2	2.5	3.7
СФ	—	_	1.3	1.2	3.4
СК	193,235,272	1.2, 1, 0.8	1.4	1.5	3.1

на дифрактограмме, составив ~ 3.5 нм. Аналогичным образом было изучено структурирование *f*-SWCNT в условиях DLA в электрическом поле. В СПИК из КС с *f*-SWCNT при

структурировании в электрическом поле также возникали СЛ, СФ и СК, а их эволюция была полностью идентичной со СПИК из КС *f*-MWCNT. Длина СЛ варьировалась от 100 мкм и вплоть до наибольшего значения, совпадающего с расстоянием

Рис. 12 – Структурирование *f*-SWCNT: a – СМ СЛ, СК, СФ, δ – АFM одной СЛ

между электродами (1500 мкм), а их толщина достигла 1 ÷4 мкм. По AFM изображению СЛ представляли собой жгуты из *f*-SWCNT, объединенных в CK с размерами вплоть до толщины СЛ. Изменения тока – i(t) между электродами на 8 мин скачкообразно достигал максимума – 30 мА, а затем падал до нуля.

Скачки тока достигали 2 мА и по времени согласовывались с, ранее наблюдаемым на видеозаписях, ростом длины отдельных элементов СЛ в СПИК в КС из *f*-MWCNT. Полученные результаты были положены в основу электрохимического метода синтеза нанотрубчатых оксидов переходных металлов, в котором углеродные нанотрубки (*f*-MWCNT и *f*-SWCNT) служили идеальным каркасным материалом. Нанотрубчатые CuO/*f*-MWCNT отделялись от углеродного каркаса в процессе отжига при $T_{an} = 723$ K, что подтверждено данными XRD, RS и термогравитометрического анализа (TGA).

В разд. 5 (гл. 5.3) рассмотрены физические процессы, протекающие при испарении капли КС с в DLA, их структурирование с позиций самосборки и самоорганизации в постоянном электрическом поле, описан модельный эксперимент с и КС из SiO₂ и CNT. Источниками энергии для структурирования в СПИК КС из *f*-MWCNT и f-SWCNT, находящейся в условиях DLA, являлись либо только тепловая энергия (испарение в свободном состоянии), либо энергия электрического поля. При испарении капли число Рэлея $Mg = D_{dr}\Delta T(\alpha \eta)^{-1} d\sigma/dT << 1$ оказывается очень малым. Так как между границами «жидкость-воздух» и «жидкость-твердое тело» ΔT достигает только 0.1°C, то к КС применимо уравнение Fuchs, определяющее скорость роста $\partial n_{\rm CNT}/\partial t = -8\pi R_{\rm CNT} D n^2 \exp(-E_{\rm ag}/kT),$ испарении: агломератов при гле n – концентрация не агломерированных частиц, *E*_{ag} – высота энергетического барьера агломерации, убывающая с уменьшением высоты капли – h, R – их радиус, D – коэффициент диффузии, который ~ 1/R. Число агломерированных n_{CNT} будет убывать, а из возникающих СК последовательно формируются СФ, а затем СЛ. Как показал обобщающий анализ процессов структурирования (по видеоизображениям) поляризованных в электрическом поле f-MWCNT и f-SWCNT (с размерами до 20 нм по данным SEM) под действием крутящего момента в соответствии с принятой терминологией формируются «агрегаты» – СК (до 300 нм), «жесткие» агломераты – СФ (до нескольких мкм) и «мягкие» агломераты – СЛ (до десятков мкм). Обнаружено (вставка на рис. 13, а), что из СК, вдоль поля формировались устойчивые структуры с размерами – 450 нм, как правило, из трех кластеров «триады», показанные схематично на рис. 13, а. Заряд f-MWCNT и f-SWCNT определяется COOH⁻ и равномерно распределяется вокруг CNT по всей длине – l_{CNT}. На этот заряд (при диаметре d_{CNT} , равный $q \sim 120 e l_{\text{CNT}} d_{\text{CNT}}$) в поле *E* действует сила $F_q = qE$. Электрофоретическая сила ($F_{\supseteq \Phi C} = 2\pi \epsilon_1 R^3 \nabla E^2$) при E – const либо вообще отсутствует, либо

возможна только за счет изменения поля между электродами E = U/Z ($Z = Nd_{CNT}$, N - число CNT).

ять также проводимость CNT, что подтверждено их хиральностью по данным КРС (рис. 9 и 11), которая была смешанного типа (*n*, *m*), которая для *в* СЛ – (8, 4), лля CK - (9, 3),(11, 7) и (12, 1)). С учетом тогο, что $F_{q} = \int (1/2)\varepsilon_{0}\varepsilon\pi dE^{2} dl = (1/2)\varepsilon_{0}\varepsilon E$ *t*. с ${}^{2}\pi dl$ зависит и от $d_{\rm CNT}$, и от $l_{\rm CNT}$ ⁴⁰ V_{СФ.СЛ} может быть аппроксимирована как длина СФ и СЛ в виде гиперболической зависимости от напряжения $L_{C\Phi,CJ}$ =

Отметим, что на F_q будет вли-

Рис. 13 – Формирования в E – const: a – устойчивые образования в виде триад, δ и e – уменьшение

 $f(E) \sim 1/E$ (рис. 13, б), так и скорость их роста от времени $V_{C\Phi,C\Pi} \sim f(t^2)$ (рис. 13, в). Перераспределениями концентрации КС – C_{KC} с прямо противоположными знаками. С одной стороны, ростом C_{KC} по мере уменьшения высоты капли – $(dC_{KC}/dt)_h > 0$, с другой стороны, снижением C_{KC} из-за расхода СNT из КС на формирование СК, СФ и СЛ – $(dC_{KC}/dt)_C < 0$. Именно этим обусловлены опытно наблюдаемые скачки скорости (рис. 10, г). Очевидно, при равенстве $dC_{KC}/dt)_h = (dC_{KC}/dt)_C$ скорость не будет изменяться V(U) – const, в то же время при нарушении этого равенства – $(dC_{KC}/dt)_C \neq (dC_{KC}/dt)_h V(U)$ возрастает скачкообразно, что аналогично действию флуктуационного механизма.

Разд. 4, посвящен исследованию процессов структурирования магнитных жидкостей (FL) на основе магнитных частиц (MNPs) магнетита Fe₃O₄ в постоянных электрических полях. В гл. 4.1 представлены результаты аналитического обзора физикохимических свойств феррофлюидов, способов их синтеза, стабилизации и областей применения. Проведена комплексная характеризация образцов FL на основе MNPs из Fe₃O₄, синтезированных в ИГЭУ (г. Иваново) и APG936 (Japan), методами FTIR, RS и XRD. По данным FTIR определен тип наиболее устойчивой связи стабилизирующей оболочки из олеиновой кислоты (OA) с молекулами Fe₃O₄ в MNPs: Fe-O≤C-...CH₃. Анализ XRD обоих образцов выявил на поверхности магнетитового ядра также линии, соответствующие гематиту, гетиту, маггемиту, ферригидриду, а размеры области когерентности по аморфизированной линии (111) дали: около 9 нм для MNPs из Fe₃O₄ «Иваново» и более 5 нм – APG936 (Japan). Анализ размеров MNPs APG936 методом малоуглового x-rays рассеяния подтвердил их высокую гомогенность – 7.5 нм, тогда как в образце «Иваново» частицы имели несколько размеров – 5, 15, 26 и 45 нм. На СЭМ изображении (рис. 14) выделен фрагмент (длиной 1 мкм) цепочечной структуры из трех агрегатов MNPs с ОА в керосине как жидкости-носителе и соответствующий ему концентрационный профиль микрорентгеноспектрального энергодисперсионного анализа на линии Fe Lα1 2. Диаметр ядра Fe₃O₄ – 150 нм. Расстояние между соседними наночастицами также оказалось

150 нм, что объясняется размером молекул керосина – 62 нм. По данным HR TEM тонкая структура агрегатов MNPs из Fe₃O₄ образца FL «Иваново» представлена частицами 8.9 нм, а толщина слоя OA – 1 нм [11], с расстоянием между атомами в плоскости (111) – 0.485 нм. По нашим данным AFM в области 50×50 нм (рис. 14, δ)

на участке агрегата MNPs из Fe₃O₄, лишенном оболочки, наблюдалась эта же кристаллическая структура и с такой же постоянной решетки железа ~ 0.5 нм. Образование агрегатов из MNPs из Fe₃O₄ подтверждено мемагнито-силовой тодом микроскопии. Размер агрегатов составлял не менее 80 нм.

Рис. 14 – SEM изображение в условиях DLA для трех агрегатов наночастиц Fe₃O₄ и концентрационный профиль EDX распределения железа в них на линии Fe $L\alpha 1_2$, δ – по данным AFM (область около 50×50 нм²) с участком поверхности наночастицы без стабилизирующего слоя OA

В п. 4.1.3.1 проанализированы работы, посвященные структурированию MNPs из Fe₃O₄ в магнитных полях – *H*, а также при совместном воздействии как *H*, так и упругих колебаний, когда за счет их пространственной неоднородности возникает модуляция плотности FL и формируются двухфазные области «жидкость-газ» – bubble. Показано, что на агрегативную устойчивость FL помимо размера MNPs – d_{MNPs} , учтенного в размерном параметре: $\lambda = m_{\text{MNPs}}/(4\pi\mu_0 d_{\text{MNPs}}^3 k_{\text{B}}T)$, важное значение имеет объемная доля отдельной MNPs в жидкости-носителе – φ . На этой основе строится обобщенная фазовая диаграмма и удается учесть все возможные магнитные структуры в координатах (λ , φ), включая vortex и CL. Принята классификация FL, согласно которой при $\varphi_{\text{MF}} \ge 5$ % они относятся к магнитореологическим жидкостям (MRF). Особое внимание уделено анализу структурирования FL не только в магнитных полях, но и электрических полях – *E* (п. 4.1.3.2), теоретическим выводам по возникающим электрогидродинамическим (EHD) [12] и магнитогидродинамическим (MHD) явлениям в жидких диэлектриках.

Изучены изменения плотности тока в зависимости от угла между H и $E - J(\alpha)$ по схеме, представленной на рис. 15. Оптически полированные пластинчатые электроды в форме Роговского (38×15×5 мм³) из Си и Ті-V сплава (коррозионная стойкость: для Си – до 10, а для титанового сплава ~ 0.191 мм/год) погружались в кювету (55×55×40 мм³) с FL из MNPs на основе Fe₃O₄. Индукция магнитного поля – *B* = 1.2 Тл. стабилизированный $(U \approx 0 \div +6 \text{ kB},$ Использовался источник $I_{\text{max}} \approx 1$ мА). Напряжение на электродах из Ті в керосине: U = 200, 500 или 700 В, а из Си в трансформаторном масле: U = 100, 172, 1000, 1300 или 1700 В, что существенно ниже U пробоя (десятки кВ). Напряженность Е между электродами $(d_{intd} = 3 \text{ мм})$ задавалась в диапазоне от 0.12 до 5.6×10⁵ В/м. С помощью поворотного устройства ориентация В относительно неподвижной кюветы (рис. 15) изменялась на 360 °(с шагом 10 ° для электрода из Ti-V и 5 °- Cu). Токи измерялись вольтметром B7-78/1 (с точностью до 0.01 мкА с погрешностью ±0.05). Среднестатистическая плотность тока $J(\alpha)$ определялась из серии измерений с относительной погрешностью δ не выше 10%. Анализировались изменения $\Delta J^{E}(\alpha) = J^{E}_{max} - J^{E}(\alpha)$ на обоих электродах в соответствующих FL, которые представлены на рис. 16, *a* и *б*.

Рис. 15 - Cхематическое изображение установки для изучения влияния *E* и *B* на FL с MNPs из Fe₃O₄ с ориентацией CL в сонаправленных полях

Характерной особенностью изменений $\Delta J^{E}(\alpha)$ с электродами как из Ti, так и из Cu (рис. 16, *a* и *б*) стала их периодичность. Для электродов из Ti этот период составил π , а для Cu – $\pi/2$. По данным CM и SEM обнаружены существенные структурные изменения поверхностей обоих электродов из Cu, тогда как на поверхностях электродов из Ti они отсутствовали (рис. 17, *a* – *в*). Электро- и магнитогидродинамические процессы – EHD и MHD сопровождаются электрохимическими реакциями. Для электродов из Cu очевидно влияние на транспорт токов между электродами ионов Cu – q^- и q^+ , инжектируемых с их поверхности. Фактически при указанных условиях протекают электро- и

 $5\pi/4$

под

действием

 $7\pi/4$ 2π

На электродах из Си возникают дополнительные ионы в реактивной области: на аноде $-A^+B^- + e^ (M) \to A + B^-$ и $A^+B^ + e^-(M) \to A + q^-;$

электрофоретических

F_{MF}=

Рис. 16 – Изменение $\Delta J^{E}(\alpha)$ при указанных напряжениях на электродах: *а* – из титана в керосине; *б* – из меди в трансформаторном масле с предполагаемой ориентацией CL

на катоде – A^+B^- + e⁻ (M) $\rightarrow AB$ + e⁻ и A^+B^- + e⁻ (M) $\rightarrow q^+$ + e. Диэлектрофоретическая сила приводит к миграции q^- и q^+ в реакционную область с максимальной напряженностью электрического поля и к образованию CL по аналогии с [13]. Влияние на транспорт токов между электродами ионов Cu – q^- и q^+ , инжектируемых с поверхности медных электродов, было проанализировано именно в этих областях с помощью CM и SEM микроскопов (рисунки 4.16, *a*, *б* со вставками) и EDX анализов (рисунки 4.16, *c*, *d* – для Cu и *e* – для Ti). При анализе $J(\alpha)$, очевидно, необходим учет всех возможных типов электропроводимости, ее определяющих: σ_{Fe3O4} – магнетита, σ_{OA} – олеатной оболочки, σ_{FL} – жидкости-носителя, $\sigma_{q\pm}$ – эродировавших ионов, σ_{imp} – примесных включений, оставшихся после синтеза MNPs с ядром из магнетита: $\sigma_{tot} = \sigma_{Fe3O4} + \sigma_{q\pm} + \sigma_{OA} + \sigma_{FL} + \sigma_{imp}$. Величина σ_{Fe3O4} в составе MNPs (с кубической сингонией при комнатной температуре) соответствует омической проводимости ~ 250 Cм/м, тогда как σ_{FL} для обоих использованных жидкостей-носителей очень мала ~ 10⁻¹² Cм/м, $\sigma_{OA} \sim 10^{-8}$ Cм/м. Линейность зависимости U(I) достигалась предварительной электроочисткой жидкостей-носителей, то есть σ_{imp} можно было

 $\pi/2 = 3\pi/4$

пренебречь. В сравнении изменений $\Delta J^{\rm E} = (J^{\rm E}_{\rm max} - J^{\rm E}_{\rm min})/J^{\rm E}_{\rm max}$ (рис. 16, *a* и б) при $H \perp E$ для электродов из Си и Ті на близких напряжениях – 172 и 200 В отмечалось резкое отличие: $\Delta J^{\rm E}_{\rm max(Ti)}/\Delta J^{\rm E}_{\rm max(Cu)} > 5$. Для электрода из Ті – $\phi_{\rm FL} = 14.8$ %, а для –

Рис. 17 – Структурирование и элементный состав на поверхностях электродов: $a, \ \delta$ – Си и $e, \ c, \ d$ – Ti-V

Си $\phi_{FL} = 9.7 \%$, что явно свидетельствовало о доминирующем вкладе в изменения $\Delta J^{E}(\alpha)$ омической проводимо $c_{TU} - \sigma_{Fe_{3}O_{4}}$. В то же самое время, наблюдаемый размах изменений $\Delta J^{\rm E} = (J^{\rm E}_{\rm max} - J^{\rm E}_{\rm min})/J^{\rm E}_{\rm max}$ у электрода из меди по величине $\Delta^{E} J_{Cu}$ достигал 20%, тогда как $\Delta J(\alpha)_{Ti}$ только 6%, что явно подтверждало и существенность вклада диссоционно-инжекционной проводимости с электродами из Си. Полная плотность тока будет зависеть от ориентации полей: для $H^{\uparrow}E$ и $H^{\uparrow}\downarrow E$ – $J_{\uparrow\uparrow\uparrow\uparrow\downarrow} = (\sigma_{\text{Fe3O4}} + \sigma_{q\pm})\pi D^2_{\text{hMNPs}}/4,$ для $H \perp E - J \perp = \sigma_{\text{Fe3O4}} (N \pi D^2_{\text{hMNPs}}/4),$ для H и E под углом $\alpha = n\pi/2$ (n = 1, 3, 5, 7) - $J(\alpha) = (\sigma_{\text{Fe}3O4} + \sigma_{q\pm})N\pi D^2_{\text{hMNPs}}/4\cos(n\pi/2).$

Был выполнен модельный эксперимент с действием только постоянного электрического поля (гл. 5.4) и проведен анализ структурирования в КС MNPs из Fe₃O₄ на керосине (образец APG936, Japan) (рис. 18, *a*). Созданы методом MS нанопленочные электроды из меди, толщиной 519 нм на расстоянии 1000 мкм. Объемная плотность FL: $\phi_{FL} = 0.2$ и 0.87%. Наиболее интенсивное структурирование регистрируемое с помощью видеокамеры, встроенной в конфокальный микроскоп, обнаружено при напряжении 25 В, когда возникали агрегаты ~ 300 – 400 нм вблизи обоих

Рис. 18 – К модельному эксперименту FL в электрическом поле: a – схема установки, δ – CM изображения фрагментов реакционной области с CL и агрегатами вблизи анода с φ_{FL} = 0.87 %

электродов и нитеподобных цепочек (CL). Непосредственно у каждого электрода возникала реакционная (приэлектродная) область, где эти структуры отсутствовали. Ее толщина в прикатодной области с $\varphi_{FL} = 0.2\%$ составляла $3 \div 5$ мкм. Для $\varphi_{FL} = 0.87\%$ CL пронизывали практически весь межэлектродный промежуток (рис. 18, δ), при этом через 90 с (полное время 180 с) ток в цепи достигал ~ 600 пА (Keithley, 6487), а затем падал практически до 0.

Структурирование в условиях DLA и под действием *E* было проанализировано с помощью SEM и AFM микроскопов. Так по SEM изображениям в

области анода диаметры агрегатов и CL оказались близкими и варьировались от 200 до 500 нм. При детальном анализе как CL (рис. 19, *a*, вставки I и II), так и агрегатов (вставка III) были определены минимальные размеры, составляющих частиц, обнаружены формирования из них замкнутых тороидальных структур, которые ранее наблюдались только на TEM с помощью внеосевых электронов. Размеры MNPs из Fe₃O₄, образующих Vortex, согласовывались с данными TEM и составляли от 40 до 60 нм.

Рис. 19 – Структурирование в постоянном электрическом поле КС MNPs из Fe_3O_4 по данным: *a* – SEM, *б* и *в* – AFM

На крупномасштабных (10×10 мкм² и 5×5 мкм²) АFM изображениях видны CL и агрегаты с четко выраженной ориентацией перпендикулярно к поверхностям электродов (сверху-вниз). Объемное изображение (рис. 19, δ вставка I с изменением по высоте ~ 20 нм (с разрешением по Z-координате до 30 пм) сопоставимом с размерами MNPs из Fe₃O₄. Участок одной из CL с восемью агрегатами с периодом ~ 300 нм (рис. 19, δ вставка) совпал с размером распределения по EDX (рис. 14, *a*). Эти периодические структуры по фазовому составу отделены между собой (по AFM изображению). Структуры аналогичные Vortex обнаружены на AFM изображении CL (рис. 19, δ вставка III с размером до 10 нм). Здесь же (рис. 19, δ вставка II) показано FE SEM изображение Fe₃O₄/MWCNTs в поле H до 0.14 Тл, с подобной структурой [14].

Обнаружены морфологические изменения профиля поверхности MF нанопленки из Cu по толщине в следствии электрокоррозии. Возникшее ее размытие и дугообразность формы, изменения размеров нанокластеров (с исходных $D_{cl} = 121$ нм до $D_{cl} = 50$ нм) и толщины MF ($h_{MFinit} \approx 519$ нм, возросла до $h_{MFend} \approx 606$ нм) свидетельствовало о росте вклада в полную проводимость инжектируемых ионов Cu (с зарядами q^- и q^+): $\sigma_{tot} = \sigma_{Fe3O4} + \sigma_{q\pm}$, что сопровождалось образованием объемного заряда в реакционной области микронных размеров. Время задержки начала структурирования составило – 80 с, соответствующее некоторой пороговой концентрации инжектированных ионов меди. Инжекция ионов Cu меди подтверждена данным EDX с высоким содержанием (Cu $L\alpha 1_2$) во всем межэлектродном промежутке на всех микро- и наноструктурах. Электрокоррозии сопутствовали реакции образования химических структур типа [15]: CuO/Cu, Cu₂O/Cu, Cu(OH)₂/Cu и CuFe₂O₄ (обозначим их «Cu») за счет объемных стехиометрических превращений на поверхности MNPs Fe_3O_4 , что и подтверждено RS спектром (рис. 20).

Отметим, что для соединений меди характерен низкий потенциал окислительно- восстановительных процессов. К примеру, для $E^{\circ}(Cu^+ - e \rightarrow Cu^{2+})$ он составляет всего 0.153 В, что обусловливает резкое понижение

Рис. 20 – Спектр RS в точке на CL (вставка – I). На вставках II и III: – pe_3 Cu(OH)₂ и спектр RS CuO, Cu₂O, Cu(OH)₂ [15]

энергии активации проводимости: $E_{CuO} \ll E_{Fe3O4}$, то есть в электрическом поле за счет активированной миграции, так называемого, «хоппинга» электронов возникает ряд валентных превращений оксидных форм меди.

Покрытие поверхности MNPs из Fe₃O₄ этими медьсодержащими соединениями «Cu» вызывает повышение уровня Fermi электронов проводимости $E_{\rm F}({\rm Fe}_{3}{\rm O}_{4}) \rightarrow E_{\rm F}'({\rm Fe}_{3}{\rm O}_{4})$ и уравновешивание уровней Fermi электронов проводимости меди – $E_{\rm F}({\rm Cu})$, адсорбированной на поверхности наночастиц Fe₃O₄ и собственного уровня $E_{\rm F}({\rm Fe}_{3}{\rm O}_{4})$. Возникают нерекомбинируемые электронно-дырочные пары, что и обеспечивает как протекание тока в случае высокой объемной плотности – $\varphi_{\rm FL} = 9.7$ и 14.8 %, так и наблюдаемом при $\varphi_{\rm FL} = 0.2$ и 0.87 % микро - и наноструктурировании.

Основным и первичным элементом подобия для формирования микро - и наноструктурных образований могли выступать только наночастицы MNPs из Fe₃O₄ в виде иерархической последовательности: «наночастицы — агрегаты — нитеподобные цепочки — жгутоподобные агломераты». Примесные ионы играют очень важную роль при использовании электродов с низкой коррозионной стойкостью, что и наблюдалось выше. На рис. 21 схематично изображена пара MNPs из Fe₃O₄ со стабилизирующей оболочкой OA (толщиной δ) в CF (ε_{CF} , μ_{CF} , σ_{CF}) при условно принятых одинаковых радиусах $R_{\rm MNP}$ с магнитными моментами $\overrightarrow{m_1}$ и $\overrightarrow{m_2}$ и $\delta_{«Cu»}$ – толщиной оболочки на внешней поверхности MNPs из медьсодержащих соединений «Cu» на расстоянии $r = 2(R_{\rm MNP} + \delta + \delta_{«Cu»}) + S$ при одинаковых диэлектрических и магнитных проницаемостях и проводимостях $\varepsilon_{\rm MNP}$, $\varepsilon_{«Cu»}$, $\mu_{\rm MNP}$, $\mu_{«Cu»}$, $\sigma_{\rm MNP}$, $\sigma_{«Cu»}$ в электрическом поле E.

В соответствии выводами Rosensweig [16] последовательно запишем все виды энергий взаимодействия между двумя MNPs из Fe_3O_4 (рис. 21), включая энергии Van der Waals – E_v , стерического отталкивания, обусловленного взаимным расположением молекул OA относительно магнетитового ядра и медьсодержащих соединений «Cu» – E_s , электродипольного взаимодействия – E_d и электрического

Рис. 21 – Схематичное изображение пары MNPs из Fe₃O₄ и ее окружения

притяжения – *E*с. Полная энергия будет определяться аддитивным вкладом $E_{tot} = E_v + E_s + E_d + E_c$. Для определения условия, при котором может происходить агрегирование необходимо определить минимум dE_{tot}/dS . Так как $E_d = -\alpha \epsilon_{CF}[(\epsilon_{MNP} + \epsilon_{«Cu»}\epsilon_{CF}) / (\epsilon_{MNP} + \epsilon_{«Cu»} - 2\epsilon_{CF})]^2 E^2$ и $E_c = -\alpha \epsilon_{CF} [(\sigma_{MNP} + \epsilon_{«Cu»} - \sigma_{CF}) / (\sigma_{MNP} + \sigma_{«Cu»} - 2\sigma_{CF})]^2 E^2$ от расстояния *S* не зависимы,

то согласно E_{tot} минимум полной энергии определится из $d(E_v + E_s)/dS = 0$. Фактически S входит только в $r = 2(R_{MNP} + \delta + \delta_{«Cu»}) + S$. С учетом того, что в установившемся режиме (через 90 с по данным видеозаписей) R_{MNP} , δ , $\delta_{«Cu»}$ становятся постоянными при H = 0, условие агрегирования будет определяться только конкурентными вкладами E_v и E_s , что согласуется с выводами Rosensweig [16]. Согласно $E_v = -A/6$ $\{2/((r/(R_{MNP}+\delta+\delta_{«Cu»}))^2+$

 $\delta_{\text{«Cu»}}/\delta$]} в системе MNPs из Fe₃O₄ + медьсодержащие соединения «Cu» за счет стерической энергии E_s действуют силы отталкивания, тогда как за счет E_v наоборот – силы притяжения.

Для реализации наблюдаемых процессов агрегирования необходимо равенство E_s и E_v по модулю, что и будет соответствовать минимуму d($E_v + E_s$)/dS = 0, как подтверждалось потенциалом парного взаимодействия между частицами по данным SANS и SAXS [15]. Этот результат не противоречит выводу, построенному на отношении энергий стерических сил отталкивания между магнитными наночастицами облака окружающего частицы микронных размеров и сил Van der Waals их притяжения, достигающего 1.9×10^6 , что согласуется с выводами Rosensweig [16]. Таким образом, воздействие электрического поля (даже при $\varphi_{FL} = 0.2$ и 0.87 %) микро - и наноструктурирование FL из стабилизированных ОА MNPs из Fe₃O₄, когда в эту же KC активно вовлекаются примесные образования из медьсодержащих соединений «Cu», приводит агрегирование становится.

ЗАКЛЮЧЕНИЕ

1. Анализ морфологических изменений поверхности поперечных шлифов (запись «реально-временного» отклика) стальных образцов в форме параллелепипеда (с размерами $A \times B \times C$) при статико-импульсном ударно-волновом пластическом деформировании ударниками в форме шара (одиночный удар) или цилиндра (удары с частотой 23 Гц, перекрытие 30%), выполненный с соответствующим пространственным разрешением на микро-, мезо- и макроуровнях, свидетельствовал о влиянии поперечных размеров (*B* и *C*) образцов на объемное структурирование.

2. По результатам анализа микро- и наноструктурирования поверхности поперечных шлифов исследованных образцов в форме параллелепипеда в зависимости от

направления статико-импульсного ударно-волнового воздействия было установлено, что наибольшее влияние на микроструктурирование оказывали размеры *B* и *C*, вдоль которых были обнаружены:

– феррит-перлитные (F - P) полосовые микроструктуры с кратными периодами (к примеру, для образца с размерами $50 \times 20 \times 10$ мм³ период – $D_P \sim 5 \div 10$ и $D_F \sim 30 \div 150$ мкм, а для – $50 \times 10 \times 20$ мм³ – $D_P \sim 20 \div 100$ мкм и $D_F \sim 10 \div 30$ мкм);

 полосовая субструктура внутри зерен перлита (с минимальным размером до 40 нм)
с ориентацией перпендикулярной к направлению ударного деформирования, возникающая за счет дислокационного механизма;

– перераспределение элементного состава в областях пластинчатого перлита, образование сфероидального цементита (Fe₃C) и полос Chernov-Luders.

3. По результатам анализа «реально-временных» откликов на поверхностях поперечных шлифов ориентированных под углами 0°, 45° и 90° относительно направления статико-импульсного ударно-волнового воздействия установлена трехмерность и многоуровневость макро-, микро-, наноструктурирования, что подтверждено данными EBSD и XRD.

4. По результатам многоуровневого объемного анализа металлических образцов в форме параллелепипеда после статико-импульсного ударно-волновом пластического деформирования опытно обоснован интерференционный механизма структурирования, в основу которого положена кратность поперечных размеров образца (*B* и *C*) и стоячих волн, возбуждаемых при интерференции внутри образца волн нагрузки и разгрузки, что сопровождается формированием в интерференционных максимумах самоорганизованных периодических полосовых F - P микроструктур и пластинчатых полосовых наноструктур внутри перлитных зерен, как дополнительных каналов диссипации энергии, что соответствует либо глобальному, либо локальному минимумам в зависимости от времени и интенсивности внешнего пластического воздействия.

5. С использованием современных наноинструментальных методов проведены комплексные аналитические исследования структурирования в металлических магнетронных нанопленках (Cr, Cu, Al, Ni и Hf) наносимых при постоянном напряжении на поверхностях подложек из ситалла, поликора и монокристаллического кремния в зависимости от режимов распыления при изменениях либо мощности (от 70 до 800 Вт), либо времени нанесения (от 20 до 360 с) при фиксированных давлении рабочего газа Ar (0.5 Па) и температуре подложки (453°K).

6. Проведен анализ структурных деградационных изменений в магнетронных металлических нанопленках (Cr, Cu, Al, Ni и Hf) при температуре отжига на воздухе – $T_{\rm an}$, превышающей температуру Debye – $T_{\rm D}$, но ниже температуры плавления – $T_{\rm m}$: $T_{\rm D} < T_{\rm an} < T_{\rm m}$.

7. С использованием наноинструментальных методов установлены взаимосвязи и влияние режимов магнетронного распыления на состав, структуру и свойства наносимых металлических нанопленок из Cr, Cu, Al, Ni и Hf, а также определена температура структурного фазового перехода 1-ого рода при плавлении оксидов Cr, Cu, Al, а для нанопленки из Ni по фазо- и амплитудно-частотным эллипсометрическим составляющим обнаружен фазовый переход 2-ого рода «ферромагнетикантиферромагнетик». 8. В рамках предложенного физического механизма формирования металлических нанопленок из Cr, Cu, Al, Ni и Hf показано, что процессы их структурирования обусловливаются аддитивными вкладами кластерных: баллистической коалесценции и кинетической агрегации.

9. Методом компьютерного моделирования из первых принципов рассчитаны структуры и энергия диссоциации свободных кластеров алюминия, энергия адгезии одного атома алюминия и кластеров алюминия на монокристаллической поверхности алюминия и кристабаллита, для энергии хемадсорбции – 10.6 эВ/атом и при высокой адгезии построена структура из атомов алюминия на поверхности подложки SiO₂ в виде гетероэпитаксиальной пленки алюминия.

10. Разработана методика создания функционализированных *f*-MWCNT и *f*-SWCNT со стабильностью существования до года и более, что позволило провести комплексные исследования процессов структурирования с наноразмерным разрешением.

11. Комплексно изучены (с применением широкого набора наноинструментальных методов) процессы структурирования в капле коллоидной системы из *f*-MWCNT и *f*-SWCNT как в свободном состоянии на твердотельных аморфных, поликристаллических и монокристаллических подложках в растворителях с разной кислотностью и при нагревании до 463 К, так и под воздействием постоянного электрического поля.

12. Установлены режимы и параметры упорядоченного структурирования в капле коллоидной системы *f*-MWCNT и *f*-SWCNT в виде микро - и наноструктур типа фракталов, кластеров и линейных образований под воздействием электрических полей.

13. На основании установленных закономерностей и условий самоорганизованного образования микро и наноструктур при испарении капли коллоидной системы из *f*-MWCNT и *f*-SWCNT предложена качественная физическая модель флуктуационного механизма формирования, основанная на учете гидродинамических, диффузионных, тепловых и электрофоретических потоков, подтвержденная исследованиями модельной коллоидной системы из *f*-MWCNT и *f*-SWCNT + SiO₂ (в виде наночастиц порядка 2 нм).

14. С использованием коллоидной системы из *f*-MWCNT и *f*-SWCNT электрохимическим методом с последующим отжигом синтезированы и комплексно изучены нанокомпозиты CuO/f-MУHT и NiO/f-MУHT в виде нанотрубчатых структур CuO и NiO, обладающих высокой фотокаталитической активностью.

15. Изучена анизотропия изменений плотности тока между электродами из титанванадиевого сплава или меди в кювете с коллоидной системой из стабилизированных олеиновой кислотой наночастиц Fe_3O_4 в жидкости-носителе на основе керосина в постоянном магнитном поле с индукцией 1.2 Тл в зависимости от угла поворота относительно направления постоянного электрического поля (до 5×10⁵ B/м).

16. В постоянных электрическом и магнитном полях на поверхностях медных электродов за счет электро- и магнитогидродинамических процессов изучены микро - и наноструктурные изменения морфологии, элементного состава и образование в электрохимических реакциях в коллоидной системе MF OA MNPs из Fe_3O_4 химических соединений (Cu, CuO, Cu₂O, Cu(OH)₂ и CuFe₂O₄), тогда как на поверхностях электродов из титан-ванадиевого сплава электрохимические реакции не протекали.

17. В модельном эксперименте на капле коллоидной системы с MF OA MNPs из Fe_3O_4 (объемная плотность менее 0.2 и 0.87 %, слой с субмикронной толщиной и шириной несколько мм) между медными нанопленочными электродами изучено влияние и определен вклад электродипольного, магнитодипольного, стерического и Van der Waals взаимодействий в процессы структурирования как в самой капле, так и на поверхностях электродов.

18. Обоснована качественная физическая модель, объясняющая процессы микро- и наноструктурирования в коллоидной системе MF OA MNPs из Fe₃O₄ под действием постоянного электрического поля.

Цитированная литература

1. Glezer, A.M. Plastic deformation of nanostructured materials / A.M. Glezer, E.V. Kozlov, N.A. Koneva, et.al. // Boca raton: CRC taylor & francis group. – 2017. – 322 p.

2. Зуев, Л.Б. Пространственно-временное упорядочение при пластическом течении твердых тел / Л.Б. Зуев, В.И. Данилов, Б.С. Семухин // Успехи физики металлов. – 2002. – Т. 3. – С. 237 – 304.

3. Киричек, А.В. Статико-импульсная обработка и оснастка для ее реализации / А.В. Киричек, А.Г. Лазуткин, Д.Л. Соловьев // СТИН. – 1999. – № 6. – С. 20 – 24.

4. Канель, Г.И. Ударные волны в физике твердого тела / Г.И. Канель // Москва: Физматлит. – 2018. – 203 с.

5. M. Panjan, Plasma potential of a moving ionization zone in DC magnetron sputtering / M. Panjan, A. Anders // Journal of applied physics. – 2017. – P. 063302-1 – 063302-17.

6. Fieandt, K.V. Multi-component (Al,Cr,Nb,Y,Zr) N thin films by reactive magnetron sputter deposition for increased hardness and corrosion resistance / K.V. Fieandt, E.M. Paschalidou, A. Srinath // Thin soild films. -2020. - Vol. 693, No. 1. - P. 1 - 47.

7. Farhad Daneshvar. Critical challenges and advances in the carbon nanotube–metal interface for next-generation electronics / Farhad Daneshvar, Hengxi Chen, Kwanghae Noh, et.al. // Nanoscale advances. – 2021. – Vol. 3. – P. 942–962.

8. Lebedev, S.P. Simulation of self-assembly of micro and nanoparticles in an evaporating microdrop of solution / S.P. Lebedev, R.M. Kadushnikov, S.P. Molchanov et.al. // Nanotechnologies in Russia. -2011. - Vol. 6, No.1-2. - P. 79 - 87.

9. Yan, Y.H. Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties / Y.H. Yan, T.M. Eugene // Polymers. – 2012. – Vol. 4. – P. 275 – 295.

10. Telg, H. G- and G+ in the Raman spectrum of isolated nanotube: a study on resonance conditions and lineshape / H. Telg, M. Fouquet, J. Maultzsch // Physica status solidi. – 2008. – Vol. 245, No. 10. – P. 2189 – 2192.

11. Klaus, D.U. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity / D.U. Klaus, A. Storozhenko, I. Arefyev, et.al. // Soft matter. – 2019. – Vol. 15. – P. 9018 – 9030.

12. Жакин, А.И. Приэлектродные и переходные процессы в жидких диэлектриках / А.И. Жакин // Успехи физических наук. – 2006. – Vol. 176, No. 3. – P. 289 – 310. 13. Rajnaka, M. Structure and viscosity of a transformer oil based ferrofluid under an external electric field / M. Rajnaka, M. Timko, P. Kopcansky et.al. // Journal of magnetism and magnetic materials. – 2017. – Vol. 431. – P. 99 – 102. 14. Mahdieh Yavari. Controlled assembly and alignment of CNTs in ferrofluid: Application in tunable heat transfer / Mahdieh Yavari, Zahra Mansourpour, Mojtaba Shariaty-Niassar // Journal of magnetism and magnetic materials. – 2019. – Vol. 479. – P. 170 – 178.

15. Yilin Deng. In Situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII Oxides as catalytically active species / Yilin Deng, D. Albertus Handoko, Yonghua Du et.al. // ACS Catalysis. – 2016. – Vol. 6. – P. 2473 – 2481.

16. Rosensweig, R.E. Magnetorheological particle clouds / R.E. Rosensweig // Journal of magnetism and magnetic materials. – 2019. – Vol. 479 – P. 301 – 306.

Основное содержание диссертационной работы изложено в следующих публикациях:

(статьи в рецензируемых изданиях, включенных в перечень ВАК, Scopus и Web of Science):

1. Storozhenko, A.M. Interaction of physical fields under the acousto-magnetic effect in magnetic fluid / A.M. Storozhenko, A.O.Tantsyura, P.A. Ryapolov, G.V. Karpova, V.M. Polunin, Myo Min Than // Magnetohydrodynamics. – 2011. – Vol. 47, No. 4. – P. 345 – 358.

2. Полунин, В.М. Экспериментальное исследование колебательной системы с воздушной полостью, удерживаемой силами левитации / В.М. Полунин, М.Л. Боев, Мьо Мин Тан // Известия Юго-Западного государственного университета. Серия Физика и химия. – 2012. – №2. – С. 62 – 67.

3. Полунин, В.М. Форма поверхности воздушной полости в магнитной жидкости, захваченной и удерживаемой магнитным полем / В.М. Полунин, М.Л. Боев, Мьо Мин Тан, П.А. Ряполов, И.А. Шабанова, В.Г. Баштовой // Известия Юго-Западного государственного университета. Серия Физика и химия. – 2012. – № 2. – С. 107 – 113.

4. Polunin, V.M. Experimental study of an air cavity held by levitation forces / V.M. Polunin, M.L. Boev, Myo Min Than, P.A. Ryapolov // Magnetohydrodynamics. – 2012. – Vol. 48, No. 3. – P. 557 – 566.

5. Polunin, V.M. Elastic Properties of a Magnetic Fluid with an Air Cavity Retained by Levitation Forces / V.M. Polunin, M.L. Boev, G.V. Karpova, Myo Min Than // Acoustical Physics. -2013. – Vol. 59, No.1. – P. 56 – 61.

6. Kuzmenko, A. P. Nanostructure Changes of Magnetron Copper Films with a Glass Ceramic Substrate / A. P. Kuzmenko, A. E. Kuzko, Naw Dint, Myo Min Than, M. B. Dobromyslov, S. G. Emelyanov, L. M. Chervyakov // Journal of Nano- and Electronic Physics. -2015. -Vol. 7. -No. 4. -P. 04095(1) - 04095(3).

7. Kirichek, A.V. Dimensional Effects in Micro- and nanostructural Changes in Grain and IntragrainedStructure of Steel 45 at Static-Pulse Treatment / A.V. Kirichek, A.P. Kuzmenko, D.L. Soloviev, S.V. Barinov, A.Y. Altukhov, S.A. Silantiev, A.N.Grechukhin, Myo Min Than, M.B. Dobromyslov // Journal of Nano- and Electronic Physics. 2015. – Vol.7, No. 4, P. 04023(1) – 04023(4).

8. Ageeva, L.S. Development and physico-chemical study of the aqueous dispersion silver nanoparticles as the basis for creating new nanomaterials / L.S. Ageeva, A.S. Che-

kadanov, N.A. Borsch, A.P. Kuzmenko, Myo Min Than, M.B. Dobromyslov // Journal of Nano- and Electronic Physics. – 2015. –Vol.7, No.4. – P. 04043(1) – 04043 (2).

9. Kuzmenko, A.P. Self-assembly and self organization Processes of carbon nanotubes in the colloidal systems / A. P. Kuzmenko, Thet Phyo Naing, Myo Min Than, Chan Nyein Aung, M. B. Dobromysilov // Journal of Nano- and Electronic Physics. -2015. -Vol. -7, No. 4. -P. 04014(1) - 04014(3).

10. Киричек, А.В. Ударно-волновой механизм микро- и нано структурных измененийпри статико-импульсной обработкестали 45 / А.В. Киричек, А.П. Кузьменко, Д.Л. Соловьев, С.В. Баринов, А.Ю. Алтухов, С.А. Силантьев, А.Н. Гречухин, Мьо Мин Тан // Известия Юго-Западного государственного университета. Технические науки. – 2015. – № 6(63). – С. 8 – 16.

11. Кузьменко, А. П. Температурные изменения структуры магнетронных медных пленок на ситалловой подложке / А. П. Кузьменко, Нау Динт, Мьо Мин Тан // Известия ЮЗГУ серия техники и технологии. – 2015. – Т. 16, № 3. – С. 60 – 71.

12. Кузьменко, А.П. Процессы самоорганизации в углеродсодержащих коллоидных системах / А. П. Кузьменко, Тет Пьо Наинг, Мьо Мин Тан, М. Б. Добромыслов, Чан Ньен Аунг // Известия Юго-Западного государственного университета. Серия техника и технологии. – 2015. – Т. 16, № 3. – С. 38 – 50.

13. Кузьменко, А.П. Наноразмерная характеризация металлических магнетронных нанопленочных мультислоев из Cr, Cu, Al, Ni на ситалле / А. П. Кузьменко, Нау Динт, А. Е. Кузько, Мьо Мин Тан, Тант Син Вин, А. И. Колпаков // Известия вузов. Материалы электронной техники. – 2016. – Т. 19. – No.3. – С. 195 – 203.

14. Kuzmenko, A.P. Degradation of Structure of Magnetron Ni and Cr Nanofilms at their Heating on Air / A. P. Kuzmenko, A. E. Kuzko, Naw Dint, Myo Min Than, M. B. Dobromyslov, R. T. Kanukov // Journal of Nano- and Electronic Physics. -2016. -Vol. 8. No.3. -P.03007(1) - 03007(4).

15. Kuzmenko, A.P. Structure of Carbon Nanotubes In Colloidal Solutions Under The Influence of a constant electric field / A. P. Kuzmenko, Thet Phyo Naing, A. E. Kuzko, Myo Min Than, A. V. Kutsenko, M. B. Dobromysilov // Journal of Nano- and Electronic Physics. -2016. -Vol.8. -No.3. -P. 03035(1) - 03035(3).

16. Кузьменко, А.П. Образование иерархических структур из функционализированных многостенных углеродных нанотрубок в растворе с аэросилом / А. П. Кузьменко, Тет Пьо Наинг, А. Е. Кузько, А. В. Кочура, Мьо Мин Тан, Ней Вин Аунг // Известия высших учебных заведений. Материалы электронной техники. – 2016. – Т. 19. – № 4. – С. 269 – 276.

17. Кузьменко, А. П. Процессы деградации при нагревании на воздухе в магнетронных нанопленках Ni и Cr / A. П. Кузьменко, А. Е. Кузько, Нау Динт, Мьо Мин Тан, Р.Т. Кануков // Известия Юго-Западного государственного университета. Серия техника и технологии. – 2016. – Т. 19. – № 2. – С. 153 – 165.

18. Заводинский, В.Г. Свч-поглощение и структура ab-initio гиперфуллеронов в составе природно-легированных композитов / В.Г. Заводинский, Л.М.Червяков, А.П. Кузьменко, В.В. Родионов, Н.А. Хохлов, Мьо Мин Тан, А.С. Петров // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2017. – Т. 7, № 4(25). – С. 159 – 167.

19. Кузьменко, А.П. Расчет малых кластеров металлов Cu, Ni и Al в рамках теории функционала плотности / А.П. Кузьменко, Н.А. Хохлов, Лин Ко Ко, Мьо Мин Тан, А.К. Зюзин, А.С. Петров, А.А. Гуламов, А. И. Жин,Ф.Ф. Ниязи // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2018. – Т. 8, № 2. – С. 138 – 146.

20. Кузьменко, А.П. Электрохимический синтез наноструктурированного композита оксида меди (II) на многостенных углеродных нанотрубках / А.П. Кузьменко, Н.А. Хохлов, А.В. Кочура, В.В. Родионов, М.М. Тан, Ч.А. Хеин, А.А Гуламов, Ю.А. Неручев // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2018. – Т. 8, № 3. – С. 94-104.

21. Кошкин, С.С. Структура и свойства толстопленочных многослойных терморезистивных покрытий из многофункциональных дисперсных наполнителей / С.С. Кошкин, А.П. Кузьменко, Г.Н. Бельских, Мьо Мин Тан // Известия Юго-Западного государственного университета. Серия техника и технологии. – 2019. – Т. 9. – №2. – С. 108 – 121.

22. Кузьменко, А.П. Кристаллизация соединений меди на многостенных углеродных нанотрубках в электрохимическом процессе / А.П. Кузьменко, Н.А. Хохлов, В.В. Родионов, М.М. Тан, Ч.А. Хеин // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2019. – Т. 9, № 3. – С. 108-119.

23. Кузьменко, А.П. Магнетронные одно- и мультислойные нанопленки из Nb, C и Si / A. П. Кузьменко, Тант Син Вин, Мьо Мин Тан, Нау Динт // Известия Юго-Западного государственного университета. Серия: Техника и технологии. – 2019. – Т. 9, № 4. – С. 30 – 52.

24. Kuzmenko, A.P. The electrochemical decoration of multi-walled carbon nanotubes with nickel oxide coating / A.P Kuzmenko, N.A. Khokhlov, K.A. Hein, M.M. Than, V.V. Rodionov // Journal of Physics: Conference Series. -2019. - Vol. 1324, No.1. - P. 012041-1-012041-8.

25. Kuz'Menko, A.P. The electrochemical crystallization of the copper (II) oxide on multi-walled carbon nanotubes / A.P. Kuz'Menko, N.A. Khokhlov, K. Aung Hein, M. Min Than, V.V. Rodionov // Journal of Physics: Conference Series – 2019. – Vol. 1172. – P. 012050-1–012050-6.

26. Кузьменко, А.П. Влияние электрических полей на процессы самоорганизации в ультрадисперсном растворе многостенных углеродных нанотрубок / А.П. Кузьменко, Тет Пьо Наинг, А.Е. Кузько, Мьо Мин Тан // Журнал технической физики. – 2020. – Т. 90, № 2. – С. 268 – 277.

27. Kuz'menko, A.P. Ab initio calculations of aluminium clustering on aluminium surfaces / A.P. Kuz'menko, N.A. Khokhlov, K.K. Lin, M.T. Myo, A.S. Petrov // Journal of Physics: Conf. Series. – 2020. – Vol. 1455. – P. 012001-1 – 012001-5.

28. Ней Вин Аунг. Электропроводность упорядоченных одностенных углеродных нанотрубок в постоянном электрическом поле / Ней Вин Аунг, Мьо Мин Тан, М.А. Пугачевский, В.В. Родионов, А.П. Кузьменко // Известия Юго-Западного государственного университета. Серия техники и технологии .– 2020. – Т. 10, № 1. – С. 86 – 98.

29. Кузьменко, А.П. Опытное подтверждение интерференционного механизма ударно-волнового деформационного структурирования материалов / А.П. Кузьмен-

ко, Мьо Мин Тан, А.В. Киричек, Д.Л. Соловьев, С. В. Баринов // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2020. – Т. 10, № 2. – С. 98 – 120.

30. Пугачевский, М.А. Формирование наноструктур оксида никеля на поверхности углеродных нанотрубок методом электрохимического синтеза / М.А. Пугачевский, Чжо Аунг Хеин, Мьо Мин Тан, А.П. Кузьменко // Известия Юго-Западного государственного университета. Серия техники и технологии .– 2020. – Т. 10, № 2. – С. 46 – 57.

31. Заводинский, В. Г. Квантово-механическое исследование роста пленки алюминия на поверхности SiO2 со структурой Кристобалита / В.Г. Заводинский, А.П. Кузьменко, Лин Ко Ко, Мьо Мин Тан // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2020. – Т. 10, № 2. – С. 81 – 97.

32. Кузьменко, А. П. Деградация магнетронных нанопленок Hf и Мо в условиях атмосферного отжига / А. П. Кузьменко, Тант Син Вин, Мьо Мин Тан, Нау Динт, А. Г. Беседин // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2020. – Т. 10, № 3. – С. 86 – 104.

33. Пугачевский, М.А. Фотокаталитические свойства нанокомпозитов CuO/f-МУНТ и NiO/f-МУНТ и трубчатых наноструктур оксидов меди и никеля на их основе / М.А. Пугачевский, Чжо Аунг Хеин, В.А. Мамонтов, Мьо Мин Тан, А.П. Кузьменко // Известия Юго-Западного государственного университета. Серия техники и технологии. – 2020. – Т. 10, № 3. – С. 72 – 85.

34. Кузьменко, А.П. Магнито- и электродинамическое структурирование в магнитореологических жидкостях на основе магнетита / А.П. Кузьменко, Мьо Мин Тан, А.И. Жакин, А.Е. Кузько, Н.Ю. Гранкин, О.Ю. Черных // Известия ЮЗГУ. Серия техника и технология. – 2020. – No. 4. – С. 59 – 78.

(патенты, оформленные на способ получения):

35. Патент РФ № 2018142536, 03.12.2018. Кузьменко А.П., Хохлов Н.А., Хеин Ч.А., Родионов В.В., Тан М.М. Трубчатые наноструктуры оксида меди (II) и электрохимический способ их получения // Патент России № 2701786. 01.10.2019. Бюл. №28.

36. Патент РФ Заявка № 2019134862, 30.10.2019 Кузьменко А.П., Хохлов Н.А., Хеин Ч.А., Родионов В.В., Тан М.М. Трубчатые наноструктуры оксида никеля (II) и электрохимический способ их получения // Патент России № 2019134862. 2021.

Монографии

37. Кузьменко А.П., Нау Динт, Мьо Мин Тан. Самоорганизация при формировании металлических магнетронных нанопленок / А.П. Кузьменко, Нау Динт, Мьо Мин Тан // Курск: Юго-Зап. гос. ун-т. ЗАО Университетская книга. – 2018. – 208 с.

38. Кузьменко, А.П. Механизмы самоорганизации в ультрадисперсных системах из многостенных углеродых нанотрубок / А.П. Кузьменко, Тет Пьо Наниг, Мьо Мин Тан // Юго-Зап. гос. Ун-т. Курск, ЗАО Университетская книга. – 2017. – 149 с.

Подписано в печать ____.2021 г. Формат 60×84/16. Печать офсетная. Усл. печ.л. 2.5, Тираж 100 экз. Заказ Отпечатано в издательстве ЮЗГУ. 305040, г. Курск, ул. 50 лет Октября, 94