Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 08.10.2023 00:09:31 Уникальный программный ключ:

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

минобрнауки россии

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (Ю3ГУ)

Кафедра машиностроительных технологий и оборудования

УТВЕРЖДАЮ Проректор по учебной р «Юго-Западный гесударственный университет»

РАСЧЕТ ВИДОВ ДВИЖЕНИЯ ДЕТАЛЕЙ В ПРОИЗВОДСТВЕ

Методические указания по выполнению практической работы №2 по дисциплине «Проектирование машиностроительного производства» для студентов, обучающихся по направлению 15.03.05 Конструкторскотехнологическое обеспечение машиностроительных производств (очной и заочной форм об учения)

УДК 621.9

Составители: В.В.Малыхин

Рецензент Кандидат технических наук, доцент Н.И. Иванов

Расчет видов движения деталей в производстве: методические указания по выполнению практической работы № 2 по дисциплине «Проектирование машиностроительного производства» для студентов, обучающихся по направлению 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств (очной и заочной форм об учения)/ Юго-Зап. гос.ун-т; сост.: В.В.Малыхин. Курск, 2017. 10 с. Библиогр.: .с.10.

Содержат сведения по методике проведения, тематике, последовательности выполнения практической работы, общие положения по расчету длительности производственного цикла изготовления деталей, при последовательном, параллельном и параллельно-последовательном видах лвижения.

Методические указания соответствуют требованиям ФГОС-3 по направлению 15.03.05 Конструкторско-технологическое обеспечение машиностроительных производств, а также программы, утвержденной учебнометодическим объединением (УМО).

Предназначены для студентов, обучающихся по направлению 15.03.05 очной и заочной формы обучения.

Практическая работа № 2

Тема: «Расчет видов движения деталей в производстве» («Расчет длительности производственного цикла»).

Цель работы:

- 1. Приобретение практических навыков расчета длительности производственного цикла изготовления деталей, при последовательном, параллельном и параллельно-последовательном видах движения.
- 2. Закрепление теоретических знаний по теме: Производственный и технологический циклы изготовления деталей (Производственный цикл и его структура)

Студент должен уметь схематически изображать движение предметов труда; определять длительность производственного цикла.

Методические указания.

Производственный процесс представляет собой совокупность всех действий людей и орудий труда, необходимых на данном предприятии для изготовления или ремонта продукции.

Производственный процесс может быть простым и сложным. Простой процесс - это процесс изготовления детали или отдельный сборочный процесс, который состоит из ряда последовательных операций. Сложный процесс представляет собой совокупность простых процессов по изготовлению изделия в целом.

Производственный цикл - это календарный период времени, в котором осуществляются все стадии производственного процесса по изготовлению или ремонту изделия. Он выражается в календарных днях (сутках) и может определяться как для деталей, узлов, изделий, так и для их партий.

Длительность производственного цикла зависит от ряда факторов: норм времени на выполнение технологических операций, количества одновременно запускаемых в производство предметов труда (размера производственной партии), принятого вида движения обрабатываемых деталей в процессе производства, продолжительности транспортных и контрольных операций, времени перерывов в производственном процессе в связи с регламентом

работы предприятия, а также межоперационным пролеживанием в ожидании обработки.

Простой производственный процесс характеризуется тремя видами движения деталей (партии деталей) по операциям процесса: последовательным, параллельным и параллельно-последовательным.

если параллельно-последовательный вид движения в производстве заменить параллельным

Длительность производственного цикла сложного производственного процесса определяют в основном графическим методом. При расчете исходят из сборочной схемы изделия и соответствующего ей циклового графика сборочных работ, на основе которого устанавливают главную линию последовательно связанных цикловых процессов, определяющую длительность производственного цикла сборки.

Решение типовых задач.

Задача 1. Определить длительность цикла технологических операций обработки деталей при последовательном виде движения, построить график организации выполнения технологических операций.

Размер партии деталей - 3 шт. Технологический процесс обработки приведён в табл. 1.1.

Таблица 1.1 Технологический процесс обработки деталей

№ операции	Операция	$t_{ ext{mik}},$	C_i
		МИН	
1	Токарная черновая обработка	2	1
2	Токарная чистовая обработка	1	1
3	Шлифование	3	1
4	Фрезерование	2,5	1

Решение. Длительность цикла технологических операций (см. рис. 1.1)

$$T_{noc} = n \Sigma (t_{u\kappa i} / c_I) = 3(2/1 + 1/1 + 3/1 + 2,5/1) = 25,5$$
 мин

i=1

Задача 2. Определить длительность цикла технологических операций при параллельном виде движения. Построить график организации выполнения технологических операций.

Размер партии деталей - 3 шт. Детали с операции на операцию передают поштучно. Технологический процесс обработки показан в табл. 1.2.

Таблина 1.2

$N_{\underline{0}}$		$t_{u\kappa,}$	
	Операция		c_1
операции		МИН	
1	Токарная черновая обработка	2	1
2	Токарная чистовая обработка	4	1
3	Шлифование	1	1
4	Фрезерование	3,5	1

Решение. Длительность цикла технологических операций (см. рис. 1.2) равна:

$$m$$

$$T_{nap} = \Sigma (t_{u\kappa i}/c_l) + t_{u\kappa.max} (n-p)/c_{max} =$$
 i -1
$$= (2/1 + 4/1 + 1/1 + 3,5/1) + (4/1 (2/1) = 18,5 \text{ мин.}$$

Задача 3. Определить длительность цикла технологических операций при параллельно-последовательном виде движения. Построить график организации выполнения технологических операций.

Размер партии деталей - 3 шт. Детали с операции на операцию передают поштучно. Технологический процесс обработки показан в табл. 1.3

Таблица 1.3

No	Операция	$t_{u\kappa,}$	C.
операции	Операция	МИН	C_{I}
1	Токарная обработка	3	1
2	Шлифование	2	1
3	Фрезерование	1	1

Решение. Длительность цикла технологических операций (см. рис. 1.3)

$$Tn.noc = n$$
 t_{usci}/c_1)- $(n-1)$ t_{usci}/c_1) t_{usci}/c_1) t_{usci}/c_1) t_{usci}/c_1) t_{usci}/c_1 t_{usci}/c_1) t_{usci}/c_1 t_{us

Для построения графика (см. рис. 1.3) определяют время, через которое начинается обработка деталей на последующих операциях относительно начала на предыдущих.

где $t_{uu\kappa,n}$ и $t_{uu\kappa,noc}$ - штучно-калькуляционная норма времени на предыдущей и последующей смежных операциях, мин, c_n и c_{noc} - число рабочих мест на предыдущей и последующей операциях.

№ операции	мин t _{шк}	С	n=3шт., p=1 шт.
1 2 3	3 2 1	1 1 1	1 2 3 1 2 3 1 2 3 Тп.пос

Рис 1.3 График организации выполнения технологических операций при параллельно-последовательном виде движения предметов труда

В относительно несложных процессах длительность цикла технологических операций (рис.1.3)

$$T_{n,noc} = n \bigoplus_{i=1}^{m} \mathbb{1}_{u\kappa_i} / c_i \mathbb{1}_{i=1}^{m-1} \mathbb{1}_{u\kappa_i} / c_i \mathbb{1}_{kop}$$

где $(t_{u\kappa i}/c_i)_{\kappa op}$ - время обработки одной детали на i-й короткой операции, мин.

При построении графика организации выполнения технологических операций время, через которое начинается обработка деталей на i-й операции относительно начала обработки деталей на предыдущей (i-1)-й операции.

$$t_{ii} = n(t_{uik(i-1)} / c_{i-1}) - (n-p)(t_{uiki} / c_i),$$

Сложный производственный процесс изготовления изделия включает производственные циклы изготовления отдельных деталей и производственный цикл сборки (узловой и общей).

Варианты заданий

Задание 1.

No	n	Время, мин.						Стан	ки, с.	
745	11	1								
вар.	шт.	шт.	tl	t2	t3	t4	C1	C2	C3	C4

1.1	18	3	1	4	2	6	1	1	1	2
1.2	20	2	1	4	2	6	1	2	1	2
1.3	21	3	1	4	2	6	1	1	1	3
1.4	16	4	1	4	2	6	1	2	2	3
1.5	20	5	1	4	2	6	1	1	2	2
1.6	24	6	1	4	2	6	1	2	2	2
1.7	24	3	2	3	4	5	2	1	2	2
1.8	20	4	2	3	5	4	2	1	2	2
1.9	21	3	2	3	3	4	2	3	1	2
1.10	18	3	2	3	5	4	2	1	2	2
1.11	16	4	2	2	4	4	2	2	2	2
1.12	15	3	2	2	3	3	2	1	1	1
1.13	12	3	2	2	4	5	2	1	2	2
1.14	10	2	2	2	6	4	2	1	3	2
1.15	24	6	2	2	1	1	2	1	1	1

Задание 2

NC		D		E	Время	і, мин	.•				Стан	ки, с	•	
$N_{\underline{0}}$	n	Р												
вар.	шт.	шт.	tl	t2	t3	t4	t5	t6	Cl	C2	C3	C4	C5	C6

2,16	200	20	8	3	27	6	4	20	2	1	3	3	2	5
2,17	200	20	8	3	18	6	4	20	2	1	6	2	2	4
2,18	200	20	7	3	27	6	4	20	1	1	9	2	1	4
2,19	200	20	8	4	20	8	5	18	2	2	2	2	2	6
2,20	200	20	5	3	10	10	10	10	5	1	1	2	2	2
2,21	200	10	8	3	27	6	4	20	2	4	1	3	3	10
2,22	200	10	4	12	20	5	2	8	0	4	5	1	1	2
2,23	200	10	5	11	15	5	3	10	1	0	3	1	3	5
2,24	150	10	6	10	20	5	4	12	3	2	0	1	1	4
2,25	150	10	7	9	15	5	10	12	1	3	5	0	2	6
2,26	150	15	8	3	27	6	4	20	0	1	9	2	10	0
2,27	150	15	9	6	20	8	9	12	3	3	4	0	3	0
2,28	150	15	10	7	15	10	6	8	0	1	3	2	3	4
2,29	150	15	И	8	20	12	9	15	0	0	2	4	3	3
2,30	150	15	12	9	15	4	6	7	0	3	3	2	1	1

Задание 3

Партия деталей 300 ШТ обрабатывается параллельно-последовательном виде движения ее в процессе производства. Технологический процесс деталей обработки состоит ИЗ семиопераций, длительность которых соответственно составляет $t_1=4; t_2=5; t_3=7; t_4=3; t_5=4; t_6=5; t_7=6$ мин. Каждая одном операция выполняется на станке. партия - 30 шт. В результате Передаточная улучшения технологий производительность третьей операции сократилась на 3 мин, седьмой - на 2 мин. Определить, как изменится технологический цикл обработки партии деталей.

Задание 4

Определить, какой движения деталей вид процессе производства надо принять для обработки партии деталей в 500 шт., чтобы получить минимальную длительность технологического цикла, если передачу деталей с операции на операцию транспортными партиями любой величины заменить поштучной передачей. Пятая операция выполняется на трех остальных станках, каждая ИЗ на одном станке. Технологический процесс обработки деталей состоит следующих операций:

Норма времени

на операцию,

	мин
1. Сверление	12
2. Расточка.	3
3. Протяжк	a 2
4. Обточка	15
5. Зубонарезс	ание 30
6. Протяжк	a 3
7. Снятие за	усенца 6
8. Сверление	3
Задание 5	
	Определить длительность технологического цикла обработки партии деталей в 200 шт. при параллельном виде движения ее в процессепроизводства. Технологический процесс обработки деталей состоит из следующих операций:
	1. Центрование заготовки 4
2. Черновая с	обточка 22
	3. Чистовая обточка 5
	4. Сверление отверстий 4

- *5. Нарезание резьбы... 8*
- 6. Фрезерование лазов... *10*
- 7. Шлифование поверхности... ... 27

Вторая и шестая операции выполняется на двух станках каждая, седьмая - на трех, а каждая из остальных операций - на одном. Передаточная партия - 40 шт.

Ответ: $T_{\text{пар}} = 3600$ мин.

Содержание отчета.

Отчет по практической работе должен содержать:

- тему работы;
- цель работы;
- задание;
- решение задач.
- графики движения.

Контрольные вопросы

- 1. Что представляет собой производственный процесс?
- 2. Как классифицируются производственные процессы?
- 3. Перечислите принципы организации производственного процесса.
- 4. Что такое длительность производственного процесса?
 - 5. Какова структура производственного процесса?
- 6. Назовите виды движения предметов труда в процессе производства.
- 7. Как определить длительность цикла при последовательном виде движения?
- 8. Как определить длительность цикла при параллельно-последовательном виде движения?

9. Как определить сумму времени коротких операций.

Литература

- 1. Схиртладзе А.Г., Вороненко В.П., Морозов В.В., Шеин И.П., Киселев Е.С. Проектирование участков и цехов машиностроительных производств. Старый Оскол: ТНТ, 2011-445 с.
- 2. Балашов В.М., Мешков В.В., Схиртладзе А.Г., Борискин В.П. Проектирование машиностроительных производств (механические цеха).- Старый Оскол: ТНТ, 2006-200 с.
 - 3. Савосина Т.И. Машиностроительное производство.- Ростовна-Дону: «Феникс», 2004 200 с.