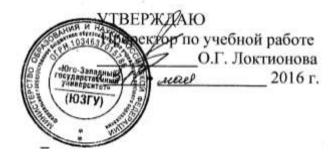
Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна


Должность: проректор по учебной работе

Дата подписания: 14.01.2022 09:40:18 Vulukansusin программный ключ: МИНОБРНАУК И РОССИИ

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089 Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

1

Кафедра фундаментальной химии и химической технологии

ПОВЕРКА АВТОМАТИЧЕСКОГО ПОТЕНЦИОМЕТРА И МОСТА

Методические указания по выполнению лабораторной работы по дисциплине «Системы управления химико-технологическими процессами» для студентов направления подготовки 18.03.01 Химическая технология

УДК 510.6

Составитель Е.В. Агеева

Рецензент К.х.н., доцент, доцент каф. ФХ и ХТ *С.Д. Пожидаева*

Поверка автоматического потенциометра и моста: методические указания по выполнению лабораторной работы по дисциплине «Системы управления химико-технологическими процессами»/Юго-Зап. гос. ун-т; сост. Е.В. Агеева. Курск, 2016. 14 с.

Приведены краткие теоретические сведения, описания методики поверки, задание на работу и порядок обработки результатов эксперимента.

Методические указания соответствуют требованиям программ по дисциплине «Системы управления химикотехнологическими процессами».

Предназначены для студентов направления подготовки 18.03.01 Химическая технология

Текст печатается в авторской редакции

Подписано в печать Формат 60х84 1/16. Усл. печ. л. Уч.-изд.л Тираж 50 экз. Заказ. Бесплатно Юго—Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

СОДЕРЖАНИЕ

1. ЦЕЛЬ РАБОТЫ	4
2. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ	4
2.1. Поверка автоматического потенциометра	4
2.2. Поверка автоматического моста	7
2.3. Требования к оформлению отчета	8
3. КОНТРОЛЬНЫЕ ВОПРОСЫ	9
ПРИЛОЖЕНИЯ	10
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	14

1. ЦЕЛЬ РАБОТЫ

Ознакомиться с принципом действия и устройством автоматического электронного потенциометра и моста, характеристиками термопар и термометров сопротивления, а также освоить методику их поверки.

2. ПОРЯДОК ВЫПОЛНЕНИЯ ЛАБОРАТОРНЫХ РАБОТ

2.1. Поверка автоматического потенциометра

Поверку автоматических потенциометров проводят по стандартам и ГОСТ 7164-71.

В данной работе поверка предусматривает выполнение следующих операций:

- 1) определение основной абсолютной и приведенной погрешностей.
 - 2) определение вариации показаний прибора,
- 3) определение распределение погрешности вдоль шкалы прибора.

Для поверки потенциометра необходимы переносной образцовый потенциометр класса 0,05 (например, $\Pi\Pi$ -63) и термометр с ценой деления 0,01 °C.

Для поверки собирают установку, показанную на рисунке 1.

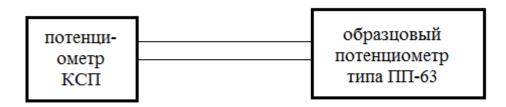


Рисунок 1 - Схема установки поверки потенциометра

Поверка производится в следующем порядке:

1. Подготовить образцовый потенциометр к работе.

Подготовка начинается с поверки механического нуля гальванометра 1 при выключенном питании (см. рисунок 2). Если стрелка гальванометра 1 не стоит на нуле, то вращением корректора 2 установить ее в нулевое положение.

Затем произвести установку **рабочего тока**, для чего переключатель **B5** установить в положение «**K**» и вращением рукояток

3 (грубо) и **4** (точно) добиться установки стрелки гальванометра в нулевое положение, после чего тумблер **B5** перевести в положение «**И**». При установке рабочего тока и измерении напряжения гальванометр включается в работу с помощью кнопок «**грубо**» и «**точно**».

Вначале рабочий ток устанавливается при нажатии кнопки «грубо», а затем «точно». Если стрелка гальванометра не устанавливается на нуль, то необходимо сменить источники питания прибора.

При пользовании переносным потенциометром тумблеры «НЭ», «Г», «БП», «Б» стоят в положении «В», если к соответствующим зажимам не подключаются перечисленные элементы.

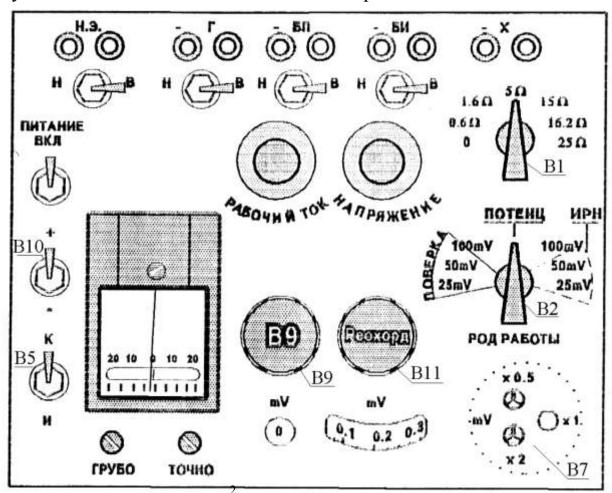


Рисунок 2 - Внешний вид передней панели потенциометр ПП-63

При поверке потенциометра переключатель **B1** стоит в положении «**O**», а **B2** – в положении «**Поверка**». Штекер **B7** обеспечивает умножение соответствующего предела, который указывает **B2** на 0,5,1 и 2.

Предел измерения устанавливается с помощью **B2** и **B7** исходя из предела поверяемого прибора.

2. Определить температуру окружающей среды (температура может быть определена с помощью поверяемого прибора путем закорачивания его входов) и определить по градуировочной таблице, соответствующей градуировке шкалы поверяемого прибора, величину поправки е. Полученный результат е занести в протокол (см. прил. 3).

При поверке прибора образцовым потенциометром эту вносимую поправку следует учитывать, вычитая ее значение из градуировочного, найденного по таблице.

- 3. На зажимы поверяемого прибора подать с помощью рукоятки 5 напряжение, соответствующее термоЭДС термопары (ТП) в начале шкалы. Если стрелка зашкаливает, то необходимо тумблером В10 изменить полярность напряжения.
- 4. Изменяя рукоятками 5 напряжение, подаваемое на вход поверяемого потенциометра, установить его стрелку на первую оцифрованную отметку шкалы (сначала верхней рукояткой 5 установить грубое значение напряжения, затем нижней более точное).
- 5. Нажать на кнопку «грубо» и движком секционированного сопротивления В9 добиться установки стрелки гальванометра на нулевую отметку шкалы.
- 6. Нажать на кнопку «точно» и движком реохорда В11 добиться установки стрелки гальванометра на нулевую отметку шкалы.
- 7. Произвести отсчет и запись показаний образцового потенциометра (по шкалам, расположенным под движками сопротивлений В9 и В11) в протокол поверки (см. прил. 3).
- 8. Увеличить рукоятками 5 подаваемое напряжение так, чтобы стрелка поверяемого прибора точно совпала со следующим оцифрованным делением его шкалы.
- 9. Повторять пункты 5 8 до тех пор, пока не будет произведена поверка всех оцифрованных делений шкалы поверяемого по-

тенциометра. После этого аналогично производится поверка тех же делений при обратном ходе, т.е. при движении стрелки справа налево.

2.2. Поверка автоматического моста

Основное назначение автоматического моста — измерение подключаемых к нему сопротивлений. Если к мосту подключен термопреобразователь сопротивления (т.е. резистор, предназначенный для измерения температуры), то с помощью данной схемы можно измерять температуру. Для удобства отсчета температур шкалы мостов в этом случае градуируются в градусах Цельсия в соответствии с градуировками подключенных сопротивлений.

При поверке моста роль термопреобразователя сопротивления играет образцовый магазин сопротивлений, допустимая основная погрешность которого не должна превышать 1/5 допустимой основной погрешности поверяемого прибора. Поверка автоматического моста включает те же три операции, что и для потенциометра (см. 2.1.).

Поверка осуществляется по схеме, изображенной на рис. 3, где MC — магазин сопротивлений. Автоматические мосты градуируются при сопротивлении линии связи $2,5\pm0,01$ Ом. Если сопротивления линии связи $R_{\rm J1}$ и $R_{\rm J2}$ меньше $2,5\pm0,01$ Ом, то добавляются уравнительные катушки $R_{\rm y1}$ и $R_{\rm y2}$.

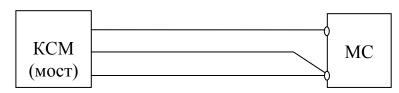


Рисунок 3 - Схема установки поверки моста.

При поверке моста определяются погрешности и вариация для всех оцифрованных отметок шкалы. Последовательности проведения поверки:

1. С помощью МС устанавливают стрелку моста на крайнюю левую оцифрованную отметку шкалы поверяемого прибора (начало шкалы прибора).

- 2. Записать в протокол поверки (см. прил. 4) градуировочное значение сопротивления (определяется по градуировочной таблице) для данной отметки и полученное на МС сопротивление.
- 3. Увеличить сопротивление МС так, чтобы стрелка поверяемого прибора совпала со следующим оцифрованным делением шкалы.
- 4. Повторить пункты 2 и 3 для каждого деления шкалы при прямом (движение стрелки слева направо) и обратном (движение стрелки справа налево) ходе.

Поверку моста при обратном ходе производят, устанавливая сопротивление на MC, превышающее сопротивление термометра для поверяемой отметки по градуировочной таблице R_{Γ} на 1-5 Ом, а затем плавно подводят стрелку к поверяемой отметке справа.

Значение сопротивления, соответствующее сопротивлению термометра в поверяемых точках прибора, берется из градуировочной таблицы, соответствующей градуировке термометра сопротивления (см. прил. 2).

Расчет погрешностей и вариации производится по формулам. Все результаты поверки и расчета заносятся в протокол поверки (см. прил. 4).

2.3. Оформление отчета

Отчет должен содержать следующие материалы:

- 1) цель работы;
- 2) схему лабораторной установки с краткими пояснениями;
- 3) принципиальную электрическую схему поверяемого прибора с пояснениями;
- 4) протокол поверки;
- 5) графики распределения абсолютных погрешностей вдоль шкалы прибора, на графике пунктирной линией должен быть нанесен предельный интервал погрешностей, соответствующий классу точности прибора;
- 6) вывод о пригодности поверяемого прибора (приборов) к эксплуатации (пригодность прибора определяется путем сравнения вычисленной максимальной приведенной погрешности с классом точности прибора, который указан на шкале: погрешность годного прибора не должна быть больше класса точности).

3. КОНТРОЛЬНЫЕ ВОПРОСЫ.

- 1. В чем заключается принцип действия и конструкция автоматических электронных потенциометра и моста?
- 2. В чем заключается принцип измерения температуры с помощью термометра сопротивления?
- 3. Каковы особенности измерительной схемы автоматических электронных мостов?
- 4. Как определяется вариация моста?
- 5. Какие материалы используются при изготовлении ТС?
- 6. По каким признакам можно установить, что мостовая схема уравновещена?
- 7. Напишите уравнение равновесия (компенсации) схемы потенциометра.
- 8. Каким образом подгоняется стрелка прибора КСП на начальную отметку шкалы?
- 9. Каким образом вводится автоматическая поправка на температуру свободных концов термопары?
- 10. На какую отметку шкалы устанавливается стрелка, если замкнуть накоротко входные зажимы прибора?
- 11. Оказывают ли влияние изменения сопротивлений соединительных проводов моста и потенциометра на результат измерения?
- 12. Перечислите факторы, вызывающие дополнительную погрешность.
- 13. Напишите уравнение равновесия схемы моста.

приложения

1. Градуировочные таблицы для термопар

(по ГОСТ 3044-61 и ГОСТ 6071-51)

Температура свободных концов 0 °C

Температура, °С	Гр. XК	Гр. ХА	Гр. ПП
0	0	0	0
50	3,35	2,02	0,299
100	6,96	4,10	0,643
15	10,69	6,13	1,026
200	14,66	8,13	1,436
250	18,77	10,52	1,867
300	22,91	12,21	2,314
350	27,16	14,30	2,777
400	31,49	16,40	3,249
450	35,82	18,51	3,730
500	40,16	20,65	4,218
550	44,56	22,78	4,715
600	49,02	24,91	5,220
700	57,77	29,15	6,256
800	66,42	33,32	7,325
900		37,37	8,426
1000		41,32	9,564
1100		45,16	10,732
1200		48,87	11,923
1300		52,43	13,129
1400			14,338
1500			15,537
1600			16,714

2. Градуировочные таблицы для термометров сопротивления

Градуировочные таблицы для платиновых термометров сопротивления

ТСП гр. 21, $R_0 = 46 \text{ Om}$

Температура, °C	-70	-60	-50	-40	-30	-20	-10
Сопротивление, Ом	33,07	34,94	36,80	38,65	40,50	42,34	44,17

Температура, °C	0		10		20		30		40	50		60	
Сопротивление, Ом	46,0	00	47,82		49,64		51,45		53,26	55,06		56,86	
Температура, °C	70		80		90		120		150	170		180	
Сопротивление, Ом	58,6	55	60,43	3	62,21	,21 67,			72,78	76,2	26	77,99	
$TC\Pi$ гр. 22, $R_0 = 100$ Ом													
Температура, °С	0		50		100		150		200	25	0	300	
Сопротивление,	10	0	119,	7	139,1		158,21	1 1	77,03	196,	56	231,79	
O_{M}													
Температура, °C	0		10		20		30		40	50		60	
Сопротивление, Ом	53,0	00	55,20	5	57,52	,	59,77		52,03	64,29		66,55	
ТСМ гр. 24, $R_0 =$	100	Ом						ı					
Температура, °C	0	-	10		20	30			40	50		60	
Сопротивление, Ом	100	10	4,26	1	08,52 1		12,78 117,04		7,04	121,30		125,56	
Температура, °C	70		80		90		100		110	120	0	130	
Сопротивление, Ом	129,	,8	134,1		138,3		142,6		146,9	151,1		155,4	
								ı					
Температура, °С		40	0 1		50		160		17	0		180	
Сопротивление, Ом	159	9,64	4 163		3,90	168,16)	172.	,42 1		179,68	

3. ПРОТОКОЛ ПОВЕРКИ АВТОМАТИЧЕСКОГО ПОТЕНЦИОМЕТРА

ПРОТОКОЛ

	верки дуиро		тическо	ГО ПО	тенцио № _	ометра	типа _	K	 :ласса	TO	ности
По	верка	произ	—— иерения вводилас	СЬ ПО	о обр	азцово	•				
	———	щового	потені			повер			KJIACC	104	ІНОСТИ
ä	то прибора, °С	Показания поверяемого прибора, °С Градуировочное значение термо ЭДС E _г , мВ ТермоЭДС, соотв. температуре окр. среды e , мВ Е _г с учетом поправки (E _г − e), мВ	туре окр. среды е, мВ	$(\mathbf{E}_{\mathbf{r}} - \mathbf{e}), \mathbf{MB}$	образцо- лютн вого по- погра		Абсо- лютная погреш- ность пове- ряемого прибо- ра, мВ		В, мВ	Ие	
№ опыта	Показания поверяемо		прямой ход Х1	обратный ход Х2	прямой ход Δ_1	обратный ход Δ_2	Приведенная погрешность γ ,	Вариация В	Примечание		

4. ПРОТОКОЛ ПОВЕРКИ АВТОМАТИЧЕСКОГО МОСТА

ПРОТОКОЛ

	повері	ки авто	матичес	ского	моста	типа _					
градуировки					№				пасса	точ	ности
Це По	на одн верка 1	ого дел произво	ерения ения шо одилась ценой де	калы по об елени	 бразцо я посл	вому м		ну с	— эпроти		ний
№ опыта	Показания поверяемого прибора, °C	Градуировочное значение термо ЭДС Е , мВ	ТермоЭДС, соотв. температуре окр. среды е, мВ	E_{r} с учетом поправки ($E_{r} - e$), мВ	Показ обра вого зина проти	зания зцо- мага- а со- ивле- ий, м	Абси лютн погре ност	ая еш- гь е- ого бо-	Приведенная погрешность у, %	Вариация В, мВ	Примечание

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1) Схиртладзе А.Г. Автоматизация технологических процессов. Старый Оскол.: ТНТ, 2012. 524 с.
- 2) Емельянов В.М., Фрумкин А. М. Сборник задач анализа переходных и установившихся периодических процессов в линейных звеньях САР. Курск: Курский гос. ун-т, 2010. 47с.
- 3) Кулаков М.В. Технологические измерения и приборы. –М.: Машиностроение, 1983. –412 с.
- 4)Поверка приборов для измерения температуры и тепловых измерений: Сб. инструкций, методических указаний и Государственных стандартов. –М.: Изд-во стандартов, 1965. 177 с.
- 5)Андреев А.А. Автоматические показывающие самопишущие и регулирующие приборы. –Л.: Машиностроение, 1973. –287 с.
- 6) Динкель В.Г., Кирюшин О.В. Поверка автоматического потенциометра и моста. –Уфа: Уфимский государственный нефтяной технический университет, 2003. –37 с.