Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

Дата подписания: 21.01.2022 13:41:08

МИНОБРНАУКИ РОССИИ

Уникальный программый ключ: 0b817ca911e6668a00 гда и ное государственное бюджетное образовательное

учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра фундаментальной химии и химической технологии

Технология основного органического и **нефтехимического синтеза**

Методические указания к практическим занятиям и самостоятельной работе для студентов направления подготовки 18.04.01 «Химическая технология»

УДК 547 (075.8)

Составитель: Лавров Р.В

Рецензент: Кандидат химических наук, доцент Пожидаева С.В.

Технология основного органического и нефтехимического синтеза: методические указания к практическим занятиям и самостоятельной работы для студентов направления подготовки 18.04.01 «Химическая технология» / Юго-Зап. гос. ун-т; сост.: Лавров Р.В. Курск, 2018, 39 с.

Приведены методические указания по выполнению практических занятий и самостоятельной работы по основам технологии основного органического и нефтехимического синтеза.

Методические указания соответствуют требованиям программы по курсу «Технология основного органического и нефтехимического синтеза» для студентов направления подготовки 18.04.01 «Химическая технология»

Текст печатается в авторской редакции

Подписано в печать Формат 60х84 1/16 Усл.печ.л. 4,5 Уч.- изд.л. 1,53 Тираж 50 экз. Заказ. Бесплатно.

Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

Содержание

1. Краткие теоретические сведения	4
2. Задания для самостоятельного решения	18
3. Содержание тестовых заданий	36
Литература	38

1. Краткие теоретические сведения

Исходные вещества для промышленного органического синтеза.

В процессах физико-химических превращений этих веществ (риформинг, конверсия, крекинг, пиролиз, коксование, перегонка и ректификация, абсорбционно-десорбционные методы) получают пять групп исходных веществ, используемых для синтеза многих тысяч других соединений (рис.1):

- 1) парафиновые углеводороды (от CH_4 до смесей C_{15} — C_{40});
- 2) олефины (главным образом C_2H_4 , C_3H_6 , C_4H_8);
- 3) ацетилен;
- 4) оксид углерода и синтез-газ;
- 5) ароматические соединения (бензол, толуол, нафталин и др.).

При атмосферной перегонке нефти получают следующие фракции: До 62° С выделяют *углеводородный газ*, состоящий преимущественно из фракции C_2 - C_6 . Основными компонентами газовой фракции являются пропан и бутан, которые выделяют в индивидуальном виде с использованием процесса ступенчатой ректификации и используют в качестве сырья для процесса пиролиза и в качестве бытового топлива.

62-180° С - бензиновые фракции.

120-240 °С - керосиновые фракции.

140-340°C - *дизельные фракции* служат дизельным топливом и сырьем для получения жидких парафинов.

При вакуумной перегонке мазута получают следующие фракции:

350-500 °C - вакуумный газойль, который используют в качестве сырья в установках катилитического крекинга и гидрокрекинга.

Более тяжелые фракции используют для получения масел различного назначения.

Процессы галогенирования, применяемые в производстве.

Введение атома галогена в молекулу органического соединения называется галогенированием. Наиболее важными для органического синтеза являются реакции введения атома галогена к углероду с образованием связи С—X (X = P, C1, Bm, 3).

Прямое замещение водорода на галоген

Реакция осуществляется действием свободного галогена на предельный углеводород на свету. В отсутствие света Последовательное замещение атомов водорода на атомы галогена называется реакцией металепсии. При действии хлора на метан образуются четыре галогенопроизводных:

$$CH_4 + C1_2 \rightarrow CH_3C1 + HC1$$
 Хлористый метил $CH_3C1 + C1_2 \rightarrow CH_2C1_2 + HC1$ Хлористый метилен $CH_2C1_2 + C1_2 \rightarrow CHC1_3 + HC1$ Хлороформ $CHC1_1 + C1_2 \rightarrow CC1_4 + HC1$ Четыреххлористый углерод

Процессы галогенирования, протекающие на свету в отсутствие катализаторов, являются цепными реакциями, инициированными свободными атомами хлора.

Реакция начала цепи:

$$C1 \cdot + C1 \cdot \rightarrow C1 - C1$$

 $CH_3 \cdot + C1 \cdot \rightarrow CH_3 - C1$
 $CH_3 \cdot + CH_3 \cdot \rightarrow CH_3 - CH_3$

Реакции роста цепи повторяются до обрыва цепи. Реакциями обрыва цепи являются, например, реакции рекомбинаций «носителей цепи» R • и X •

Реакция начала цепи (инициирование) протекает гораздо легче при освещении или в присутствии инициаторов — соединений, легко превращающихся в радикалы, например перекисей:

$$(CH_3)_3 C - O - C(CH_3)_3 \rightarrow 2(CH_3)_3 C - O \cdot (CH_3)_3 C - O \cdot + R - H \rightarrow R \cdot + (CH_3)_3 C - OH$$

Другой механизм, представленный ниже, маловероятен вследствие очень большой энергии образования свободных атомов водорода:

$$CH_4+Cl \cdot \rightarrow CH_3Cl+H \cdot H \cdot +Cl_2 \rightarrow HCl+Cl \cdot$$

Несколько медленнее идет замещение водорода на галоген в радикалах карбоновых кислот. Реакции ускоряются добавками катализаторов фосфора, и др.). В зависимости от условий реакции галоген вступает преимущественно в то или иное положение по отношению к карбоксильной группе. При хлорировании уксусной кислоты в присутствии иода, красного фосфора и пятихлористого фосфора получается монохлоруксусная кислота: $R-CH_2-CHO+Br_2\xrightarrow{-15^{\circ}C}R-CHBr-CHO+Br$

$$R-CH_2-CHO+Br_2\xrightarrow{-15^{\circ}C}R-CHBr-CHO+HBr$$

Дальнейшее хлорирование приводит к получению ди- и три- хлоруксусных кислот. Трихлоруксусная кислота образуется, в частности, при температуре смеси 160° С и увеличенном содержании хлора в ней.

$$CH_3$$
-COOH + $Cl_2 \xrightarrow{J_2+P+PCl_5} CH_2Cl$ -COOH + HCl

Этерификация эфиров при реакция образования сложных взаимодействии кислот и спиртов:

$$RCOOH + R'OH \Leftrightarrow RCOOR' + H_2O$$

Реакция протекает условиях кислотного катализа и В проходит ПО механизму нуклеофильного замещения. Ha первой стадии происходит протонирование атома кислорода карбонильной группы карбоновой кислоты с образованием резонансно стабилизированного карбкатиона:

после чего происходит нуклеофильная атака атома кислорода гидроксильной группы спирта на карбониевый центр с образованием алкилоксониевого иона, эта стадия является лимитирующей.

Затем в алкилоксониевом ионе происходит миграция протона на один из гидроксилов с образованием уходящей группы — O^+H_2 :

Завершающей стадией является отщепление промежуточного продукта присоединения воды и протона — катализатора с образованием сложного эфира:

Амидирование - реакция образования амидов кислот путём замещения гидроксила (—OH) карбоксильной группы на аминогруппу (—NH₂). Имеет большое физиологическое значение как главный путь обезвреживания аммиака в тканях животных и человека. В животном организме наибольшее значение имеет А. глутаминовой кислоты аспарагиновой кислоты с образованием глутамина и аспарагина.

А.— сложный ферментативный процесс, протекающий с использованием энергии аденозинфосфорных кислот. При ацидотических состояниях нейтрализация кислых продуктов обмена происходит в почках за счёт аммиака, от щепляющегося от глутаминапод влиянием фермента глутаминазы. Это один из ме ханизмов защиты организма от потери катионов (K, Na, Ca, Mg) и тем самым от сн ижения щелочного резерва крови.

Процессы алкилирования. Ароматические углеводороды можно алкилировать спиртами в присутствии серной кислоты (а также $A1C1_3$, P_2O_5 , H_3PO_4). При этой реакции хорошие результаты получаются с высшими алифатическими спиртами, главным образом с третичными. Протон серной кислоты (H^+) с молекулой спирта дает карбкатион CH_3 — CH_2 — CH_2 — CH_2 +, который изомеризуется в стабильный ион +

СН₃—СН₂—СН⁺—СН₃. Последний и является алкилирующим агентом Алкилирование зависит от природы заместителей, находящихся в ядре. Присутствие галогенов, нитро- и сульфогрупп затрудняет введение алкильного радикала. Присутствие же алкильной группы в ядре способствует дальнейшему алкилированию, причем главным образом получаются пара-замещенные; например, из толуола и изобутилового спирта образуется 1-метил-4-трет-бутил-бензол:

$$\begin{array}{c} CH_3 \\ CH_3 \\ + CH_3 - CH - CH_2OH \end{array} \longrightarrow \begin{array}{c} CH_3 \\ + CH_3 - C - CH_3 \\ CH_3 - C - CH_3 \\ - CH_3 \end{array}$$

Получение простых эфиров

Простые эфиры получают дегидратацией спиртов, действием галогеналкилов на алкоголяты и феноляты, диалкилсульфатов нафеноляты и другими способами.

Образование простых эфиров дегидратацией спиртов происходит только в присутствии водородных ионов, которые выполняют роль катализаторов. В зависимости от свойств спирта образующегося эфира нужно применять тот или иной кислый реаген. Чаще всего для этой цели применяют серную кислоту, но употребляют также хлористый водород, сульфокислоты, фосфорную кислоту и др. Например, образование дибутилового эфира можно представить схемой:

$$CH_3$$
— CH_2 — CH — CH_2 \longrightarrow $H^+ + CH_3$ — CH_2 — CH = CH_2

Одновременно протекают реакции полимеризации, обугливания и восстановления серной кислоты до $S0_2$.

Процессы сульфирования, нитрования и нитрозирования, применяемые в промышленности

Сульфированием называется процесс введения сульфогруппы — SO_2OH в органическое соединение. Продуктами реакции являются сульфоновые кислоты (сульфокислоты). Сульфирование широко, используется в лабораторной практике и промышленности.

Для введения сульфогруппы применяются различные сульфирующие агенты: серная кислота различных концентраций, олеум, серный ангидрид, сернистый ангидрид и кислород, сернистая кислота в виде солей щелочных металлов, сернистый ангидрид и хлор, хлорсульфоновая кислота и др.

Большое промышленное значение имеет сульфирование парафинов и ииклопарафинов смесью сернистого газа и хлора (сульфо- хлорирование), а также смесью сернистого газа и кислорода (сульфоокисление).

Сульфирование ароматических соединений. Одно из характерных отличий ароматических углеводородов от парафиновых — легкость, с которой ароматические соединения сульфируются серной кислотой. Наиболее легко сульфируются полициклические ароматические углеводороды (антрацен, фенантрен и др.), труднее — нафталин, еще труднее — бензол. Сульфирование серной кислотой — обратимый процесс:

$$Ar-H + HOSO_3H \implies Ar-SO_3H + H_2O$$

Вода, выделяющаяся при реакции, понижает концентрацию серной кислоты, которая при этом теряет свои сульфирующие свойства, и вызывает обратную реакцию — гидролиз образующейся сульфокислоты. Поэтому при сульфировании применяют большой избыток серной кислоты (от двух- до пятикратного). При исследовании кинетики реакции сульфирования было установлено, что сульфирующим агентом является ион сульфония + SO3, образующийся по реакции:

$$2H_2SO_4 \iff \dot{S}O_3 + H_3O^+ + HSO_4^-$$

Легкость сульфирования производных ароматических углеводородов зависит также от характера их заместителей. Заместители I рода, расположенные в порядке убывания их влияния, $OH > OR > NH_2 > NHCOR > R$ (где R — алкил).

Нитрованием называется процесс введения нитрогруппы в молекулу органического соединения. Реакция нитрования ароматических соединений проходит в общем легко и является одной из важнейших реакций органической химии.

Нитрование углеводородов жирного ряда

Углеводороды жирного ряда при обычной температуре не реагируют с концентрированной азотной кислотой; при нагревании концентрированная азотная кислота окисляет их — в этом случае происходит разрыв углеродной цепи с образованием карбоновых кислот.

Для нитрования углеводородов жирного ряда применяют разбавленную азотную кислоту, которая не обладает нитрующим действием, а служит лишь источником двуокиси азота, являющейся подлинным нитрующим агентом. Нитрование идет по следующей схеме:

$$R-H \xrightarrow{HNO_3 \text{ (pa36.)}} R-NO_2 + H_2O$$

Эта реакция открыта и детально изучена в 90-х гг. прошлого столетия М. И. Коноваловым.

Нитрозирование — реакция введения <u>нитрозогруппы</u> -NO в молекулы органических соединений.

Реакция нитрозирования может идти по радикальному или электрофильному механизму, и в таком случае активными частицами выступают соответственно катион нитрозония NO⁺ и радикал NO•. Реакция нитрозирования протекает по атомам углерода, азота либо кислорода как при замещении нитрозогруппой атома водорода (прямое нитрозирование) или других функциональных групп органического вещества, так и по механизму присоединения нитрозогруппы по кратной связи.

Агентами радикального нитрозирования служат оксиды азота NO, N_2O_3 , N_2O_4 , нитрозилхлорид NOCl, алкилнитриты, иногда N-нитрозамины.

Реакция нитрозирования в данном случае ведут при УФ-облучении, при повышенной температуре либо в присутствии радикальных инициаторов. Реакция идёт как атака по связи С-H, C-Hal, а также как присоединение оксидов азота и нитрозилхлорида по кратным С=С связям. К данному типу реакции также можно отнести пиролиз алкил- и ацилнитритов, который идёт по механизму внутримолекулярного нитрозирования (реакция Бартона).

Окисление — это процесс отдачи электронов. Соединения окисляются тем легче, чем выше их склонность к отдаче электронов. Окислители представляют собой вещества, имеющие сродство к электронам.

Окисление органических соединений чаще всего осуществляется при помощи следующих окислителей: кислорода воздуха, перманганата калия, хромовой смеси (получаемой растворением бихромата калия или натрия в серной

кислоте), хромового ангидрида, азотной кислоты, озона, двуокиси свинца, окиси серебра, трет-бутилата алюминия и др.

Действие окислителя на органическое соединение зависит от характера окисляемого вещества и от химической природы самого окислителя. Так, например, при окислении анилина хромовой смесью образуется бензохинон; бертолетовой солью или хромпиком в присутствии катализатора (соли ванадия, железа)—анилиновый черный (красителе сложного строения); перманганатом калия в нейтральной среде — азобензол, в щелочной нитробензол; хлорноватой кислотой — n-аминофенол:

$$N=N$$
 — NO2 NH_2 НО NH_2 Вензохинон Азобензол Нитробензол n -Аминофенол

Окисляемость органического соединения связана с наличием атомов водорода, так как окисление идет с отдачей атомов водорода или с присоединением атомов кислорода. Например, толуол легко окисляется

$$C_6H_5-CH_3 \longrightarrow C_6H_5-CH_2OH \longrightarrow C_6H_5-C \longrightarrow C_6H_5-COOH$$

 $C_6H_5-CH_3 \rightarrow C_6H_5-CH_2OH \rightarrow C_6H_5-C OH$ третичные спирты азрывом углеродной депи. Частный случай реакции окисления—идрирование, т. е. отщепление водорода. В промышленности с разрывом углеродной дегидрирование, важнейшим методом получения альдегидов и кетонов является каталитическое дегидрирование первичных и вторичных спиртов;

$$\begin{array}{ccc} R-CH_2OH & \Longrightarrow & R-C=O+H_2\\ & & | \\ H & & H \\ R-CH-OH & \Longrightarrow & R-C=O+H_2\\ & | \\ R' & & R' \end{array}$$

В качестве катализаторов используют металлическую медь, серебро, хромокись меди и окись цинка. Дегидрирование — процесс эндотермический, поэтому катализатор постоянно нагревают.

Гидрирование (гидрогенизация), присоединение H_2 к орг. соединениям (обратная р-ция наз. дегидрированием). Гидрирование и дегидрирование связаны подвижным равновесием, положение которого определяется и давлением Н2. Гидрирование обычно происходит при сравнительно низких т-рах дегидрирование более при высоких. Повышение давления благоприятствует гидрированию.

Катализаторы-хим. элементы с недостроенными d-оболочками, всего металлы VIII гр. периодической системы, оксиды и сульфиды металлов, а также многокомпонентные катализаторы.

При гетерог. гидрировании увеличение числа и объема заместителей при кратной связи приводит к затруднению координации соед. с пов-

нему H_2 . Скорость гидрирования стью катализатора и доступа К часто Достаточно определяется природой гидрируемой связи. легко гидрируются ацетилены, олефины, нитросоединения, труднееароматич. углеводороды, альдегиды, кетоны, карбоновые к-ты и их производные (см. табл.). Недостаток процесса-невысокая селективность вследствие протекания побочных р-ций крекинга, гидрогенолиза и т.п.

Условия каталитического гидрирования различных органических соединений:

Гидрируемое соединение	Продукт гидрирования	Катализаторы и условия р-ции
R ₂ C=CR ₂	R ₂ C-CR ₂	Pd, Pt, Ni, Ru или Rh; 20°C; 0,1 МПа
R−C≡C−R	H H R-C=C-R H H R	Pd; 20°C; <0,1 MΠa
		Rh или Pt; 50-100°C; 0,5-1,0 МПа
RCOOH	RCH ₂ OH	Pd, Ni, Ru или Cu-Cr; 150-200°C; > 10 МП
RCOOR	То же	То же
O RCR RC≡N RNO ₂ NR	OH RCHR RCH ₂ NH ₂ RNH ₂	Cu—Cr или Ni; 50–100°C; > 100 МПа Ni или Rh; 50–100°C; 10 МПа Pd, Ni или Pt; 20°C; 0,1–0,4 МПа
RCR	R₂CHNHR	Pd или Pt; 20°C; 0,4-10 МПа

В орг. синтезе широко используется некаталитич. ΓΟΜΟΓ. гидрирование. Доноры водорода в ЭТОМ случае - металлы в спиртах, тах, аммиаке и аминах; комплексные гидриды металлов (напр., $Na[BH_4]$, $Li[AlH_4]$), бораны.

При некаталитич. гидрировании первоначально идет атака нуклеоф. агента (электрона или гидрид-иона) по месту наименьшей электронной плотности в молекуле ненасыщ. соед. с послед. присоединением протона. При этом поляризованные двойные связи гидрируются легче неполяризованных.

Синтезы на основе оксида углерода

Органический синтез на основе оксида углерода получил за последние десятилетия очень большое промышленное развитие. Главное практическое применение получили следующие процессы:

1) синтезы из оксида углерода и водорода, применяемые для получения алифатических углеводородов и спиртов (процессы Фишера-Тропша);

- 2)процессы *оксосинтеза*, или *гидроформилирования* олефинов, ведущие к образованию альдегидов и из них первичных спиртов;
- 3) синтез карбоновых кислот и их производных (сложных эфиров, ангидридов и др.).

Каталитические превращения CO и H_2 очень многообразны, но из них можно выделить два наиболее важных: синтез углеводородов, в том числе топлива, и получение спиртов, особенно метанола.

Одной из хорошо известных реакций CO и H_2 является образование метана при катализе металлическим никелем при200—250°C под давлением:

$$CO + 3H_2 \rightleftharpoons CH_4 + H_2O$$
.

С кобальтом, обладающим гидрирующей активностью, реакция идет с выделением воды и преимущественным образованием парафинов, а с железом — с образованием диоксида углерода и высоким содержанием олефинов в продуктах:

$$nCO + (2n + 1)H_2 \xrightarrow{Co} C_nH_{2n+2} + nH_2O,$$

 $2nCO + (n + 1)H_2 \xrightarrow{Fe} C_nH_{2n+2} + nCO_2.$

По фракционному составу углеводороды представляют собой смесь низших гомологов (С3–С4), бензина, дизельного топлива, мягкого и твердого парафина. Групповым и фракционным составом продуктов можно управлять, изменяя температуру, давление и катализаторы.

Синтез углеводородов из метанола

Синтез углеводородов можно осуществить не только из CO и H_2 , но и из метанола (фирма "Mobil") и/или диметилового эфира (ДМЭ) при катализе цеолитами:

Жидкие углеводороды в получаемом продукте содержат не более 11 атомов C, т. е. соответствуют бензиновой фракции. Полученный бензин содержит значительное количество ароматических углеводородов, имеет o. v. 92–95, что существенно лучше, чем у бензина, получаемого по классическому методу Фишера—Тропша.

Получение метанола.

Синтез метанола из CO и H_2 был впервые разработан Патаром в 1924 г., применившим в качестве катализатора ZnO. Затем оксид цинка стали активировать оксидом хрома, а в настоящее время используют Zn-Cu-Cr-O- катализаторы. Образование метанола из оксида углерода и водорода протекает по обратимой высокоэкзотермической реакции

Кроме метанола, в заметных количествах образуются ДМЭ (за счет дегидратации метанола), метан (как продукт гидрирования метанола и СО), диоксид углерода и вода:

$$CH_3OH \longrightarrow CH_4 + H_2O$$

$$CH_3OH \longrightarrow CH_4 + H_2O$$

$$CO \longrightarrow H_2O$$

$$CO \longrightarrow H_2O$$

$$CO \longrightarrow CO_2 + H_2O$$

причем ДМЭ в последние годы не считается побочным продуктом.

Другие спирты также можно получать на основе CO и H2. Так, по реакции гомологизации метанола образуется этанол:

$$CH_3OH + CO + 2H_2 \longrightarrow C_2H_5OH + H_2O.$$

Конденсации по карбонильной группе, проводимые в производственных условиях

Образование метанола из оксида углерода и водорода протекает по обратимой экзотермической реакции:

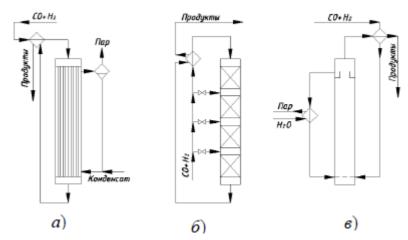
$$CO + 2H_2 \Leftrightarrow CH_3OH; -\Delta H298 = 110,8 кДж/моль.$$

В связи с экзотермичностью процесса константа равновесия падает с повышением температуры. Приходится поэтому повышать давление, что способствует росту равновесной степени конверсии ввиду уменьшения объёма газовой смеси в результате реакции.

Побочно образуются диметиловый эфир (за счёт дегидратации метанола), метан, диоксид углерода и вода:СН3ОН+ СН3ОН+ H_2 (С H_3)2О + H_2 ОС H_4 + H_2 ОСO+ $3H_2$ + H_2 ОС H_4 + H_4

При использовании катализаторов на основе CuO·Cr2O3 и ZnO·CuO·Cr2O3 с добавками промоторов синтез проводят при температуре 250 ... 300° C и давлении 5 ... 10 МПа.

Реакционный узел при синтезе метанола выполняют в зависимости от способа отвода тепла и проведения реакции.


Распространение получили трубчатые реакторы (рис.*a*), в трубах которых находится катализатор и движется реакционная масса, охлаждаемая кипящим водным конденсатом. Теплом реакционных газов подогревают исходную смесь.

Наибольшее распространение получили адиабатические реакторы с несколькими (обычно с четырьмя) слоями катализатора (рис., δ); в этих аппаратах теплообменные устройства отсутствуют, а для съёма тепла и регулирования температуры подают холодный синтез-газ между слоями катализатора через специальные распределители, обеспечивающие эффективное смешение горячего и холодного газа. Предварительно подогревают лишь часть исходного синтез-газа, а остальное реакционное тепло утилизируют для получения пара высокого давления.

Третий способ проведения реакции — синтез в трёхфазной системе (рис., в). Процесс проводят в жидкой фазе инертного углеводорода с суспендированным в жидкости гетерогенным катализатором и барботированием синтез-газа через эту суспензию. Тепло реакции отводят за счёт циркуляции жидкости через парогенератор или с помощью внутренних теплообменников с кипящим водным конденсатом. Метанол и часть углеводорода уносятся непревращённым синтез-газом; их тепло берут для подогрева исходного газа.

При таком способе синтеза достигается концентрация метанола в реакционном газе 15% (об.), вместо 5% (об.) при обычном синтезе, и степень конверсии до 35 вместо 15%.

При этом оптимальное мольное отношение (H_2+CO_2) : $(CO+CO_2)$ составляет $(2,05 \dots 3)$:1. Пар высокого давления, получаемый при утилизации тепла, используют для привода турбокомпрессоров, а пар с турбин расходуют на конверсию углеводородов в синтез-газ и ректификацию продуктов.

Рис. Реакционные узлы для синтеза метанола: a — трубчатый реактор; δ — адиабатический реактор с несколькими слоями катализатора и подачей холодного синтез-газа между ними; ϵ — реактор для синтеза в жидкой фазе (трёхфазная система)

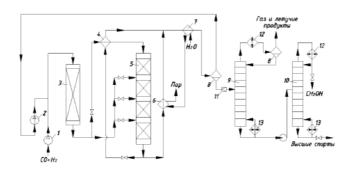


Рис. 2 Технологическая схема синтеза метанола:

1 – турбокомпрессор; 2 – циркуляционный турбокомпрессор; 3 – адсорбер;

4 – теплообменник; 5 – реактор; 6 – парогенератор; 7 – холодильник;

8 – сепаратор; 9, 10 – ректификационные колонны; 11 – дроссельный вентиль; 12 – дефлегматор; 13 – кипятильник

Получают товарный метанол высокой степени чистоты (до 99,95% основного вещества) с выходом до 95% при учёте всех потерь.

Другие спирты также можно получать на основе ${\rm CO}$ и ${\rm H}_2$. Так, при реакции гомологизации метанола образуется этанол:

$$CH_3OH + CO + 2H_2 \rightarrow C_2H_5OH + H_2O.$$

Синтез идёт на соединениях Со с йодсодержащим промотором и триалкилфосфином ($200 \dots 210$ °C и $15 \dots 40$ МПа, селективность $85 \dots 95$ %).

Общие принципы технологических расчетов реакционных аппаратов промышленного органического синтеза

Расчет материальных балансов химико-технологических процессов

При решении материальных и тепловых балансов отдельных аппаратов или технологических схем возникают задачи разной степени сложности. Прежде всего, нужно определиться с неизвестными величинами, их количество определит размерность системы уравнений для математического описания даннойсхемы.

Как правило, это балансовые уравнения по отдельным химическим элементам, общий баланс «приход-расход» по массе и теплоте, уравнения закона действующих масс, химической кинетики для отдельных маршрутов химической реакции и т.п. Важно, чтобы уравнения были независимыми, т.е. не выводились одно из другого. При составлении материальных балансов для химических процессов необходимо помнить закон эквивалентов: вещества реагируют друг с другом в количествах кратных их химическим эквивалентам, и в расчетах опираться на стехиометрические формулы рассматриваемых соединений.

В качестве примера рассмотрим процесс растворения бокситовой руды в водном растворе гидроксида натрия, имеющий место при получении глинозема по способу Байера.

Состав боксита задается обычно в пересчете на оксиды (мас.% или мас.д., p_i), например: pAl2O3, pFe2O3, pSiO2, pH2O, мас.д.

Пересчет состава производится через молярные массы соответствующих соединений.

Так, формулу гидроксида алюминия можно представить в виде оксида алюминия и воды: $Al(OH)_3 \leftrightarrow 1/2Al_2O_3 \times 3/2H_2O$. Поэтому при содержании гидроксида алюминия в образце - pAl(OH)3 пересчет на оксиды даст следующие значения концентраций:

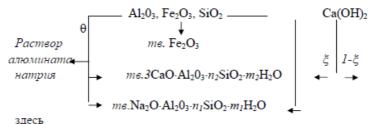
$$p_{Al_2O_3} = \frac{p_{Al(OH)_3} \cdot M_{Al_2O_3}}{2 \cdot M_{Al(OH)_3}} \,, \qquad p_{H_2O} = \frac{3 \cdot p_{Al(OH)_3} \cdot M_{H_2O}}{2 \cdot M_{Al(OH)_3}} \;.$$

Поскольку в целом молекула вещества электронейтральна, количества эквивалентов основных и кислотных оксидов должны быть равными. Если в рассматриваемом образце имеется свободная вода (часто характеризуется влажностью вещества), общее ее содержание определится как сумма:

$$pH_2O(общ.) = pH_2O(Al(OH)_3) + pH_2O(своб.)$$

При составлении материального баланса химического процесса вид влаги не имеет принципиального значения в плане его сходимости. Однако при проведении тепловых расчетов неправильное представление химического состояния воды может привести к серьезным ошибкам, поскольку теплоты образования рассматриваемых соединений с водой достаточно велики.

Оксид алюминия растворяется в щелочном растворе с образованием алюмината натрия:


$$Al_2O_3$$
 T. + $2NaOH$ p. = $2NaAlO_2$ p. + H_2O

Оксид кремния растворяется по следующей реакции:

Оксид железа в щелочном растворе не растворяется. Наряду с этим, в данной системе образуются твердые соединения: гидроалюмосиликаты натрия $Na_2O\cdot Al_2O_3\cdot nSiO2\cdot mH_2O$ и кальция - $3CaO\cdot Al_2O_3\cdot n2SiO_2\cdot m2H_2O$ (гидрогранат), стехиометрическое соотношение компонентов $\{n, m\}$ в которых зависит от условий проведения процесса. Источником кальция здесь является гидроксид

кальция, который вводят в систему для удаления кремния в виде гидрограната и уменьшения потерь натрия с гидроалюмосиликатом натрия.

Схему перераспределения химических элементов при растворении бокситовой руды можно изобразить следующим образом:

 θ - степень растворения боксита, д.е.;

ξ- доля растворившегося диоксида кремния, связанного в гидрогранате, д.е.

Таким образом, в твердой фазе присутствуют следующие соединения:

- нерастворившийся боксит, $\{1-\theta\};$
- оксид железа, $\{\theta\};$
- гидроалюмосиликат кальция, $\{\xi\};$
- гидроалюмосиликат натрия, $\{1-\xi\}$.

Последовательность расчетных операций при составлении материального баланса процесса растворения (на 1 тонну боксита) можно представить следующим образом:

Приходные статьи баланса

1. Поступление щелочи (при избытке против стехиометрии полного растворения оксида алюминия - а, д.е.):

$$n_{_{\mathit{uq}}} = \frac{1000 \cdot p_{_{\mathit{Al_2O_3}}}}{M_{_{\mathit{Al_2O_3}}}} \cdot 2 \cdot (1 + \alpha)$$
 кмоль $NaOH$.

2. Поступление воды с раствором щелочи:

$$n_{e/u\!\mu} = (\frac{n_{u\!\mu}}{C_{u\!\mu}} \rho_{u\!\mu} - n_{u\!\mu} M_{\mathit{NaOH}}) \cdot \frac{1}{M_{H,\mathcal{O}}}$$
 кмоль $\mathrm{H_2O},$

здесь

 C_{m} , ρ_{m} - концентрация, моль/л, и плотность, кг/м³, щелочного раствора.

или с учетом воды, входящей в молекулу NaOH (1/2Na₂O·1/2H₂O):

$$n_{p/m}^* = n_{p/m} + n_m/2$$
, кмоль H₂O

Таблица 1 Сводная таблица материального баланса процесса растворения бокситовой руды в щелочном растворе $(\theta=0.9\ \delta.e.,\ \zeta=0.95\ \delta.e.,\ C_{\rm m}=7.5\ {\rm моль/л},\ \rho_{\rm m}=1250\ {\rm кe/m}^3)$

Приходные статьи баланса				Расходные статьи баланса			
компо- ненты	кмоли	KΓ	концен- трации, мас.%	компо- ненты	кмоли	KΓ	концен- трации, мас.%
1.Боксит Al ₂ O ₃ SiO ₂ Fe ₂ O ₃ H ₂ O		1000,0 550,0 20,0 10,0	100,0 55,0 20,0 10,0 15,0	1.Алюм. раствор Al ₂ O ₃ Na ₂ O H ₂ O	1,90 6,37 102,92	194,1 394,9 1852,6	7,95 16,17 75,88
2.Щелоч- ной p-p			100,0	2. <i>Шлам</i> Боксит		100,0	100,0 7,15
NaOH H ₂ O	12,94 92,00	517,6 1656,5	23,81 76,19	Fe ₂ O ₃ Г.ал.сил. натрия	0,56 0,10	90,0 29,0	6,44 2,07
3.Известь Са(ОН) ₂		666,00		Г.ал.сил. кальция Са(ОН) ₂	2,85 0,45	1145,7 33,3	81,9 2,39
Всего		3840,0		Всего		3839,6	

Поступление извести из расчета полного перевода растворившегося диоксида кремния в гидрогранат:

(стехиометрическая формула гидрограната— 3CaO.Al₂O₃.SiO₂.4H₂O)

$$n_{Ca(OH)_2} = 3 \cdot \frac{1000 \cdot p_{SiO_2}}{M_{SiO_2}} \cdot \theta$$
 кмоль Ca(OH)₂.

Расходные статьи баланса

Твердая фаза

1. Нерастворившийся боксит:

$$G_6 = 1000 \cdot (1 - \theta)$$
 KT.

2. Гидроалюмосиликат кальция (ГАСК- гидрогранат):

$$n_{\text{2dK}} = \frac{1000 \cdot \text{p}_{\text{SiO}_2}}{M_{\text{SiO}_2}} \cdot \theta \cdot \xi$$
 кмоль ГАСК.

Гидроалюмосиликат натрия:

(ГАСН - стехиометрическая формула -Na₂O.Al₂O₃.1,5 SiO₂.2 H₂O):

$$n_{\text{2GM}} = \frac{1000 \cdot \text{p}_{\text{SiO}_2}}{M_{\text{SiO}_2} \cdot 1,5} \cdot \theta \cdot (1 - \xi)$$
 кмоль ГАСН,

здесь 1,5 — стехиометрический коэффициент SiO₂ в формуле ГАСН.

4. Гидроксид кальция:

$$n_{\mathit{Ca}(\mathit{OH})_2} = 3 \cdot \frac{1000 \cdot \mathrm{p}_{\mathit{SiO}_2}}{M_{\mathit{SiO}_2}} \cdot \theta \cdot (1 - \zeta)$$
 кмоль $\mathrm{Ca}(\mathrm{OH})_2$.

Оксид железа:

$$G_{Fe2O3} = 1000 \cdot p_{Fe2O3} \cdot \theta / M_{Fe2O3}$$
 кмоль Fe_2O_3 .

Раствор алюмината натрия

Алюминий (в пересчете на Al₂O₃):

$$n_{Al2O3} = 1000 \cdot p_{Al2O3} \cdot \theta / M_{Al2O3} \cdot (n_{rack} + n_{rack})$$
 кмоль Al_2O_3 .

Натрий (в пересчете на Na₂O):

$$n_{\text{Na2O}} = n_{\text{m}}/2 - n_{\text{тасн}}$$
 кмоль Na₂O.

3. Вода:

$$n_{\rm H20} = (n^*_{\rm в/m} + 1000 \cdot p_{\rm H2O} \cdot \theta/M_{\rm H2O} + n_{\rm Ca(OH)2} \cdot \xi) - (4 n_{\rm rack} + 2 n_{\rm rach})$$
 кмоль H₂O .

2. Задания для самостоятельного решения.

- 1. Изложите физико-химические основы паровой и парокислородной конверсии природного газа. Обоснуйте выбор температуры и давления процесса, охарактеризуйте применяемые катализаторы [13,14,21].
- 2. Представьте и опишите технологическую схему производства карбамида по системе стриппинга. В чем состоит преимущество данного способа по сравнению с классическим жидкостным рециклом аммиака и диоксида углерода [18,21].
- 3. Составьте материальный и тепловой балансы процесса синтеза аммиака и определите количество отводимой теплоты и объем катализатора, обеспечивающего заданную производительность реактора.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав азото-водородной смеси (АВС)				
	на входе в реактор, об.%				
	H_2	63,5	65,0	63,0	64,0
	N_2	21,0	21,5	21,0	21,5
	NH_3	2,0	3,0	4,5	4,0
	CH ₄	13,5	10,5	11,5	10,5
2	Давление в системе, МПа	30	25	15	20
3	Температура газовой смеси на выходе из слоя катализатора, ⁰ С	520	500	400	450
4	Доля тепла хим. реакции, отводимая в теплообменных трубках, д.е.	0,65	0,70	0,75	0,80
5	Степень приближения состава ABC к равновесию, д.е.	0,80	0,85	0,75	0,90
6	Кинетическое уравнение реакции синтеза аммиака	$\omega = k_0 e^{-E/RT} \frac{P_{H_2}^{1.5} \cdot P_{N_2}}{P_{NH_3}} (1 - \frac{\varphi}{K_1})$			$1-\frac{\varphi}{K_p}$
	-предэксп. конст.скорости, кмоль/с.м 3 .М $\Pi a^{1.5}$	$5,5\cdot 10^3$	$1,5\cdot 10^5$	$1,5\cdot 10^3$	$1\cdot10^3$
	-энергия активации, кДж/моль	100	120	80	90
7	Производительность реактора, т NH ₃ /ч	15	12	10	13
		İ			

- 1. Изложите физико-химические основы процесса газификации твердых топлив. Обратите внимание на условия проведения реакций угля с кислородом, водяным паром и водородом [1,13,21].
- 2. Представьте и опишите технологическую схему очистки конвертированного газа от диоксида углерода растворами поташа или этаноламинов. В чем заключаются недостатки этих способов [13,14,21].
- 3. Составьте материальный и тепловой балансы процесса синтеза метанола и определите количество отводимой теплоты и объем катализатора, обеспечивающих заданную производительность реактора.

	T	1	1	1	
№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав газа на входе в реактор, об.%				
	CO	15,5	16,2	19,5	17,0
	CO_2	6,0	5,5	1,5	5,5
	H_2	60,5	58,0	57,4	61,5
	CH ₃ OH	0,5	0,3	0,1	0,2
	CH_4	10,0	10,5	11,5	8,5
	N_2	7,5	9,5	10,0	7,3
2	Давление в системе, МПа	5	10	25	15
3	Температура газовой смеси на выходе из слоя катализатора, ⁰ С		260	360	280
4	Доля тепла хим. реакции, отводимая в теплообменных трубках, д.е	0,85	0,80	0,75	0,70
5	Степень приближения состава газовой смеси к равновесию, д.емаршрут образования СН ₃ ОН -маршрут паровой конверсии СО	0,70 0,95	0,75 0,90	0,80 0,70	0,85 0,80
6	Кинетическое уравнение маршрута образования метанола	$\omega = k_0 e^{-E/RT} \frac{P_{H_2} \cdot P_{CO}^{0.25}}{P_{CH_3OH}^{0.25}} (1 - \frac{\varphi}{K_p})$) -) p
	-предэксп. конст.скорости, кмоль/с.м ³ .МПа -энергия активации, кДж/моль	1··10 ⁴ 65	1,5·10 ⁴ 70	1·10 ⁴ 90	$\begin{array}{c} 2 \cdot 10^4 \\ 80 \end{array}$
7	Производительность реактора, т CH ₃ OH/ч	5	4	3	4

- 1. Изложите физико-химические основы процесса паровой конверсии монооксида углерода. С какой целью процесс осуществляется в две стадии и какие катализаторы используются в промышленности [13,14,21].
- 2. Представьте и опишите технологическую схему получения уксусной кислоты путем карбонилирования метанола. В чем состоит преимущество этого способа по сравнению с производством кислоты из ацетилена [20].
- 3. Составьте материальный и тепловой балансы процесса парокислородной конверсии природного газа в шахтном конверторе и определите объем катализатора, обеспечивающего заданную производительность аппарата.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав природного газа, об.% CH_4 C_2H_6	91,0 2,0	92,5 3,5	90,0 4,5	93,5 3,0
	$egin{array}{c} C_2H_6 \ C_3H_8 \ CO_2 \ N_2 \end{array}$	0,5 5,0 1,5	1,5 2,0 0,5	1,0 3,5 1,0	0,6 1,5 1,4
2	Соотношение: пар/газ кислород/газ	3,5 0,50	3,0 0,55	3,5 0,60	2,5 0,58
3	Давление в системе, МПа	2,5	3,0	3,5	2,0
4	Температура паро-газовой смеси (ПГС) на выходе из слоя катализатора, ⁰ С		850	900	830
5	Степень приближения состава ПГС к равновесию, д.емаршрут паровой конверсии СН ₄ -маршрут паровой конверсии СО		0,90 0,95	0,95 0,95	0,80 0,90
6	Кинетическое уравнение маршрута паровой конверсии метана	$\omega = k_o e^{-E/RT} \frac{P_{CH_4} \cdot P_{H_2O}}{P_{H_2O} + 10P_{H_2}^2} (1 - \frac{\varphi}{K_p})$			$-(1-\frac{\varphi}{K_p})$
	-предэксп. конст.скорости, кмоль/с.м ³ .МПа -энергия активации, кДж/моль	$\begin{array}{c} 5 \cdot 10^2 \\ 60 \end{array}$	2·10³ 65	5·10 ³ 70	4·10³ 67
7	Нагрузка конвертора (прир.газ), нм ³ /ч	10000	15000	20000	9000

- 1. Изложите физико-химические основы процессов очистки конвертированного газа от оксидов углерода: жидкостной и каталитической [13,21].
- 2. Представьте и опишите технологическую схему отделения синтеза аммиака. Объясните необходимость газового рецикла, двухступенчатой конденсации продукта и отдувки части циркуляционного газа [13-15,21].
- 3. Составьте материальный и тепловой балансы процесса синтеза карбамида и определите входную температуру и объем колонны синтеза, обеспечивающих заданную производительность.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав раствора углеаммонийных солей (УАС), мас.%				
	$ \begin{array}{c} \operatorname{NH}_{3} \\ \operatorname{CO}_{2} \end{array} $	45 30	40 40	35 45	38 40
	$ m H_2O$	25	20	20	22
2	Соотношение компонентов на входе в колонну синтеза, мольн. L_0	4,0	3,5	3,0	3,3
3	W_0 Давление в системе, МПа	0,5 20	0,7 25	0,8 15	0,6 22
4	Температура плава синтеза на выходе из колонны, 0 С	190	200	180	185
5	Степень приближения состава плава синтеза к равновесию, д.е.				
	-маршрут образования карбамата аммония -маршр. дегидратации карбамата аммония	1,0 0,95	1,0 0,90	1,0 0,80	1,0 0,85
6	Кинетическое уравнение реакции		θ		k ₀ e ^{-E/RT}
	синтеза карбамида	$\frac{1}{(1-\theta) - \frac{\theta(\theta + W)(1-\theta^*)}{\theta^*(\theta^* + W)}} = \frac{1}{\theta^*(\theta^* + W)}$		$\frac{1-\theta^*)}{W}$	$\frac{P^* \cdot q}{P \cdot \rho_c}$
	-предэкспонента конст.скорости, с ⁻¹	0,20	0,30	0,25	0,35
	-энергия активации, кДж/моль	15	16	14	15
7	Рециркуляционный поток УАС в колонну синтеза, кг/ч	10000	12000	15000	13000

- 1. Изложите физико-химические основы процесса синтеза аммиака. Обоснуйте выбор температуры и давления, опишите катализаторы, применяемые для данной реакции [13-15,21].
- 2. Представьте и опишите технологическую схему получения формалина путем парциального окисления метанола [20].
- 3. Составьте материальный и тепловой балансы процесса парового риформинга природного газа в трубчатой печи и определите количество подводимой теп- лоты и объем катализатора, обеспечивающих заданную производительность аппарата.

10				1	
No	Исходные данные для расчета	1	2	3	4
п/п					
1	Состав природного газа, об.%				
	CH_4	91,0	86,5	82,0	87,0
	C_2H_6	2,0	4,0	5,5	4,0
	CO_2	0,5	1,0	1,5	0,8
	H_2	5,0	8,0	10,0	7,0
	N_2^2	1,5	0,5	1,0	1,2
2	Соотношение пар/газ	3,5	3,0	3,7	3,3
3	Давление в системе, МПа	3	3,5	4	3,8
4	Температура паро-газовой смеси (ПГС) на входе и выходе из слоя, ⁰ С	500 800	510 820	520 840	530 830
5	Степень приближения состава ПГС к равновесию, д.емаршрут паровой конверсии СН ₄ -маршрут паровой конверсии СО	0,85 0,90	0,80 0,95	0,90 0,95	0,95 0.95
6	Кинетическое уравнение маршрута паровой конверсии метана	$\omega = k_o e^{-E/RT} \frac{P_{CH_4} \cdot P_{H_2O}}{P_{H_2O} + 10P_{H_2}^2} (1 - \frac{1}{2})$		$(1-\frac{\varphi}{K_p})$	
	-предэксп. конст.скорости, кмоль/с.м ³ .МПа -энергия активации, кДж/моль	3•10 ³ 65	7•10 ³ 60	1•10 ⁴ 70	5•10 ³ 67
7	Нагрузка печи (природный газ), нм ³ /ч	20000	25000	30000	28000

1. Изложите физико-химические основы синтеза метанола из оксидов углерода и

- водорода. Обоснуйте температуру и давление процесса, охарактеризуйте применяемые катализаторы [13,19].
- 2. Представьте и опишите технологическую схему получения карбамида с полным жидкостным рециклом. Укажите основные недостатки такой организации процесса [13,17,18].
- 3. Составьте материальный и тепловой балансы процесса парокислородоугле-кислотной конверсии природного газа в шахтном конверторе и определите объем катализатора, обеспечивающий заданную производительность аппарата.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав природного газа, об.% $CH_4 C_2H_6 CO_2 N_2$ Соотношение: пар/газ кислород/газ диоксид углерода/газ	94,5 3,5 0,5 1,5	93,5 5,0 1,0 0,5	95,0 2,5 1,5 1,0	96,0 2,0 0,7 1,3
3 4 5	Давление в системе, МПа Температура паро-газовой смеси (ПГС) на выходе из слоя, ⁰ С Степень приближения состава ПГС к равновесию, д.е. -маршрут паровой конверсии СН ₄ -маршрут паровой конверсии СО	3,0 0,50 0,15 2,0 850	2,5 0,55 0,20 2,5	3,5 0,60 0,25 3,0	3,3 0,58 0,22 3,3 870
6	Кинетическое уравнение маршрута паровой конверсии метана -предэксп. конст.скорости, кмоль/с.м ³ .МПа -энергия активации, кДж/моль Нагрузка конвертора (прир. газ), нм ³ /ч	0.85 0.90 $\omega = k_0 e$ $5 \cdot 10^2$ 60	0,95 -E/RT P PH	0,95 0,90 CH ₄ ·P _{H₂O} 2O +10P _H ² 5•10 ³ 70	$0.93 \\ 0.95$ $\frac{0}{K_p} \left(1 - \frac{\varphi}{K_p}\right)$ $1 \cdot 10^3$ 67
7		10000	15000	20000	25000

- 1. Изложите физико-химические основы процессов переработки метанола в формальдегид и уксусную кислоту. Обоснуйте условия проведения реакций и охарактеризуйте применяемые катализаторы [20].
- 2. Приведите и опишите технологическую схему двухступенчатого риформинга природного газа в производстве аммиака [13,14,21].
- 3. Составьте материальный и тепловой балансы процесса паровой конверсии монооксида углерода и определите объем катализатора, обеспечивающий заданную производительность аппарата.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав конвертированного газа на входе				
	в аппарат, об.%				
	CO	12,5	13,0	3,5	3,7
	CO_2	7,5	8,5	11,5	12,0
	H_2	57,0	56,7	63,2	62,5
	N_2	22,5	21,5	21,5	21,3
	CH_4	0,5	0,3	0,3	0,5
	C11 4	0,5	0,5	0,5	0,5
2	Соотношение пар/газ	0,6	0,7	0,5	0,8
	T	,	,	,	,
3	Давление в системе, МПа	3,0	2,0	3,0	2,5
		,	,	,	,
4	Температура паро-газовой смеси (ПГС)	430	450	220	230
	на выходе из аппарата, ⁰ C				
	na zamoge na amapara,				
5	Степень приближения состава ПГС	0,85	0,90	0,95	0,90
	к равновесию, д.е.	0,03	0,50	0,55	0,50
	к равновестю, д.с.				
6	Кинетическое уравнение реакции паро-		D		
	вой конверсии монооксида углерода	$\omega = k_0 e^{-}$	E/RT	CO ¹ H ₂ O	$-(1-\frac{\varphi}{})$
	вон конверени моноокенда утперода		0.5P _I	P_{H_2O} P_{H_2O}	K_{p}
	-предэксп. конст.скорости, кмоль/с.м ³ .МПа	1•10 ⁷	5,5•10 ⁵	3,5•10 ⁵	7•10 ⁵
	-энергия активации, кДж/моль	100	90	65	67
7	11	150000	100000	170000	120000
'	Нагрузка аппарата по конвертированно-	150000	120000	170000	130000
	му газу, $\text{нм}^3/\text{ч}$ (сухой газ)				

- 1. Изложите физико-химические основы процесса синтеза карбамида из аммиака и диоксида углерода и дистилляции плава синтеза [13,17,18,21].
- 2. Приведите и опишите технологическую схему совмещенной парокислородовоздушной конверсии природного газа в производстве аммиака [13,21].
- 3. Составьте материальный и тепловой балансы процесса пароуглекислотного риформинга природного газа в трубчатой печи и определите количество подводимой теплоты и объем катализатора, обеспечивающих заданную производительность аппарата.

№ п/п	Исходные данные для расчета	1	2	3	4
1	Состав природного газа, об.%				
	CH_4	86,5	85,0	84,5	87,0
	C_2H_6	2,0	2,5	1,5	1,3
	H_2	10,0	12,0	13,0	11,0
	N_2	1,5	0,5	1,0	0,7
	142	1,5	0,5	1,0	0,7
2	Соотношение: пар/газ	2,0	2,5	3,0	2,3
_	диоксид углерода/газ	0,15	0,2	0,25	0,22
				-	
3	Давление в системе, МПа	2,5	3	3,5	3,3
	v (HEC)	400	420	4.40	4.50
4	Температура паро-газовой смеси (ПГС)	400	420	440	460
	на входе и выходе из слоя, ⁰ С	800	820	840	830
5	Степень приближения состава ПГС				
	к равновесию, д.е.				
	-маршрут паровой конверсии СН ₄	0,85	0,90	0.90	0,90
	-маршрут паровой конверсии СО	0,90	0,95	0,90	0,95
		, , ,	- ,	7,2	- 9
6	Кинетическое уравнение маршрута		ron Po	·п ·Рп о	(0)
	паровой конверсии метана	$\omega = k_o e^-$	E/RT	10D2	$-(1-\frac{\psi}{V})$
	The production of the producti	$\omega = k_o e^{-E/RT} \frac{P_{CH_4} \cdot P_{H_2O}}{P_{H_2O} + 10P_{H_2}^2} (1 - \frac{\varphi}{K_1})$		2 Kp	
	The review Mercel even even a service of 3 MIT-	7 103	2 4 0 3	1 104	7 403
	-предэксп. конст.скорости, кмоль/с.м ³ .МПа	7•10 ³	3•10 ³	1•10 ⁴	5•10 ³
	-энергия активации, кДж/моль	65	67	70	67
	3,				
7	Нагрузка печи (природ. газ), $\text{нм}^3/\text{ч}$	20000	25000	30000	28000

Материальный баланс.

Пример 1. Сожжено 100 м3 газовой смеси, содержащей 50 объемных процентов пропана и 50 объемных процентов бутана. Избыток воздуха по отношению к теоретически необходимому для сгорания составляет 20%. Составить материальный баланс процесса горения и рассчитать состав продуктов сгорания (об. %).

Решение: При расчете принимаем, что воздух является смесью одного объема кислорода и 3.76 объема азота (молярное отношение О2: N2 со- ставляет 1:3.76). Поскольку условия температура и давление для процесса сжигания не указаны, принимаем условия за нормальные, соответственно 1 кмоль азота и 1 кмоль кислорода занимают объем, равные 22.4 м ³.

Уравнения реакций горения углеводородов имеют следующий вид: $C_3H_8 + 5O_2 = 3CO_2 + 4H_2O$

$$C_4H_{10} + 6.5O_2 = 4CO_2 + 5H_2O$$

В данном случае, так как объемные (а значит и молярные) соотношения пропана и бутана в смеси равны 50%, и, следовательно, количество бутана равно количеству пропана имеет смысл составить суммарное уравнение сгорания обоих углеводородов, хотя, следует отметить, что такой подход стоит использовать далеко не в каждом случае.

Суммарное уравнение: $C_3H_8 + C_4H_{10} + 11.5O_2 = 7CO_2 + 9H_2O$

Определяем количества и массы углеводородов, кислорода и продуктов сгорания, учитывая то, что воздух для сгорания был взят в избытке. Количества веществ определяются по стехиометрическому уравнению (уравнениям), для перехода от объема к количеству и от количества к массе проводим по формулам:

$$v(X) = V(X) Vm(X)$$
 и $m = v(X) \times M(X)$,

где v(x) – количество вещества, V(X) – объем вещества, V(X) – молярный объем вещества, m(x) – масса вещества, M(X) – мо- лярная масса вещества.

50 м³ пропана соответствует 2.23 кмоль пропана 98.12 кг

50 м3 бутана соответствует 2.23 кмоль пропана 129.3 кг

В результате сгорания образуется 15.6 кмоль СО2 686.8 кг

В результате сгорания образуется 20.1 кмоль Н₂О 361.8 кг

На сгорание смеси будет затрачено 25.6 кмоль О2 819.2 кг

С учетом 20% избытка имеем 30.7 кмоль O2 982.4 кг

Кислород, являющийся избытком 5.1 кмоль О2 163.2 кг

Азот, входящий в состав воздуха115.4 кмоль N2 3231 кг

Общая масса воздуха 4214 кг

Составляем таблицу:

Введено		Выведено		
ПРОПАН	98.1 кг	Диоксид углерода	686.8 кг	
БУТАН	129.3 кг	Вода	361.8 кг	
ВОЗДУХ, в том числе	4214 кг	Кислород	163.2	
кислород	яслород 982.4 кг азо		3231 кг	
азот	3231 кг			
СУММАРНО	4.44 т 4441.4 кг	СУММАРНО	4.44 т 4442.8 кг	

Примечание: Суммарное количество введенных в реакцию компонентов и выведенных из реакции веществ различается на 1.4 кг, что составляет ошибку 0.03%, вполне допустимую для такого рода расчетов. Причина появления этой ошибки анализировались ранее. При этом суммарное количество введённых и выведенных компонентов, выраженное в тон- нах и записанное с тремя значащими цифрами совпадает, что говорит о том, что расчет проведен правильно.

Пример 2.

Составьте материальный баланс печи для сжигания серы производительностью 60 т/сутки. Степень окисления серы 0.95 (осталь-ная сера возгоняется и сгорает вне печи). Коэффициент избытка воздуха $\alpha = 1.5$. Расчет следует вести на производительность печи по сжигаемой сере в кг/ч.

Решение: Процесс горения серы описывается уравнением реакции:

$$S + O2 = SO2$$

Определяем производительность печи: 60/24 = 2.5 т/ч = 2500 кг/ч серы

Масса серы, окисленной до SO2 m(S) = $2500 \times 0.95 = 2375$ кг; ν (S) = 74.2 кмоль

В виде паров остается неокисленной серы: m(S)изб = 2500 - 2375 = 125 кг

Израсходовано кислорода на окисление серы v1(O2) = 74.2 кмоль, с уче-том избытка в систему вводится следующее количество кислорода: v2(O2) = 111.3 кмоль, что соответствует m(O2) = 3562 кг

В составе воздуха с кислородом поступает азот $\nu(N2) = 418.5$ кмоль; m(N2) = 11720 кг

В результате реакции образовалось диоксида серы: v(SO2) = 74.2 кмоль; m(SO2) = 4750 кг

Осталось неизрасходованного кислорода тизб(О2) = 1187 кг

Полученные данные сводим в таблицу:

Введено			Выведено			
Сера	2500 кг	Диоксид серы	4750 кг	1670 м3		
		Cepa	125 кг			

ВОЗДУХ, в том	15282	11950	Кислород	1187 кг	835 м3
числе	ΚΓ	м3	Кислород	110/ KI	633 M3
кислород	3562 кг	2500 м3		11720	
азот	11720	9450 м3	азот	11/20 KΓ	9450 м3
a301	КГ	9430 M3		KI	
СУММАРНО	17782	11950	СУММАРНО	17782	11955
	КГ	м3		КГ	м3

Пример 3.

При электрокрекинге природного газа, содержащего 98% метана и 2% азота (по объему), в газе, выходящем из аппарата, содер- жится 15% ацетилена. Рассчитайте материальный баланс процесса на 1000м3 исходного природного газа без учета протекания побочных ре акций. Решение: Получение ацетилена из газообразных углеводородов осу- ществляется при 1200-1600°С: 2СН4 → С2Н2 + 3H2 − 380 кДж. Процесс происходит в электродуговых печах при 1600°С и линейной скорости газа 1000 м/с. В 1000 м3 природного газа содержится: СН4 − 980 м3. N2 − 20 м3. Процесс идет с изменением объема; при полном превращении метана в ацетилен и в продукционной смеси должно содержаться 25% ацетилена. Так как по условию в продуктах реакции содержится 15% ацетилена, значит, имеет место неполное разложение метана. Обозначим объем превращенного метана (м3) через х. Тогда состав смеси, выходящей из печи, можно представить следующим образом: СН4 (980–х) С2Н2 х/2 Н2 3/2х N2 20

40 Итого:(1000 +x) м3

По условию количество ацетилена в газе, выходящем из печи, составляет 15%, т. е. x/2 15% (1000 +x) 100%

Решая уравнение, $(x/2) \times 100/(1000 + x) = 15$.

получим x = 450 м3.

Исходя из этого, состав газа после крекинга будет следующим: V(C2H2) = 215 м3 ; V(CH4) = 550 м3 ; V(H2) = 645 м3 ; V(N2) = 20 м3 .

Результаты расчетов сведены в таблицу

Полученные данные сводим в таблицу:

ВВЕДЕНО			выведено		
Метан	695 кг	980 м ³	Ацетилен	248 кг	215 м ³
			Водород	58 кг	645 м ³
Азот	25 кг	20 м ³	Метан	388 кг	550 м ³
			Азот	25 кг	20 м ³
СУММАРНО	720 кг	1000 м ³	СУММАРНО	720 кг	1430 м ³

Задачи для самостоятельного решения.

- 1. Составить материальный баланс отделения окисления аммиака на 1 т азотной кислоты. Степень окисления аммиака до оксида азота 0.97 и до азота 0.03; оксида азота до диоксида азота 1.0 и степень абсорбции 0.92. Содержание аммиака в сухой аммиачно-воздушной смеси 7.13%. Относительная влажность воздуха 80%.
- 2. На упаривание поступает 9200 кг/ч 56-процентного раствора нитра- та аммония. После упаривания из выпарного аппарата выводится 5350 кг/ч раствора с концентрацией 96% NH_4NO_3 . Составить материальный баланс процесса упаривания.
- 3. Составить часовой материальный баланс процесса окисления амми- ака, необходимого для получения 100000 тонн/год HNO₃. если цех работает 355 дней в году, селективность окисления аммиака в оксид азота(II) 97%, а концентрация аммиака в аммиачно-воздушной смеси составляет 11.5% (по объему).
- 4. Составить материальный баланс производства метилового спирта, при котором протекают реакции: $CO + 2H_2 = CH_3OH$; $2CH_3OH = CH_3OCH_3 + H_2O$. Рассчитать расход синтез-газа (смесь CO и H2 с молярным соотношением 1:2) на 1000 кг метанола. Степень превращения CO составляет 93%; 4% образующегося метанола подвергается межмолекулярной дегидратации. Состав газа, 32% CO; 66% H2; 1% N2; 1% CH4 (по объему).
- 5. Составить материальный баланс процесса получения 1 тонны $CuSO4 \times 5H2O$ путем его кристаллизации из насыщенных растворов, если растворимость CuSO4 при $100^{\circ}C$ составляет 75 г/100 г воды, а при $20^{\circ}C-20.7$ г/100 г воды.
- 6. Составить материальный баланс процесса получения сульфида натрия по реакции Na2SO4 + 4H2 = Na2S + 4H2O, если степень превращения водорода 0.97. производительность по Na2SO4 250 т/сут. Состав сульфата натрия 99% Na2SO4. 1% NaCl. Степень превращения Na2SO4 составляет 94%. Состав технического водорода 97% H2. 2.2% N2; 0.8% Cl2 (по объему).
- 7. Составить материальный баланс башни сжигания фосфора, ороша- емой водой. Производительность по P2O5-4 т/ч. Содержание фосфора в техническом желтом фосфоре 99.5% (по массе). Коэффициент избыт- ка воздуха при сжигании 25%. Концентрация вытекающей из башни H3PO4-20%.
- 8. Составить материальный баланс сжигания сероводорода производительностью 15 т/ч (на моногидрат H2SO4). Исходный газ содержит 55% H2S и 45% влаги (по объему). На 1 м3 газа в печь подается 10 м3 воздуха. Степень превращения сероводорода составляет 98%.
- 9. Сульфат железа (III) получают по реакции: 6FeSO4 + 3H2SO4 + 2HNO3 = 3Fe₂(SO₄)3 + 4H₂O + 2NO. На окисление подают 1 т железного купороса, содержащего, 95% FeSO4×7H2O 95; 2% H_2SO_4 и 3% H_2O 3. Массовая доля H2SO4 92%, HNO3 68%. Рассчитать материальный баланс получения

Fe2(SO4)3. если серную кислоту подают по стехиометрии, а азотную – с избытком 10%.

10. Нитрат натрия получают из нитрат-нитритных щелоков, содержа- щих 20% NaNO2 и 12% NaNO3 (по массе), по реакции 3NaNO3+2HNO3=3NaNO3+2NO+H2O. Рассчитать расход азотной кисло- ты, содержащей 45% HNO3 (по массе) на получение 1000 кг NaNO3. Вычислить состав раствора и составить таблицу материального баланса.

Тепловой баланс.

Пример 1.

Рассчитать ΔH для реакции разложения метана до углерода и водорода при температуре $T=1000~\mathrm{K}$.

Решение.

 $CH4 \rightarrow Cграфит + 2H2$

Поскольку при разложении образуются простые вещества ΔH° (реакции) = $-\Delta H^{\circ}$ (СН4) = +74955 Дж. Уравнения молярных теплоемкостей имеют следующий вид:

Срм(графит) =
$$17.20 + 4.27 \times 10^{-3}$$
T $- (8.80 \times 10 - 5)$ /T 2 Срм(H2) = $29.12 - 1.92 \times 10^{-3}$ T $+ 4.02 \times 10 - 6$ T $2 - 0.88 \times 10 - 9$ T 3 Срм(СН4) = $19.90 + 50.28 \times 10^{-3}$ T $+ 12.70 \times 10 - 6$ T $^2 - 11.02 \times 10 - 9$ T 3 Разности коэффициентов составят: $\Delta a = 17.2 + 2 \times 29.12 - 19.90 = 55.54$ $\Delta b = (4.27 - 2 \times 1.92 - 50.28) \times 10^{-3} = -42.17 \times 10^{-3}$ $\Delta c' = -8.8 \times 105 \ \Delta c = (2 \times 4.02 - 12.70) \times 10^{-6} = -4.66 \times 10^{-6}$ $\Delta d = [2 \times (-0.88) + 11.02) \times 10^{-9} = -9.26 \times 10^{-9}$

Найденные значения Δa , Δb ... и T=298K, а также стандартную энтальпию реакции подставляем в уравнение и находим постоянную интегрирования: 74955 = $I + 55.54 \times 298 - 42.17 \times 10^{-3}$ 2 2982 + ··· Постоянная интегрирования I = 13776.

Подставляя ее в уравнение: $\Delta H = 13776 + 55.54 \times 1000 - 42.17 \times 10 - 3210002 + \cdots$ получим: $\Delta H = 89.671$ кДж

Количество выделившейся (или поглощенной) теплоты при протекании химической реакции зависит от степени превращения исходного реагента x(A) и значения теплового эффекта (изменения энтальпии):

Исходя из вышеизложенного, уравнение теплового баланса будет иметь следующие составляющие:

Qисх =
$$\nu(A) \times CpmA(TA-T0)$$

Qреакции = $QT \times \nu(A) \times x(A)$
Qпрод = $\nu(R) \times CpmR(TR-T0)$, где:

- QT тепловой эффект реакции в зоне реакции (или определенный для стандартной температуры, кДж,
- -v(A) и v(R) соответственно коли чество входящих реагентов и отходящих продуктов, моль или кмоль;
- -Т0 температура начала отсчета энтальпии, 298 К;
- -TA и TR температуры реагентов и продуктов соответственно, К.

Если размерность теплоемко сти выражена в Дж/(кг×K) или кДж/(кг×K), то в уравнение вместо количества в молях или киломолях подставляется масса реагентов или продуктов.

При составлении тепловых балансов могут быть использованы следующие упрощения:

- 1. Изменение Т мало отражается на величине Q. Это обусловлено воз- растанием энтальпий образования всех реагентов с нагреванием. До- пущение Q≈const также означает малое влияние температуры на раз- ность теплоемкостей исходной и конечной (или равновесной) реак- ционных смесей.
- 2. Средние значения Q и Ср (удельной теплоемкости) в рабочем температурном интервале остаются практически неизменными.

Следовательно, теплоемкость всей смеси — произведение $m \times Cp$ — также мало различается для входного и выходного потоков. Если поль- зоваться массовыми величинами потоков, то и удельные теплоемкости можно принять мало меняющимися в процессе.

Например, в синтезе аммиака, в котором Ср компонентов (H2. N2. NH3) различаются в несколько раз и в процессе значительно изменяется их содержание, тепло емкость смеси на входе отличается от теплоемкости смеси на выходе менее чем на 10%.

Исходя из вышеизложенного, уравнение теплового баланса с уче- том принятых допущений, можно записать в следующем виде:

$$m_{\text{исx}} \times Cp_{\text{исx}} \times T_1 + Q_{\text{реакции}} = m_{\text{прод}} \times Cp_{\text{прод}} \times T_2$$

В технической литературе по расчетам химико-технологических процессов часто температурой начала отсчета энтальпии является 0°С В этом случае количество теплоты, поступающее в систему или выходящее из нее, рассчитывается по формуле:

$$Q_{\text{исх}(\text{прод})} = v_{A(R)}C_{pm}T_{A(R)}$$

Пример 2.

При производстве оксида этилена по реакции $C_2H_4 + 0.5O_2 = C_2H_4O$ при 280°C и 1 атм этилен и кислород входят в реактор при 80°C, причем кислород берут в 10%-ном избытке. Степень превращения C_2H_4 равна 80%.

Определить количество теплоты для поддержания изотермического процесса, если в час в реактор поступает 140 кг C_2H_4 .

Решение:

	ΔH°,	C _{pm, 80}	C _{pm, 280}	v(pear),	ν(прод),
	Дж/моль	Дж/моль×К	Дж/моль×К	моль	моль
C ₂ H ₄	52417	46.8	58.5	1	0.2
O ₂	0	29.5	30.7	0.55	0.15
C ₂ H ₄ O	-52584	_	64.8	0	0.8

Произведем расчет теплового баланса для данного примера.

Используя закон Гесса, рассчитываем $\Delta H_{\text{реакции}} = -105001$ Дж, то есть при 80%ной конверсии этилена на 1 моль подаваемого в реактор этилена будет выделяться $0.8\times105001=84000$ Дж тепла. Количество тепла, вносимое исходными веществами и выносимое продуктами равно

 $Qucx = 1 \times 46.8 \times (353-298) + 0.55 \times 29.5 \times (353-298) = 3465 \ Дж;$

Qпрод = $0.8 \times 64.8 \times (553-298) + 0.55 \times 29.5 \times (553-298) = 17384$ Дж.

Таким образом, количество теплоты, которое необходимо отвести при подаче в реактор 1 моль этилена, составляет: Qотв. = Qреакции + Qисх. – Qпрод. = $84000 + 3465 - 17384 = 70081 \, \text{Дж}$.

С учетом того, что в час в реактор подается 140 кг этилена и степень его превращения составляет 0.8. количество теплоты, отводи- мое за 1 час, составляет

Qотв. = $(70081 \times 10\ 3 \times 140 \times 0.8)/28 = 280324\$ кДж.

Рассчитаем тепловой баланс данного процесса с учетом температуры начала отсчета энтальпии, равной 0° C:

 $Q_{BX.} = 1 \times 46.8 \times 80 + 0.55 \times 29.5 \times 80 = 5042 \ Дж$

Энтальпия продуктов составляет

 $Q_{\text{Вых.}} = 0.8 \times 64.8 \times 280 + 0.55 \times 29.5 \times 280 = 19058 \ Дж$

Qотв. = Qреакции + Qисх. - Qпрод. = 84000 + 5042 - 19058 = 69984 Дж.

Qотв. = $(69984 \times 103 \times 140 \times 0.8)/28 = 279936$ кДж, таким образом, расхождение в результатах расчета, полученных различными способами, составляет 0.14%. Для фазовых превращений (испарение, конденсация, плавление, сублимация, растворение) количество выделяющегося (поглощенного) тепла рассчитывается следующим образом:

Qф.пр. = $\sum_i (v_i q_{\phi.пр.})$

где ν – количество і-го компонента, изменившего свое фазовое, состояние; $q\phi$.пр. – удельная теплота фазового превращения.

Тепловые потери рассчитываются по известным формулам, в которые входит коэффициент теплопередачи, поверхность теплообмена и разность температур в реакционной смеси и окружающей среде.

Подвод теплоты в аппарат (Qп) можно учитывать исходя из потери количества теплоты теплоносителем, например греющей водой:

 $Q\pi = [m(H2O) \times C(H2O)] \times (Thaч - Tкон)$ или по формуле теплопередачи через греющую стенку

 $Q\pi = kT \times F \times (Tr - Tx) \times \tau$, где kT - коэффициент теплопередачи; <math>F - поверхность теплообмена; Tr, $\Gamma x - средняя температура греющего агента (воды, пара и т. п.) и нагреваемого (холодного) вещества в аппарате соответственно; <math>\tau - время$.

По этой и другим формулам теплопередачи можно также рассчитать отвод теплоты от реагирующей смеси в аппарате или потерю теплоты в окружающую среду (Q'п). Тепловой баланс в общем случае рассчитывают по данным материального баланса с учетом тепловых эффектов (экзотермических и эндотермических) химических реакций и физических превращений (испарение, конденсация и др.), происходящих в аппарате, с учетом подвода теплоты извне и отвода ее с продуктами реакции, а также через стенки аппарата. Тепловой баланс, подобно материальному, выражают в виде таблиц, а для расчета используют следующее уравнение:

где От, Ож, Ог – количество теплоты, вносимое в аппарат твердыми, жидкими и газообразными веществами соответственно; Q'т, Q'ж, Q'г – количество теплоты, уносимое из аппарата выходящими продуктами и полупродуктами реакции и непрореагировавшими исходными веществами В твердом, жидком газообразном виде; Оф.пр. и О'ф.пр – теплота фазовых превращений, происходящих с выделением и поглощением теплоты соответственно; Ох.р и Q'x.p. – количество теплоты в результате экзо- и эндотермических реакций; Qп – количество теплоты, подводимое в аппарат извне (дымовыми газами, нагретым воздухом, сжиганием топлива, электроэнергией н т.д.); О'п – потери теплоты в окружающую среду, а также отвод ее через холодильники, помещенные внутри аппарата.

Теплоту (тепловой поток, Вт), полученную при сжиганий топлива или при превращении электрической энергии в тепловую за единицу времени (например, секунду), подсчитывают по следующей формуле: Qтепл.поток = $B \times Q$ н p где B – расход топлива, м3 /с или кг/с; Qн p – низшая теплота сгорания топлива, Дж/м3 или Дж/кг.

При подсчете количества теплоты сгорания топлива (кДж/кг) по его элементному составу в технических расчетах чаще всего использу- ют формулу Менделеева:

 $Q_{\rm H}$ $p=339.3\times C+1256\times H-109\times (O-S)-25.2\times (9H+W)$, где C, H, O, S – соответственно содержание углерода, водорода, кисло- рода и серы (в процентах по массе); W – содержание влаги в рабочем топливе (с учетом содержания в нем золы, азота).

Высшую теплоту сгорания Qв p вычисляют при условии, что вся вода, образовавшаяся при сгорании, и влага, первоначально содержащаяся в топливе, конденсируются из отходящих газов в жидкость и охлажда- ются до

первоначальной температуры, т. е. до температуры, с которой поступает топливо в топку. $Q_H p = 339.3 \times C + 1256 \times H - 109 \times (O - S)$

На основе элементного состава топлива теоретический расход воз- духа m (кг/1 кг. топлива) рассчитывают по уравнению: $m_{\text{теор}} = 0.116 \times C + 0.348 \times H + 0.0435 \times (S - O)$ Эта формула получена из стехиометрического расчета, основанного на предположении, что весь углерод сгорает до CO2. водород – до H_2O , а сера – до SO_2 .

Задачи для самостоятельного решения

- 1. Тринатрийгидродифосфат образуется по реакции: Na4P2O7 + HCl = Na3HP2O7 + NaCl Δ H°(Na4P2O7)=3166 кДж/моль; Δ H°(HCl)=152.4 кДж/моль; Δ H°(Na3HP2O7) = 2965 кДж/моль; Δ H°(NaCl)=411.3 кДж/моль. Рассчитайте тепловой эффект реакции на 100 кг пирофосфата натрия, содержащего 97% Na4P2O7. если конверсия составляет 98%.
- 2. Определить расход тепла на получение 1000 кг диоксида кремния по реакции SiCl4 + 2H2O = SiO2 + 4HCl, если теплота образования ве- ществ равна, (кДж/моль): SiCl4 628.4; H2O 286.0; SiO2 437.9; HCl 95.5.
- 3. На вакуум-кристаллизацию приходит 2000 кг/ч раствора, содер- жащего 37.5% CuSO4 (по массе), с температурой 90°С [Cp = 2.99 кДж/(кг×град)]. При охлаждении до 20°С выпадают кристаллы CuSO4×5H2O [Cp = 1.1251 Дж/(кг×К)]. Маточный раствор содержит 17% CuSO4 [Cp 3.655 кДж/(кг×К)]. Теплосодержание водяного пара 2640 кДж/кг. Определить массу выпавших кристаллов.
- 4. В вакуум-испаритель поступает 300 т/ч H_3PO_4 с температурой 348°С [Cp = 2.26 кДж/(кг×К)] и охлаждается до 308°С. Определите количество испаряемой воды, если теплосодержание пара равно 2610 кДж/кг.
- 5. На первый слой контактного аппарата поступает 40000 м3 /ч газа, содержащего 8% SO₂. 13% O₂ и 79% N2 (по объему) с температурой 420°C. Определите температуру газа после слоя, если конверсия SO2 в реакции окисления составляет 70%, а тепловой эффект реакции равен в среднем 94.2 кДж/моль. Средняя удельная теплоемкость газа равна 1.9 кДж/(кг×К). Рассчитайте расход холодного 150°C) газа состава 8% SO2. 13% O2 и 79% N2 (по объему), на получение смешанного газа с температурой 460°C.
- 6. В конденсатор приходит 8000 м3 /ч газа, содержащего 55% водяного пара (по объему). Определите количество конденсирующегося водяного пара и количество тепла, которое при этом выделяется, если общее давление в конденсаторе равно 160 кПа, а равновесное давление водяного пара 30 кПа. Теплота конденсации составляет 2245 кДж/кг.
- 7. Определите количество теплоты, выделяющееся при обжиге 5 т колчедана, содержащего 40% серы, по реакции 4FeS2 + 11O2 = 2Fe2O3 + 8SO2 + 3413.2 кДж, если степень выгорания серы из колчедана 0.90.

3.Содержание тестовых заданий.

- 1. Соединения азота в системе биологической и технической жизнедеятельности человека. Основные промышленные способы связывания атмосферного азота.
- 2. Физико-химические основы разделения воздуха при низких температурах. Устройство ректификационной колонны.
- 3. Физико-химические основы получения водорода электролизом водных растворов солей и щелочей. Устройство электролитических ванн.
- 4. Физико-химические основы переработки твердых топлив с целью получения водорода и синтез-газа. Коксование, газификация и гидрогенизация угля.
- 5. Физико-химические основы процесса паровой конверсии монооксида углерода. Эксплуатация катализаторов и конструкции реакторов.
- 6. Очистка природных и технологических газов от нежелательных примесей. Сравнительная оценка жидкостных, адсорбционных и каталитических методов очистки.
- 7. Способы и физико-химические основы очистки конвертированного газа от диоксида углерода.
- 8. Способы и физико-химические основы очистки конвертированного газа от монооксида углерода.
- 9. Способы и физико-химические основы очистки природного и технологических газов от соединений серы.
- 10. Физико-химические основы процесса паровой и паро-кислородной конверсии углеводородов с целью получения синтез-газа. Эксплуатация катализаторов и конструкции реакторов.
- 11. Проведение риформинга природного газа в шахтном конверторе и трубчатой печи. Каталитические и некаталитические способы конверсии и пиролиза. Устройство реакторов.
- 12. Физико-химические основы процесса синтеза аммиака. Эксплуатация катализаторов и конструкции колонн синтеза.
- 13.Структура гатерогенных катализаторов и физико-химические основы процесса восстановления оксидных катализаторов. Состояние катализатора в реакционной среде.
- 14. Основные стадии аммиачного производства, его блок-схема и технологические связи со смежными производствами химического предприятия.
- 15. Физико-химические основы процесса синтеза карбамида. Кинетика химической реакции и конструкции колонн синтеза.
- 16. Дистилляция плава синтеза карбамида, упаривание раствора карбамида и грануляция продукта. Физико-химические основы процессов и устройство основных аппаратов.
- 17. Основные стадии производства карбамида, его блок-схема и технологические связи со смежными производствами химического предприятия.

- 18. Каталитическое гидрирование оксидов углерода. Физико-химические основы процесса синтеза метанола. Эксплуатация катализаторов и конструкции колонн синтеза.
- 19. Физико-химические основы процессов переработки метанола с целью получения формальдегида и уксусной кислоты. Катализаторы и конструкции реакторов.
- 20. Технологические схемы разделения воздуха, основанные на дроссельном эффекте и применении турбодетандера. Изображение процессов на TS-диаграмме.
- 21. Технологическая схема полукоксования угля с целью получения кокса водорода и сопутствующих продуктов.
- 22. Технологическая схема кислородной газификации угля с целью получения синтез-газа.
- 23. Технологическая схема очистки конвертированного газа от диоксида углерода раствором пропиленкарбоната.
- 24. Технологическая схема очистки конвертированного газа от диоксида углерода раствором моноэтаноламина.
- 25. Технологическая схема очистки конвертированного газа от монооксида углерода путем его промывки жидким азотом.
- 26. Разделение газов методом адсорбции при переменном давлении. Последовательность переключения адсорберов для обеспечения непрерывной работы схемы.
- 27. Технологическая схема совмещенной парокислородовоздушной конверсии природного газа в производстве аммиака.
- 28. Технологическая схема двухступенчатого риформинга природного газа в энерготехнологической системе производства аммиака.
 - 29. Технологическая схема синтеза аммиака при среднем давлении.
- 30. Взаимосвязь различных отделений в системе получения аммиака. Блок-схема аммиачного производства.
- 31. Технологическая схема получения карбамида с полным жидкостным рециклом аммиака и диоксида углерода.
- 32. Технологическая схема получения карбамида с жидкостным рециклом аммиака и диоксида углерода по системе стриппинга.
- 33. Недостатки рецикловых схем получения карбамида. Основные статьи энергопотребления и способы его уменьшения.
 - 34. Технологическая схема синтеза метанола при среднем давлении.
- 35. Технологическая схема окислительного дегидрирования метанола с целью получения формальдегида.
- 36. Технологическая схема жидкофазного карбонилирования метанола с целью получения уксусной кислоты.

ЛИТЕРАТУРА

- 1. Бесков, В.С. Общая химическая технология и основы промышленной экологии / В.С. Бесков, В.С.Сафронов. М.: Химия, 1999. 472 с.
- 2. Кутепов, А. М. Общая химическая технология / А. М. Кутепов, Т. И. Бондарева, М. Г. Беренгартен. М.: Химия, 1985. 448 с.
- 3. Основы химической технологии / И. П. Мухленов [и др.]; под ред. И. П. Мухленова. Л.: Химия, 1988.-424 с.
- 4. Кафаров, В. В., Основы автоматизированного проектирования химических производств / В. В. Кафаров, В. Н. Ветохин. М.: Наука, 1987. 623 с.
- 5. Лейтес, И. Л. Теория и практика химической энерготехнологии / И. Л. Лейтес, М. Х. Сосна, И. П.Семенов. М.: Химия, 1988. 280 с.
- 6. Камаев, В. Д. Экономическая теория / В. Д. Камаев, М. 3. Ильчиков, Т. А. Борисовская. М.: Кнорус, 2008. 384 с.
- 7. Львов, Ю. А. Основы экономики и организации бизнеса. С.-Пб.: Формика, 1992. 383 с.
- 8. Лапидус, А. С. Экономическая оптимизация химических производств. М.: Химия, 1986. 280 с.
- 9. Баканов, М. И. Теория экономического анализа / М. И. Баканов, М. В. Мельник, А. Д. Шеремет М.: Финансы и статистика, 2006. 288 с.
- 10. Брагинский, О. Б. Прогнозирование и планирование комплекса отраслей химической и нефтехимической промышленности / О. Б. Брагинский, И. Е. Кричевский, Е. П. Щукин. М.: Химия, 1988. 192 с.
- 11. Тыжненко-Давтян, Е. С. Эффективность химических производств. Экспресные методы оценки / Е. С. Тыжненко-Давтян, Т. Г. Колчаян. М.: Химия, 1984.-80 с.
- 12. Чечеткин, А. В. Теплотехника / А. В. Чечеткин, Н. А. Занемонец. М.: Высш. шк., 1986. 344 с.
- 13. Технология связанного азота: учеб. для химико-технолог. Вузов / В. И. Атрощенко [и др.]; под ред. В. И. Атрощенко. Киев: Вища шк., 1985. 327 с.
- 14. Производство аммиака / В. П. Семенов [и др.]; под ред. В. П. Семенова. М.: Химия, 1985. 368 с.
- 15. Синтез аммиака / Л. Д. Кузнецов [и др.]; под ред. Л. Д. Кузнецова. М.: Химия, 1982.-296 с.
- 16. Производство азотной кислоты в агрегатах большой единичной мощности /Под ред. О. М. Олевского. М.: Химия, 1985. 400 с.
- 17. Горловский, Д. М. Технология карбамида / Д. М. Горловский, Л. Н. Альтшулер, В. И. Кучерявый. Л.: Химия, 1981. 320 с.
- 18. Кучерявый В. И. Синтез и применение карбамида / В. И. Кучерявый, В. В. Лебедев. Л. :Химия, 1970.-447 с.
- 19. Технология синтетического метанола/ М. М.Караваев [и др.]; под ред. М. М.Караваева. М.: Химия, 1984. 240 с.
- 20. Лебедев, Н. Н. Химия и технология основного органического синтеза / Н. Н. Лебедев. М.: Химия, 1988. 496 с.

- 21. Справочник азотчика: в 2 т. / Под ред. Е. Я. Мельникова. М.: Химия.
- T.1. 1986. 512 c., T.2. 1987. 464 c.
- 22. Крашенинников, С. А. Технология соды / С. А. Крашенинников. М.: Химия, 1988. 304 с.
- 23. Зайцев, И. Д. Производство соды / И. Д. Зайцев, Г. А. Ткач, Н. Д. Стоев. М.: Химия, 1986. 312 с.
- 24. Производство кальцинированной соды при комплексной переработке нефелинового сырья / М. Л. Варламов [и др.] М.: Химия, 1977. 176 с.
- 25. Производство глинозема / А. И. Лайнер [и др.] М.: Металлургия, 1978. -344 с.
- 26. Технология калийных удобрений / Под ред. В. В. Печковского. Минск: Вышэйшая школа, 1978. 304 с.
- 27. Кашкаров. О. Д. Технология калийных удобрений / О. Д. Кашкаров, Н. Д. Соколов. Л.: Химия, 1978. 247 с.
- 28. Комплексное использование сырья и отходов / Б. М. Равич [и др.] М.: Химия, 1988. 288 с.
- 29. Экология и экономика природопользования / Под ред. Э. В. Гирусова. М.:ЮНИТИ-ДАНА, 2007. 591 с.
- 30. Балацкий, О. Ф. Экономика и качество окружающей природной среды / О.Ф. Балацкий, Л. Г. Мельник. Л.: Гидрометеоиздат, 1984. -190 с.
- 31. Павлов, К. Ф. Примеры и задачи по курсу процессов и аппаратов химической технологии / К. Ф. Павлов, П. Г. Романков, А. А. Носков. Л.: Химия,1987. 578 с.
- 32. Краткий справочник физико-химических величин / Под ред. А. А. Равделя и А. М. Пономаревой. Л.: Химия, 1983. 232 с.
- 33. Термические константы веществ: Справочник в 10-и вып. / Под ред. В. П. Глушко. М.: Изд-во АН СССР, 1971.