Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

Должность: проректор по учебной работе Дата подписания: 20.02.2023 20:18:33

минобрнауки россии

Уникальный прогфетеральное государственное бгоджетное образовательное учре0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

ждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра фундаментальной химии и химической технологии

Теоретические основы избранных глав химической технологии

Методические указания к практической и самостоятельной работе для студентов направления 18.03.01 - Химическая технология

УДК 66.08

Составители: С.Д. Пожидаева

Рецензент Кандидат химических наук, доцент *Н.А. Борщ*

Теоретические основы избранных глав химической техноло-

гии: методические указания к практической и самостоятельной работе по дисциплине «Теоретические основы избранных глав химической технологии» для студентов направления 18.03.01 - Химическая технология / Юго-Зап.гос.ун-т; сост.: С.Д. Пожидаева. Курск, 2018. 15 с. 11 табл., рис.

В методические указания включены практические работы, позволяющие познакомить студентов познакомить студентов со спецификой наиболее распространенных производств малотоннажной химии; с сущностью, отличительными особенностями и макрокинетическим описанием химических процессов химической технологии в части оптимизации и управления протеканием конкретного процесса в конкретно выбранных условиях

Методические указания к практической и самостоятельной работе по дисциплине «Теоретические основы избранных глав химической технологии» для студентов направлений 18.03.01 - Химическая технология

Методические указания соответствуют требованиям программы.

Текст печатается в авторской редакции

Подписано в печать . Формат 64х18 1/16 Усл.печ.л. 0,87 Уч.-изд.л. 0,79 Тираж 50 экз. Заказ 1089 . Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

СОДЕРЖАНИЕ

	Введение	стр 4
1	Практическая работа №1 Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом не 100%-ной селективности по целевому продукту	4
2	Практическая работа №2. Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом не возможным по тем или иным причинам достижения 100%-ного расходования реагента в недостатке	5
3	Практическая работа №3. Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом наличия сопутствующих процессов с переменными по ходу протекания конкурирующими способностями	5
4	Практическая работа №4. Получение балансовых характеристик на основе тех или иных данных контроля за ходом протекания процесса	8
5	Практическая работа №5. Получение макрокинетических характеристик на основе тех или иных данных контроля за ходом протекания процесса	9
6	Практическая работа №6. Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом наличия потерь при переработке конечных реакционных смесей	11
	Практическая работа №7. Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом потерь продукта при очистке с целью достижения заданных требований по чистоте	11
	Практическая работа №8. Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом различных сочетаний и комбинаций перечисленных выше и дополнительных факторов	11
	торов Практическая работа №9 . Материальные балансы проводимого процесса в любые моменты времени по ходу протекания процесса	12

Введение

Методические указания предназначены познакомить студентов познакомить студентов со спецификой наиболее распространенных производств малотоннажной химии, а также сущностью, отличительными особенностями и макрокинетическим описанием химических процессов как с одной из важнейших основ составляющих теоретических и научных основ химической технологии в части оптимизации и управления протеканием конкретного процесса в конкретно выбранных условиях.

В методических указаниях приводятся практические работы для закрепления теоретических знаний по дисциплине

Практическая работа №1

Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом не 100%ной селективности по целевому продукту

Если в рассматриваемом процессе основная масса продукта накапливается в твердой фазе и после прекращения процесса легко отделяется от жидкой фазы реакционной смеси, то при количественном расходовании реагента в недостатке (или взятых в стехиометрических соотношениях) такой вариант приобретает дополнительную технологическую привлекательность: разделять фазы и таким путем отделять целевой продукт всегда гораздо проще и предпочтительнее, чем выделять продукт из раствора, например. Накопленный опыт показывает, что обозначенный вариант динамики изменения фазового состояния реакционной смеси является предпочтительным и с точки зрения скоростных характеристик протекания процесса, а также следования закономерностям необратимых реакций простых типов (нулевого, чаще первого порядка) в значительном диапазоне степеней превращения реагента в недостатке (иногда до 90 % и более).

Необходимым условием для реализации указанных выше преимуществ является природа кислого реагента; содержание реагентов на момент взаимодействия и их мольное соотношение; интенсивность перемешивания и, в частности, наличие механического воздействия на защитную пленку, приводящее к разрушению защитной пленки уже происходит при стехиометрических количествах кислого реагента в системе; присутствие твердой фазы на протяжении всего контакта; присутствие и количество воды в жидкой фазе системы (в отсутствие воды взаимодействие не начинается совсем); подбор благоприятного для каждого конкретного варианта растворителя жидкой фазы системы.

В ходе работы частично удается найти такие критерии, которые позволяют подбор реагентов сделать в определенной степени прогнозируемым.

Для предложенного преподавателем варианта проведения процесса провести соотвествующие расчеты и заполнить таблицу 1 на проведение эксперимента, исходя из заданного количества образующегося продукта

Таблица 1 – Данные для загрузки

Компонент 1		т 1	Компонент 2		Компонент 3		Металл в зоне реакции,				Время				
							природа,								
при-	Кол	-во	при-	Ко	Л-	при-	колич	ie-	раз-	ме-	Лож	обе-	приго-	ввода	
рода			рода	во		рода				шалка	ное	чайка	товле-		
	Γ	моль		Γ	МОЛ		Γ	МОЛЬ	лен-		дно		ния рас-	ката-	ок-
		КГ			КГ			КГ	ный				твора	лиза-	сида
													HA	тора	

Практическая работа №2.

Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом не возможным по тем или иным причинам достижения 100%-ного расходования реагента в недостатке

Для предложенного преподавателем варианта проведения процесса с целью получения продукта выполнить расчеты по заданию преподавателя с учетом не возможным по тем или иным причинам достижения 100%-ного расходования реагента в недостатке.

Привести примеры возможных причин снижения селективности процесса по целевому продукту

Практическая работа №3.

Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве с учетом наличия сопутствующих процессов с переменными по ходу протекания конкурирующими способностями

С практической точки зрения интересен вариант, чтобы к мо-

менту прекращения (завершения) процесса количественно прореагировали бы все три исходных реагента, а именно: металл, карбоновая кислота и оксид металла. В таком случае в реакционной смеси будет накапливаться лишь один продукт, что облегчает разделение такой реакционной смеси, выделение целевой соли-продукта и ее дальнейшую очистку. Но для этого нужно взять определенные мольные соотношения реагентов, т.е $X_{0_{Me}}:X_{0_{Me_mo_n}}:X_{0_{HA}}=a:e:c.$ Как же их найти на практике?

Примем во внимание то обстоятельство, что для протекания взаимодействия нужны и металл, и его оксид, в то время для взаимодействия нужен только металл. Если недостатка кислоты нет, то в каком-то диапазоне соотношений дозировок металла и его оксида металл израсходуется полностью, а часть оксида останется неизрасходованной. Меняя мольное соотношение загрузок металла и оксида в сторону увеличения, добиваются положения, когда расчетное и реально полученные значения выхода продукта оказываются одинаковыми по величине. Это соотношение обеспечивает практически количественное расходование и металла, и его оксида в целевой продукт. Его следует признать оптимальным (рис.)

В рассматриваемом вопросе следует обратить внимание на два момента. Во-первых, что можно и нужно считать достаточным количеством кислоты для получения данных, представленных на рис. 1. Поясним это на примерах марганца и его оксидов. Формально из 1 моля металла можно получить 1 моль соли-продукта, затратив на это 2 моля одноосновной кислоты НА.

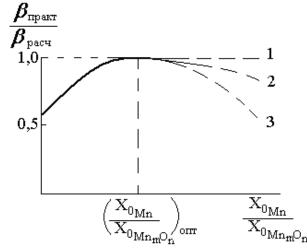


Рис. Отношение реально полученного выхода целевого продукта соли $\beta_{\text{практ}}$ к теоретически предсказываемой величине $\beta_{\text{теор}}$ в зависимости от мольного соотношения загрузок металла и его оксида на процесс и содержании кислоты, равном $2X_{0_{Mn}} + 2mX_{0_{Mn_mO_n}}$ или небольшом (до 5- 10%) избытке

Точно так же из 1 моля MnO_2 , Mn_2O_3 и Mn_3O_4 можно получить соль-продукт в количестве 1,2 и 3 моля, затратив соответственно 2, 4 и 6 молей одноосновной карбоновой кислоты. Таким

образом, если загрузить $X_{0_{Mn}}$ моль/(кг реакционной смеси) марганца и $X_{0_{Mn_mO_n}}$ моль/(кг реакционной смеси) оксида марганца, то соли должны получить $X_{0_{Mn}}+X_{0_{MnO_2}}$ или $X_{0_{Mn}}+2\,X_{0_{Mn_2O_3}}$, или $X_{0_{Mn}}+3\,X_{0_{Mn_3O_4}}$ моль/(кг реакционной смеси), на что потребуется $2(X_{0_{Mn}}+X_{0_{MnO_2}})$ или $2(X_{0_{Mn}}+2\,X_{0_{Mn_2O_3}})$, или $2(X_{0_{Mn}}+3\,X_{0_{Mn_3O_4}})$ моль/(кг реакционной смеси) одноосновной карбоновой кислоты (в 2 раза меньше двухосновной кислоты и т.д.). В действительности, как показывает прямой эксперимент, кислоты нужно взять с 5-10%-ным избытком (иногда большим, в каждом конкретном случае подлежит экспериментальному определению!). Это нужно для того, чтобы процессы протекали более быстро и завершались количественным расходование реагента в недостатке в пределах от одного до нескольких часов.

Во-вторых, при превышении оптимального значения соотношений металла и его оксида характер изменения $\beta_{\text{практ}}/\beta_{\text{теор}}$ по рассматриваемому соотношению может оказаться разным (кривые 1-3 рис. 4). Это зависит от того, как будет протекать взаимодействие (8) после прекращения взаимодействия (1) по причине расходования всего загруженного оксида. Варианты: 1 — процесс (8) протекает в основном независимо от параллельно протекающего и завершающегося процесса(1); 2 и 3 такая зависимость есть, причем в 3 более сильная, чем в случае 2. Из этого следует, что существенно отклоняться от оптимального соотношения мольных количеств загружаемых металла и оксида нежелательно, а то и просто недопустимо.

Следует дополнительно подчеркнуть, что оптимальная величина рассматриваемого соотношения существенно зависит от природы используемых кислоты и растворителя жидкой фазы, эффективности работы бисерной мельницы и ряда других условий проведения процесса. Тенденция здесь такова: чем легче и быстрее протекает взаимодействие в отсутствии взаимодействия, тем больше величина оптимального соотношения мольных загрузок металла и его оксида и наоборот, т.е. чем хуже протекает взаимодействие в отсутствии взаимодействия, тем ближе оптимальная величина рассматриваемого соотношения к 1.

Практическая работа №4.

Получение балансовых характеристик на основе тех или иных данных контроля за ходом протекания процесса

Различают теоретический и практический материальный баланс. Теоретический материальный баланс рассчитывается на основе стехиометрического уравнения реакции. Для его составления достаточно знать уравнение реакции и молекулярные массы компонентов. Практический материальный баланс учитывает состав исходного сырья и готовой продукции, избыток одного из компонентов сырья, степень превращения, потери сырья и готового продукта и т. д. Практический материальный баланс делится на две основные части: общий материальный баланс и постадийный (пооперационный) баланс.

Данные материального баланса позволяют провести анализ влияния изменения основных технологических параметров на технико-экономические показатели процесса (в расчетно-исследовательских проектах).

Задание.

1. Получить задание на расчет в форме результатов контроля кинетического (макрокинетического) эксперимента (таблицы 2,3). Таблица 2 – Форма таблицы с результатами эксперимента для расчета

Время о	T-	Текущий контроль											
бора про бы РС	o-	Соединение 1		Соединение 2		••••			Соединение N				
по часам От начала опы-	та, мин	проба, г	результат по методике;	X_1 , mojib/kt	проба, г	результат по методике;	X_2 , moje/kľ	проба, г	результат по методике;	X_3 , моль/кг	проба, г	результат по методике;	X_4 , mojib/ki

Масса металла :	с отложениями
	без отложений

2. Построить кинетические кривые накопления продуктов и расходования исходных реагентов, представленных в таблице в ви-

де зависимостей $X_A = f(\tau)$, $\alpha = f(\tau)$, анаморфозу кинетической кривой.

TT ~ 3		U		
Таблина 3 - А	Анализ конечной	реакшионнои	смеси ло и после	е разлеления
1		P	71.17 711 A 2 11 11 2 11 11	, b 2

	Реакционная смесь	фильтрат	осадок
Масса, г			
Анализ на соединение 1			
Анализ на соединение 2			
Анализ на соединение N			

- 3. Определить по полученным кинетическим кривым кинетические (макрокинетические) характеристики α_{\max} , $\tau_{\alpha_{\max}}$.
 - 4. Определить участки $\alpha_{k=const}$. и расчитать k, мин⁻¹.

Соответствие начальных участков кинетических кривых накопления продукта кинетике гомогенной необратимой реакции первого или нулевого порядка объясняется протеканием процесса в диффузионном режиме и лимитированием процесса стадией растворения находящегося на поверхности реагента твердого продукта. В соответствии с основным уравнением массопередачи скорость растворения:

$$W_{\partial \hat{a}\tilde{n}\partial \hat{a}} = d[P]/d\tau = K_M F_P([P]^* - [P])$$

где P — продукт; K_M — коэффициент массопередачи при растворении; F_{P} - поверхность твердой фазы продукта; $[P]^*$ - растворимость продукта в жидкой фазе реакционной смеси; [P]- концентрация продукта в жидкой фазе в текущий момент времени. При K_M , F_P и $[P]^*$ практически не меняющимися в каком-то периоде времени это уравнение можно проинтегрировать, что при τ =0; $[\Pi]$ =0 приводит к $\ln[P]^*/[P]^*-[P])=k_{\hat{y}\hat{o}}\tau$,

где $k_{9\varphi}$ = K_M F_P \approx const. Уравнение (2) по своей структуре аналогично уравнению одной из анаморфоз для гомогенной гомофазной реакции первого порядка.

Практическая работа №5.

Получение макрокинетических характеристик на основе тех или иных данных контроля за ходом протекания процесса

1. Определить количество прореагировавшего металла и степень превращения металла на основании балансового расчета по данным, представленным в табл. 4-5 для процессов получения солей меди по циклической схеме из меди, ацетата меди (II) в среде

уксусной кислоты.

Таблица 4. Данные для балансового расчета систем (Cu+CuAc₂+HAc)

			3aı	гружено					тф
		в грамма	ax		ВМ	Γ			
No॒	CuAc ₂ *2H ₂ O	Cu	HAc	J_2	CuAc ₂ *2H ₂ O	Cu	HAc	J_2	
1	26,16	2,57	14,42	3,05					88,42
2	43,08	3,225	14,42	3,05					68,17
3	13,08	15,68	3,61	3,05					60,49
4	13,08	13,16	7,21	3,05					54,05
5	13,08	11,78	1,80	3,05					42,74
6	13,08	11,00	0,90	3,05					59,44
7	13,08	15,00	1,44	3,05					70,08
8	13,08	16,02	2,70	3,05					45,76
9	13,08	15,64	2,16	3,05					53,69

2. Определить количество прореагировавшего металла и степень превращения металла на основании балансового расчета по данным, представленным в табл. 6-7 для процессов получения солей меди по циклической схеме из меди, оксида меди (II) в среде уксусной кислоты.

Таблица 5. Данные для балансового расчета систем (Cu+CuAc₂+HAc)

							масса	осадка,	
Cd	m((]	получен	Ю]	Γ	
Сф моль/кг	m(Си) непр, г					П			
[Ь/КГ	епр, г		,	теор	практ	Δn(Cu)/			
		∆n(Cu)	Δn(φ)	$\Delta n(oc)$	n(Cu(I))	n(Cu(II))			$n_0(Cu)$
0,183	0,99							20,1	
0,201	1,74							12,67	
0,204	13,2							12,67	
0,232	11,8							10,92	
0,23	8,9							15,92	
0,23	9,06							7,405	
0,246	12,8							12,85	
0,174	13,7							8,45	
0,167	13,6							11,68	

Таблица 6 Данные для балансового расчета систем (Cu+CuO+HAc)

				Загр	ужено				
		в граг	ммах			I		m_{Φ}	
$N_{\underline{0}}$	CuO	Cu	HAc	J_2	CuO	Cu	HAc	J_2	Γ
1	9,6	3,595	14,4	3,05					63,4
2	4,8	3,835	14,8	0,76					57,3
3	6,16	3,595	14,4	3,05					60,49
4	3,08	3,835	14,8	0,76					54,05
5	3,08	3,595	20,4	2,05					42,74
6	3,08	3,835	20,8	1,76					59,44
7	9,6	3,451							60,08
8	4,8	2 ,789							45,76
9	6,16	6,548							53,69
10	3,08	4,235							53,78

3. Определить количество прореагировавшего оксида металла и степень его превращения на основании балансового расчета по данным для процессов получения солей меди

Таблица 7 Данные для балансового расчета систем (Cu+CuO+HAc)

Сф	m(Cu)				m o	садка, г		
моль/кг	непр			МОЛЬ				
	Γ	$\Delta n(Cu)$	Δn(ф)	$\Delta n(oc)$	n(Cu(I))	n(Cu(II))	теор	практ
0,152	2,57							16,6
0,211	3,59							16,6
0,201	3,58							12,67
0,204	2,78							12,67
0,232	2,57							10,92
0,23	3,59							15,92
0,23	3,58							12,85
0,183	2,78							8,45
0,201	3,63							11,68

Практическая работа №6-8.

Расчет компонентов реакционной смеси конкретного процесса на получение продукта в заданном количестве

1. Получить задание на расчет в форме результатов контроля кинетического (макрокинетического) эксперимента (таблица 2, 3).

- 2. Построить кинетические кривые накопления продуктов и расходования исходных реагентов, представленных в таблице в виде зависимостей $X_A = f(\tau)$, $\alpha = f(\tau)$, анаморфозу кинетической кривой.
- 3. Определить по полученным кинетическим кривым кинетические (макрокинетические) характеристики α_{\max} , $\tau_{\alpha_{\max}}$.
 - 4. Определить участки $\alpha_{k=const}$. и расчитать k, мин⁻¹.

На основании полученных данных написать соответствующее уравнение химического процесса.

Практическая работа №9.

Материальные балансы проводимого процесса в любые моменты времени по ходу протекания процесса

Использование природного сырья в производстве приводит к появлению фактора нестабильности: стадии начальной переработки сырья могут отличаться в десятки раз. Поэтому время процесса будет «плавающим», зависящим от состава сырья и способа его переработки. Нестандартное сырье дает нестандартное нерегламентированное время. Это все учитывается при составлении норм технологического режима и выявлению верхних и нижних пределов диапазона времени.

Расчеты выполняются в массовых и молярных единицах (г, кг, кг/час, Мг/год, моль, кмоль, моль/час, кмоль/час и т.п.). Расчеты сопровождаются необходимыми стехиометрическими уравнениями, текстовым комментарием и завершаются анализом полученных результатов и выводами.

Задания для выполнения под руководством преподавателя

- 1. Рассчитать и оформить материальный баланс непрерывного процесса получения серной кислоты (H_2SO_4 квалификации «моногидрат») на основе элементарной серы. Производительность установки по потребляемой сере 9022.9 кг/час. Расчет произвести без учета потерь и неполноты превращения реагентов в ходе процесса в допущении, что побочные продукты на всех стадиях процесса не образуются.
- 2. Рассчитать и оформить материальный баланс непрерывного процесса получения серной кислоты на основе элементарной серы. Производительность установки по серной кислоте составляет 740

тысяч тонн моногидрата в год (что эквивалентно 740000 Мг/год). Расчет произвести без учета потерь и неполноты превращения реагентов в допущении, что побочные продукты на всех стадиях процесса не образуются.

Известно количество исходного реагента и его количество, оставшееся по завершении процесса. Необходимо рассчитать степень конверсии этого реагента. Материальный баланс для окисления серы приведен в табл. 8. Вычислить степень конверсии серы. Таблица 8 - Материальный баланс окисления серы без учета потерь

Компонент	М, кг/кмоль	В	отке	Получено		
Komiloheni	IVI, KI/KMOJIB	кг/час	кмоль/час	кг/час	кмоль/час	
S	32.0660	9122.90	284.504	100.00	3.119	
O_2	31.9988	9003.99	281.385	0	0	
SO ₂	64.0648	0.00	0.000	18026.89	281.385	
Σ		18126.89	565.889	18126.89	284.504	

3. При термическом распаде 100 кмоль н-гексана (при пиролизе н-гексана) образуется пирогаз, содержащий компоненты: $H-C_6H_{14}$ 40 кмоль; $CH_2=CH_2$ 120 кмоль; C_2H_6 60 кмоль Составить таблицу материального баланса процесса. Рассчитать

Составить таблицу материального баланса процесса. Рассчитать степень конверсии н-гексана.

Задачи для самостоятельного решения

- 1. Рассчитать и оформить сводную таблицу материального баланса непрерывного процесса получения серной кислоты (моногидрат) на основе элементарной серы. Производительность установки по производимой серной кислоте 27598.0 кг/час. Расчет произвести без учета потерь при условии, что на стадии 1 процесса степень конверсии серы составляет 90 %, остальные стадии процесса осуществляются с полным превращением реагентов.
- 2. В рамках примера предыдущей задачи рассчитать и оформить таблицу материального баланса непрерывного процесса получения серной кислоты (моногидрат) при условии, что на стадиях 1 и 2 степень конверсии кислорода одинакова и составляет 70 %.
- 3. При пиролизе н-гексана образуется пирогаз (газ пиролиза, газ термического распада углеводородов), имеющий следующий состав, % мас.: $C_6H_{14}-20.000$; $CH_2=CH_2-35.809$; $CH_2=CH-CH_3-9.766$; $C_4H_8-9.766$; $C_4H_6-3.138$; $C_2H_2-4.230$; $C_6H_6-1.813$; $C_3H_8-4.094$; $C_2H_6-3.489$; $CH_4-5.213$; $H_2-1.333$;

 $\Sigma = 100.000.$

Рассчитать степень конверсии н-гексана. Составить таблицу материального баланса процесса.

- 4. При хлорировании метана получена реакционная масса следующего состава (% мас., без учета хлористого водорода): метан 8.00, хлор 5.57, хлористый метил 5.53, дихлорметан 20.15, трихлорметан 32.75, четыреххлористый углерод 28.00. Рассчитать степень конверсии метана и хлора.
- 5. Используя информацию, приведенную в табл. 9, рассчитать выход этилена и этана на пропущенное сырье.

Таблиц	(а 9 - Све,	дения для	расчета

Компонент	M,	Взято		Получено	
Компонент	кг/кмоль	КГ	кмоль	КΓ	кмоль
н-С ₆ Н ₁₄	86.177	8617.7	100	3447.1	40
CH ₂ =CH ₂	28.054			3366.5	120
C_2H_6	30.070			1804.2	60
Σ		8617.7	100	8617.7	220

- 6. Используя информацию, приведенную в табл., рассчитать выход этилена и этана на пропущенное сырье.
- 7. Для процесса, изложенного в задаче 4, вычислить выход всех продуктов на пропущенное (взятое для превращения) сырье в расчете на метан и на хлор.
- 8. Используя информацию, приведенную в табл. 10, рассчитать выход этилена и этана на разложенное сырье.

Таблица 10 - Сведения для расчета

Компонент	М, кг/кмоль	Взято, кг	Получено, кг	Выход на разложенное сырье, %
н-С ₆ Н ₁₄	86.177	8617.7	3447.1	
CH ₂ =CH ₂	28.054		3366.5	3366.5/(8617.7-3447.1)*100=65
C_2H_6	30.070		1804.2	1804.2/(8617.7-3447.1)*100=35
Σ		8617.7	8617.7	100

9. Используя информацию, приведенную в табл. 11, рассчитать выход всех продуктов на разложенное сырье.

Библиографический список

- 1 Иванов, А.М.«Макрокинетика химических процессов»: учебное пособие [Текст]/ А.М. Иванов. Юго-Зап. гос.ун-т. Курск, 2012. 340 с
 - 2. Иванов А.М. Макрокинетика химических процессов в ис-

следованиях и технологической практике. Часть І. Гомогенные гомофазные и гомогенные гетерофазные химические процессы. [Текст]/ А.М. Иванов. Курск: Изд-во Курского гос.техн.ун-та, 2009. 117 с.

3. Иванов, А.М. Макрокинетика химических процессов в исследованиях и технологической практике. Часть ІІ. Гетерогенные гетерофазные химические процессы [Текст] / А.М Иванов. Курск: Изд-во КурскГТУ. 2010. 209 с.

Таблица 11 Расчет выхода продуктов на разложенное сырье

Компонент	М, кг кмоль	Взято, кг	Получено, кг	Выход на разложенное сырье, %
C ₆ H ₁₄	86.177	100.000	20.000	
CH ₂ =CH ₂	28.054		35.809	35.809/(100.000-20.000)*100=44.76
C ₃ H ₆	42.081		9.766	9.766/(100.000-20.000)*100=12.21
C ₄ H ₈	56.108		9.766	9.766/(100.000-20.000)*100=12.21
C ₄ H ₆	54.092		3.138	3.138/(100.000-20.000)*100=3.92
C ₂ H ₂	26.038		4.230	4.230/(100.000-20.000)*100=5.29
C ₆ H ₆	78.112		1.813	1.813/(100.000-20.000)*100=2.26
C ₄ H ₁₀	58.123		1.349	1.349/(100.000-20.000)*100=1.68
C ₃ H ₈	44.097		4.094	4.094/(100.000-20.000)*100=5.12
C ₂ H ₆	30.070		3.489	3.489/(100.000-20.000)*100=4.36
CH ₄	16.043		5.213	5.213/(100.000-20.000)*100=6.52
H ₂	2.016		1.333	1.333/(100.000-20.000)*100=1.67
Σ	28.054	100.000	100.000	100.00