Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 09.10.2023 10:14:00

Уникальный программный ключ:

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943d14a46511da5bd089

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра фундаментальной химии и химической технологии

УТВЕРЖДАЮ Проректор по учебной работе О.Г. Локтионова 2023 г. 09

Элементы статистической обработки результатов измерений в лабораторном практикуме

Методические указания к самостоятельной работе по курсу «Статистическая обработка в химической практике» для студентов направления подготовки 18.03.01 - Химическая технология

2

УДК 66(072.5)

Составитель: С.Д. Пожидаева

Рецензент

Кандидат химических наук, доцент Н.В. Кувардин

Элементы статистической обработки результатов измерений в лабораторном практикуме: Методические указания к самостоятельной работе по курсу по курсу «Статистическая обработка в химической практике» для студентов направления подготовки 18.03.01 - Химическая технология/ Юго-Зап. гос. ун-т; сост.: С.Д. Пожидаева. Курск, 2023. 19 с. табл. 5

Приведены методические указания к самостоятельной работе по статистической обработке экспериментальных данных в химическом эксперименте для создания необходимой теоретической и практической базы для восприятия и усвоения знаний в области теоретических основ химической технологии и их практических приложений (спецкурсы) с вычленением роли и места научных исследований в подготовке молодых специалистов, получением необходимых общих подходов для постановки научного эксперимента и обработки его результатов, формированием действительного моста между фундаментальными и технологическими дисциплинами в плане преемственности, подходов и использования достижений отдельных дисциплин при решении практических задач

Методические указания предназначены для бакалавров направления 18.03.01 - «Химическая технология».

Текст печатается в авторской редакции Подписано в печать 25.09.2023. Формат 60х84 1/16. Усл. печ. л. 1,2 Уч.-изд.л. 1,0. Тираж 37 экз. Заказ 1093. Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

СОДЕРЖАНИЕ

	Стр
ВВЕДЕНИЕ	3
Организация контроля лаборатории. Измерение парамет-	1
ров.	4
Выполнение контрольных измерений показателей, расчет	5
среднего результата Обработка результатов.	3
Элементы математической статистики, используемые при	11
обработке результатов измерений.	11
Статистическое оценивание результатов измерений пара-	14
метров	17
Сравнение двух методов анализа по воспроизводимости	14
Оформление результатов контроля и его эффективность.	15

ВВЕДЕНИЕ

Данные методические указания предназначены для создания необходимой теоретической и практической базы для восприятия и усвоения современных знаний в области теоретических основ химической технологии (ПАХТ, ОХТ, НИРС) и их практических приложений (спецкурсы), вычленения роли и места научных исследований в подготовке молодых специалистов. Полученные навыки должны студенту правильно обосновать выбор метода измерения или анализа, удовлетворяющий требованиям точности, быстроты и экономичности выполнения анализа с учетом возможной величины погрешности измерения, а также показать эффективность использования методов высшей математики в решении практических вопросов.

Используемые в методических указаниях подходы действенны для формирования действительного моста между фундаментальными и технологическими дисциплинами в плане преемственности, подходов и использования достижений отдельных дисциплин при решении практических задач.

В методических указаниях приводятся работы для закрепления теоретических знаний по дисциплине «Статистическая обработка в химической практике».

Организация контроля лаборатории. Измерение параметров

- 1. Ошибки эксперимента и источники их происхождение. Систематическая и случайная ошибки. Пути их обнаружения и устранения.
- 2. Средние значения величины в химии и химической технологии. Средняя арифметическая простая и взвешенная. Медиана. Мода.
- 3. Средние значения величины. Средняя логарифмическая и геометрическая. Средняя квадратичная и средняя гармоническая величины.
- 4. Математическое ожидание и дисперсия случайной дискретной величины.
- 5. Математическое ожидание и дисперсия случайной непрерывной величины.
 - 6. Плотность распределения и кривая распределения.
- 7. Нормальное распределение. Кривая Гаусса и ее характеристика.
 - 8. Закон распределения ошибок.
- 9. Средняя квадратичная ошибка отдельного измерения и среднего арифметического.
- 10. Оценка меры точности отдельных измерений и среднего арифметического.
- 11. Наибольшая возможная и вероятная ошибка отдельных измерений и среднего арифметического. Правило трех сигм.
 - 12. Наивероятнейшее значение измеряемой величины.
 - 13. Функция Лапласа.
- 14. Последовательность статистической обработки экспериментальных данных.
- 15. Для полученного ряда значений (табл.1) контролируемых параметров проверить наличие промахов в выборке результатов

Таблица 1 – Таблица контролируемых параметров

No	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11
1	5,72	5,72	5,09	5,19	5,72	5,14	5,37	5,33	5,72	5,21
2	6,85	6,85	6,93	6,54	6,95	6,83	6,88	5,84	6,25	6,21
3	15,9	15,3	15,1	15,5	15,5	15,6	15,6	15,3	15,3	15,0
4	5,53	5,53	5,72	5,10	5,73	5,68	5,59	5,67	5,61	5,14
5	51,5	52,5	51,4	52,3	53,3	52,5	51,7	55,0	51,0	54,1

Продолжение табл.1

1	2	3	4	5	6	7	8	9	10	11
6	25,5	25,7	25,5	26,8	27,3	25,7	25,6	25,7	20,8	22,3
7	75,8	75,8	72,8	75,2	75,9	75,6	75,8	75,3	73,5	72,8
8	0,92	0,91	0,88	0,96	0,92	0,93	0,94	0,85	0,84	0,90
9	2,54	2,56	2,84	2,98	2,64	2,31	2,57	2,68	2,98	2,16
10	4,47	4,57	4,63	4,25	4,15	4,68	4,98	4,06	4,37	4,67
11	6,53	6,53	6,72	6,10	6,63	6,68	6,69	6,67	5,91	6,94
12	0,62	0,61	0,68	0,66	0,66	0,68	0,74	0,65	0,67	0,60
13	0,21	0,23	0,28	0,49	0,48	0,24	0,25	0,28	0,29	0,43
14	1,21	1,20	1,28	1,12	1,16	1,18	1,12	1,16	1,18	1,20
15	0,012	0,018	0,016	0,014	0,012	0,013	0,015	0,012	0,018	0,010
16	3,37	3,33	3,46	3,32	3,09	3,37	4,05	4,00	2,98	3,23
17	2,54	2,26	2,17	2,48	2,24	2,32	2, 5	2,68	2,48	2,46
18	3,69	3,67	3,32	3,21	3,23	3,89	3,73	3,37	3,23	3,03
19	0,79	0,84	0,83	0,86	0,80	0,24	0,20	0,21	0,88	0,89
20	0,73	0,75	0,69	0,26	0,69	0,67	0,68	0,71	0,72	0,70
21	0,28	0,29	0,24	0,21	0,20	0,23	0,89	0,26	0,25	0,24
22	5,75	5,72	5,59	5,49	5,52	5,64	5,25	5,63	5,42	5,26
23	6,80	6,81	6,94	6,64	6,85	6,82	6,58	5,57	6,05	6,11
24	15,0	15,1	15,8	15,7	15,6	15,2	15,2	15,0	15,9	14,0
25	5,63	5,53	5,72	5,56	5,36	5,68	5,95	5,72	5,91	5,44
26	58,5	55,5	54,4	56,3	57,1	55,5	51,7	54,0	56,0	56,1

Выполнение контрольных измерений показателей, расчет среднего результата Обработка результатов

- 1. Как вычисляется абсолютная и относительная погрешность? Единицы измерения абсолютной и относительной погрешности.
- 2. Дайте характеристику, какие погрешности относят к систематическим, к случайным, к промаху.
- 3. Перечислите основные признаки систематических погрешностей.
- 4. Приведите примеры источника систематических погрешностей.
 - 5. Что такое «контрольный опыт»?
 - 6. Что характеризует чувствительность, предел обнаружения,

нижняя граница определяемых концентраций, селективность метода?

- 7. Дайте определение понятия «аналитический сигнал». Приведите примеры.
- 8. Что характеризует воспроизводимость и правильность химического анализа? О чем свидетельствует близость результатов параллельных определений компонента?
- 9. Чем отличаются понятия «сходимость» и «воспроизводимость»?
- 10. Как проверить правильность результатов химического анализа?
 - 11. Как снизить погрешность метода или методики?
- 12. Как выявить наличие «промаха»? Что называют погрешностью химического анализа?
- 13. Что должен сделать экспериментатор перед применением математической статистики для обработки данных химического анализа?
- 14. Дайте определение генеральной и выборочной совокупности данных.
- 15. Что характеризует дисперсия, стандартное отклонение и относительное стандартное отклонение выборочной совокупности результатов химического анализа? Приведите формулы для расчета этих величин.
 - 16. Дайте определение какие цифры называют значащими.
- 17. Представление аналитических данных. Значащие цифры. Правила округления.
- 18. Какова значимость нуля в числах, если нуль стоит в начале числа, в середине числа, в конце числа после запятой, в конце целого числа
- 19. Распространение систематической и случайной погрешностей при функциях: сумма, разность, произведение и частное, при логарифмировании.
- 20. Основные этапы проведения научно-исследовательского эксперимента и их краткая характеристика. Надежность и воспроизводимость эксперимента.
- 21. Запись и представление результатов выполненного эксперимента. Последовательно хронологическая запись действий и операций, табличный, графический и комбинированные варианты. Преимущества и недостатки. Рекомендации по использованию

- 22. Виды и источники экспериментальных ошибок. Ошибки систематические и случайные. Различия между ними.
- 23. Научно-исследовательский эксперимент и научно-исследовательская работа. Актуальность, новизна, практическая значимость, достоверность. Рабочая гипотеза и ее правомерность, пути обоснования.
- 24. Лабораторный, технологический и инженерный эксперимент. Общность и различие понятий.
- 25. Эксперимент научно-исследовательский, производственный, учебный и демонстрационный. Назначение, цели проведения, характерные признаки, специфика получаемых результатов.
- 26. Кинетический эксперимент и его специфические особенности. Кинетический вариант научно-исследовательского и учебного эксперимента.
- 27. Эксперимент, направленный на получение новых химических веществ и новых материалов. Специфика и отличительные черты.
- 28. Специфика научно-исследовательского эксперимента, проводимого в производственных условиях.
- 29. Подготовительный этап для проведения эксперимента, его назначение и брутто-структура. Специфика подготовительного этапа в зависимости от типа эксперимента.
- 30 Роль и место научно-исследовательского и инженерного эксперимента в НИР.
- 31. Задачи и сущность первичной обработки экспериментальных данных.
- 32. Кинетический эксперимент и его специфические особенности. Преимущества и недостатки. Научно-исследовательский и учебный варианты кинетического эксперимента.
- 33. Общая характеристика научно-исследовательской работы. Общие требования к постановке и оформлению НИР.
- 34. Задачи и сущность вторичной обработки экспериментальных данных.
 - 37. Средние значения величин.
 - 36. Средняя логарифмическая и геометрическая.
 - 37. Мода, медиана. Использование на практике.
- 38. Средние значения величин. Средняя квадратичная и средняя гармоническая величины.

1. Для полученного ряда значений определить моду, медиану, среднее арифметическую, среднюю геометрическую, среднюю гармоническую. Обосновать выбор величины для характеристики среднего значения.

Таблица 1 – Ряды значений

№	Полученные значения
1	2
1	0,21; 0,20; 0,21; 0,24; 0,22; 0,25; 0,20; 0,22; 0,20; 0,21; 0,25; 0,22; 0,22;
2	0,81; 0,81; 0,79; 0,84; 0,81; 0,79; 0,815; 0,83; 0,83;0,79; 0,81; 0,79; 0,83;
3	0,72; 0,72; 0,74; 0,74; 0,72; 0,74; 0,75; 0,72; 0,72;0,74; 0,72; 0,75; 0,72;
4	3,32; 3,34; 3,25; 3,31; 3,33; 3,34; 3,37; 3,36; 3,37; 3,39; 3,44; 3,52; 3,60;
5	7,5; 7,6; 7,4; 7,3; 7,2; 7,5; 7,2; 7,5; 7,6; 7,5; 7,3; 7,5; 7,6; 7,4; 7,8
6	17,37; 17,38; 17,65; 17,54; 17,12; 17,65; 17,37; 17,69; 17,12; 17,38; 17,89;
7	0,83;0,84; 0,68; 0,69; 0,83; 0,67; 0,72; 0,71; 0,72; 0,67;0,68; 0,75; 0,70;
8	4,54; 4,56; 4,84; 4;98; 4,12; 4,13; 4,37; 4,68; 4,63; 4,52; 4,96; 4,32; 4,68;
9	9,73; 9,73; 9,68; 9,64; 9,99; 9,84; 9,21; 9,99; 9,67; 9,86; 9,63; 9,37; 9,32;
10	1,56; 1,53; 1,56; 1,37; 1,12; 1,73; 1,98; 1,37; 1,64; 1,68; 1,37; 1,34; 1,39;
11	0,80; 0,81; 0,79; 0,79; 0,81; 0,80; 0,095; 0,095; 0,80; 0,090; 0,089; 0,084;
12	4,54; 4,58; 4,32; 4,36; 4,84; 4,65; 4,374 4,63; 4,14; 4,32; 4,37; 4,19; 4,68;
13	0,73; 0,72; 0,73; 0,72; 0,72; 0,73; 0,75; 0,73; 0,72;0,74; 0,73; 0,75; 0,72; 0,72; 0,74

Продолжение табл.1

```
14 3,30; 3,34; 3,05; 3,31; 3,33; 3,24; 3,25; 3,06; 3,37; 3,39; 3,24;
   3,22; 3,40;
15 7,05; 7,06; 7,04; 7,13; 7,12; 7,05; 7,12; 7,15; 7,16; 7,15; 7,3;
   7,15; 7,06; 7,14; 7,18
16 | 17,371; 17,384; 17,615; 17,254; 17,312; 17,365; 17,337; 17,469;
    17,512; 17,238; 17,289;
17 | 0,72;0,74; 0,73; 0,79; 0,72; 0,73; 0,70; 0,71; 0,70; 0,67;0,67;
   0,75; 0,70; 0,72; 0,74;
18 4,34; 4,36; 4,57; 4;98; 4,18; 4,18; 4,25; 4,38; 4,13; 4,42; 4,56;
   4,52; 4,68; 4,53;4,56
19 9,70; 9,72; 9,68; 9,65; 9,93; 9,88; 9,12; 9,92; 9,72; 9,86; 9,63;
   9,37; 9,32;
20 | 1,57; 1,57; 1,56; 1, 54; 1, 21; 1,73; 1,98; 1,75; 1,64; 1,68; 1,37;
   1,34; 1,39; 1,55;1,67
21 0,201; 0,210; 0,211; 0,214; 0,221; 0,205; 0,21; 0,212; 0,205;
   0,221; 0,25; 0,22; 0,21;
22 0,84; 0,81; 0,79; 0,84; 0,85; 0,79; 0,85; 0,83; 0,83; 0,79; 0,81;
   0,79; 0,80; 0,80
23 | 0,72; 0,72; 0,74; 0,74; 0,72; 0,74; 0,75; 0,72; 0,72; 0,74; 0,72;
   0,75; 0,72; 0,70
24 | 3,30; 3,34; 3,25; 3,31; 3,31; 3,34; 3,37; 3,36; 3,37; 3,39; 3,40;
   3,32; 3,60; 3,36
25 | 7,55; 7,64; 7,48; 7,38; 7,28; 7,51; 7,2; 7,55; 7,36; 7,37; 7,63;
    7,55; 7,46; 7,46; 7,38
```

2. Для полученного ряда значений (таблица 2) определить концентрацию растворов, последние использовать для определения моды, медианы, среднего арифметического, среднего геометрического, средней гармонической.

Таблица 2 - Ряды значений

Пипетка объемом 20 мл	Пипетка объемом 15 мл	D.
Стандартный р-р КОН 0,15	Стандартный р-р КОН 0,6	1
9,0 7,9 7,8 7,7 8,2 8,3 7,8 8,0 9,1 8,05 8,2 7,8 8,2 7,8 8,2 7,9	16,3 15,2 15,7 14,9 14,9 15,0 15,2 16,2 15,3 15,5 14,9 16,2 15,8 15,8 15,4 15,4 15,4 15,4	
Пипетка объемом 20 мл	Пипетка объемом 25 мл	D.
Стандартный р-р КОН 0,008	Стандартный р-р КОН 0,28	2
13,0 15,4 15,2 15,0 16,3 13,6 15,0 15,2 15,4 13,8 14,7 14,8 13,9 14,0 13,9 13,8 13,7	7,58 7,65 7,47 7,30 7,21 7,54 7,29 6,98 7,67 6,60 6,38 7,27 7,02 7,0 7,6 7,0 5,89	
Пипетка объемом 15 мл	Пипетка объемом 2 мл	D.
Стандартный р-р КОН 0,125	Стандартный р-р КОН 0,16	2
13,0 12,8 12,4 12,3 12,1 11,0 11,5 11,8 11,7 11,9 12,0 12,1 13,0 13,5 13,5 13,5 12,3 12,3	11,0 10,8 9,9 9,8 9,9 10,2 10,7 10,4 10,2 8,9 9,8 11,2 11,3 11,0 12,0 12,0 12,3 8,9	
Пипетка объемом 100 мл	Пипетка объемом 50 мл	D-
Стандартный р-р КОН 0,025	Стандартный р-р КОН 0,02	1
9,8 9,5 9,4 7,9 9,2 8,9 9,4 8,0 9,7 8,6 9,4 9,4 9,0 9,9	16,0 13,9 14,5 13,8 16,2 16,0 15,3 14,3 14,2 13,9 15,4 16,0 16,3 16,4 16,3 16,0 14,8 13,8	
Пипетка объемом 20 мл	Пипетка объемом 15 мл	D-
Стандартный р-р КОН 0,082	Стандартный р-р КОН 0,47	5
12,7 13,8 13,7 12,6 13,4 13,9 13,4 13,3 13,6 12,8 13,7 13,9 13,2 12,8 13,7 13,0 13,9 13,9	6,0 5,2 4,9 3,9 5,5 5,1 6,0 4,8 5,2 5,3 3,9 5,2 5,4 4,9 5,0 3,9 5,5	

Ряд 11		Ряд	12		Ряд	13		Ряд	14		Ряд	15	
Пипетка объемом 20 мл Стандартный p-р КОН 0,20	9,0 7,8 7,8 7,7 8,2 8,3 7,8 8,0 9,1 7,8 8,0 8,5 8,6 7,8 8,6 7,8	Пипетка объемом 25 мл	Стандартный р-р КОН 0,2	15,4 15,2 15,0 16,3 13,6 15,0 15,2 15,4 14,7 14,8 15,8 14,7 14,8 15,2 15,4 15,7	Типетка объемом 15 мл	Стандартный р-р КОН 0,15	13,8 18,8 12,8 12,5 14,1 11,0 14,5 14,8 14,7 12,1 13,0 14,9 12,0 12,1 13,0 14,3 12,5	Типетка объемом 100 мл		9,6 9,5 9,4 7,9 9,6 8,9 8,9 8,0 9,2 8,9 9,7 8,9 9,7 8,6 9,6 9,9 10,0	Пипетка объемом 25 мл	Стандартный р-р КОН 0,5	5,8 5,5 5,4 5,9 5,2 5,9 5,4 5,5 5,2 5,9 5,7 5,9 5,7 5,6 5,4 4,9
Ряд 16	1,5	Ряд	17	13,7	Ряд		12,3	Ряд	19	10,0	Ряд		7,0
Пипетка объемом 25 мл Стандартный р-р NaOH 0,59	16,3 15,2 15,3 14,6 14,6 15,5 14,6 15,2 16,2 15,9 15,9 14,9 16,2 15,8 15,9	Пипетка объемом 10 мл	Стандартный р-р КОН 0,28	7,8 7,6 7,7 7,0 7,2 7,5 6,9 7,7 7,9 6,9 7,7 8,60 8,3 8,2 8,0 9,0	Пипетка объемом 20 мл	Стандартный р-р КОН 0,34	11,3 10,7 9,9 9,8 9,9 10,8 8,9 9,8 10,2 10,4 10,2 8,9 9,8 11,2 11,3 10,7	Типетка объемом 50 мл	Стандартный р-р КОН 0,15	14,0 13,9 14,5 13,8 14,2 16,0 14,2 13,3 15,3 14,2 13,3 17,4 16,0 16,3 16,8	Пипетка объемом 25 мл	Стандартный р-р КОН 0,02	5,0 6,2 4,9 3,9 6,5 6,1 7,3 3,9 6,0 6,8 5,2 7,3 3,9 5,2 5,4 5,9

Элементы математической статистики, используемые при обработке результатов измерений

- 1. События, наблюдения, эксперименты.
- 2. Случайная величина
- 3. Непрерывные и дискретные случайные величины, примеры.

- 4. Совокупность, выборка, генеральная совокупность, объём выборки.
 - 5. Математическое ожидание случайной величины.
- 6. Можно ли определить математическое ожидание для физической величины.
 - 7. Оценка математического ожидания случайной величины.
 - 8. Мода.
 - 9. Средние значения случайной величины.
- 10. Методика вычисления арифметико-геометрического среднего?
 - 11. Дисперсия случайной величины?
 - 12. Статистическая обработка экспериментальных данных.
- 13. Наибольшая возможная и вероятная ошибка измерений. Правило трех сигм.
 - 14. Наивероятнейшее значение измеряемой величины.
 - 15. Функция Лапласа.
- 14. Последовательность статистической обработки экспериментальных данных
- 16. Плотность распределения и кривая распределения. Нормальное распределение.
- 17. Математическое ожидание и дисперсия случайной дискретной величины.
- 18. Оценка меры точности и средней квадратичной ошибки отдельных измерений и среднего арифметического.
 - 19. Нормальное распределение.
 - 20. Закон распределения ошибок.

Для полученных значений (таблица 3, 4), выполненных с одинаковой точностью, но отличающихся числом измерений в каждом ряду, провести статистическую обработку (варьировать число рядов для проведения обработки)

Таблица 3 - Ряды значений

№ варианта	1	2	3	4	5	6	7	8	9	10
$V_{\text{пипетки}}$, мл	5	50	25	15	10	20	100	0,1	25	50
С, моль/л	0,12	0,05	0,15	0,25	0,05	0,45	0,55	0,05	0,03	2,0

Таблица 4 – Значения объемов, полученных при титровании

№	Ряд	Ряд	Ряд	Ряд	Ряд	Ряд	Ряд	Ряд	Ряд	Ряд
	1	2	3	4	5	6	7	8	9	10
1	5,7	5,7	5,4	5,1	5,7	5,1	5,4	5,3	5,7	5,2
2	5,8	5,8	5,9	5,5	5,9	5,8	5,8	5,8	5,2	5,2
2 3 4 5	5,8 5,3	5,3	5,1	5,5 5,5	5,5	5,6	5,6	5,8 5,3	5,3	5,3
4	5,5	5,5	5,7	5,1	5,7	5,6	5,5	5,6	5,1	5,1
5	5,5 5,5 5,5 5,8	5,8 5,3 5,5 5,5 5,7 5,8	5,5 5,5 5,9	5,3	5,9 5,5 5,7 5,3 5,3 5,9	5,6 5,5 5,7 5,6	5,5	5,6 5,3 5,7 5,3 5,3 5,5 5,5	5,2 5,3 5,1 5,5 5,1 5,1	5,1
6 7	5,5	5,7	5,5	5,8 5,5	5,3	5,7	5,6 5,8	5,7	5,1	
	5,8	5,8	5,9	5,5	5,9	5,6	5,8	5,3	5,1	
8	5,3 5,7 5,5 5,7	5,3 5,5 5,7	5,1 5,3 5,5 5,4 5,9 5,9 5,7	5,0 5,3 5,9	5,6 5,9 5,9	5,3 5,6	5.3	5,3	5,5	
9	5,7	5,5	5,3	5,3	5,9	5,6	5,4 5,5	5,5		
10	5,5	5,7	5,5	5,9	5,9	5,7	5,5	5,5		
11	5,7	5,4 5,8	5,4	5,5 5,0	5,6 5,1		5,4	5,9		
12	5,8 5,9 5,5 5,3 5,5	5,8	5,9	5,0	5,1		5,8	5,1		
13	5,9	5,9 5,5 5,0 5,4 5,8 5,3	5,9	5,1 5,7	5,7		5,9			
14	5,5	5,5	5,7	5,7			5,6			
15	5,3	5,0	5,5 5,7 5,9	5,7			5,6			
16	5,5	5,4	5,7	5,5			5,0			
17	5,8	5,8	5,9				5,8			
18	5,8 5,3	5,3	5,1				5,6			
19	5,9 5,2 5,8	5,9 5,2					5,9 5,2			
20	5,2	5,2					5,2			
21	5,8	5,8					5,0			
22	5,8						5,8			
23	5,9						5,0			
24	5,2									
25	5,2 5,3									

² После обработки отсчетов каждой серии были получены следующие результаты (таблица 5).

Определить среднюю арифметическую взвешенную каждого ряда Таблица 5 – Значения

$N_{\underline{0}}$	№ измерения										
	1	2	3	4	5	6					
1	2	3	4	5	6	7					
1	0.2±0.1	0.21±0.2	0.24 ± 0.2	0.18 ± 0.1	0.22 ± 0.2	0.22 ± 0.1					
2	0.3±0.1	0.31±0.2	0.35 ± 0.2	0.28 ± 0.1	0.22 ± 0.2	0.24 ± 0.1					
3	0.9±0.1	0.8±0.2	0.87 ± 0.2	0.88±0.1	0.82 ± 0.2	0.82 ± 0.1					

Продолжение табл.5

1	2	3	4	5	6	7
4	0.6 ± 0.1	0.55 ± 0.2	0.57 ± 0.2	0.58 ± 0.1	0.52 ± 0.2	$0.56\pm0,5$
5	0.5 ± 0.1	0.6 ± 0.6	0.61 ± 0.2	0.68 ± 0.1	0.62 ± 0.2	0.63 ± 0.1
6	0.8 ± 0.3	0.7 ± 0.2	0.9 ± 0.2	0.88 ± 0.1	0.82 ± 0.2	0.82 ± 0.1
7	0.5 ± 0.1	0.3 ± 0.5	0.3 ± 0.2	0.52 ± 0.1	0.53 ± 0.2	0.48 ± 0.1
8	0.2 ± 0.1	0.7 ± 0.2	0.3 ± 0.26	0.8 ± 0.1	0.78 ± 0.2	0.82 ± 0.1
9	0.7 ± 0.5	0.3 ± 0.4	0.6 ± 0.27	0.28 ± 0.1	0.28 ± 0.2	0.37 ± 0.1
10	0.25 ± 0.1	0.38 ± 0.2	0.47 ± 0.2	0.28 ± 0.1	0.22 ± 0.2	0.32 ± 0.1
11	0.72 ± 0.1	0.93 ± 0.6	0.44 ± 0.2	0.28 ± 0.1	0.22 ± 0.2	0.52 ± 0.1
12	0.82 ± 0.7	0.53 ± 0.2	0.43 ± 0.2	0.68 ± 0.1	0.72 ± 0.2	0.36 ± 0.5
13	0.5 ± 0.1	0.32 ± 0.2	0.44 ± 0.2	0.58 ± 0.1	0.25 ± 0.2	0.62 ± 0.1
14	0.66 ± 0.1	0.64 ± 0.3	0.54 ± 0.7	0.68 ± 0.5	0.52 ± 0.2	0.62 ± 0.6
15	5±1	6±1	4±3	5,2±2	7±1	9±4
16	1.64±0.1	1.59 ± 0.2	1.87 ± 0.2	1.66±0.5	1.82 ± 0.1	1.68 ± 0.5
17	5.5±0.1	5.28±0.1	5.47±0.2	5.38±0.1	5.32±0.2	5.2±0.11
18	4.70±0.5	4.38±0.4	4.86±0.2	4,66±0.5	4.48 ± 0.2	4.65±0.5
19	10.5±0.1	10.3±0.2	10.4 ± 0.2	10.8±0.5	10.6±0.1	10.7±0.5
20	3,34±0.1	$3,43\pm0.2$	$3,45\pm0.5$	3,25±0.2	$3,65\pm0.2$	3,15±0.8

Статистическое оценивание результатов измерений параметров

Для полученного ряда значений выполнить статистическую обработку данных с построением кривой распределения Гаусса (задача 2, тема 2)

Сравнение двух методов анализа по воспроизводимости

- 1. Критерий Стьюдента и его применение на практике при проверке гипотез.
- 2. Какие задачи решаются с помощью распределения Стьюдента?
- 3. В чем сущность распределения Стьюдента и чем оно отличается от нормального распределения?
 - 4. Таблицы Стьюдента и правила пользования ими.
- 5. Выражение для критерия Стьюдента при проверке различий между двумя средними.
- 6. Число степеней свободы при проверке гипотезы о наличии различия между двумя средними.

- 7. Области преимущественного использования распределения Стьюдента.
- 8. Как проводится оценка надежности выполненных измерений?
 - 9. Критерий F и его применение при проверке гипотез
 - 10. Таблицы функций F и правила пользования ими.
- 1. Для двух рядов измерений, выбранных преподавателем из выборки рядов многовариантной задачи 2, темы 2 проверить принадлежность к одной совокупности.
- 2. Для двух рядов измерений, предоставленных преподавателем (задача 2, тема 2), проверить отличаются ли достоверно, т.е. надежно, результаты одной группы от результатов другой группы.

Оформление результатов контроля и его эффективность

Темы рефератов

- 1.Основные законы распределения непрерывных случайных величин
 - 2. Метод моментов
 - 3. Проверка статистических гипотез
 - 4. Исследование выборочных совокупностей
 - 5. Однократное и многократное измерение
 - 6. Обработка результатов нескольких серий измерений
- 7. Функциональные преобразования результатов измерений (косвенные измерения)
- 8. Определение погрешностей результатов измерений методом математической статистики
- 9. Обработка результатов эксперимента и их графическое отображение
 - 10. Обработка экспериментальных данных в MS Excel
- 11. Проверка значимости уравнения линейной регрессии по критерию Фишера
- 12. Вычисление коэффициентов уравнения линейной регрессии
 - 13. Построение нелинейной регрессии
- 14. Вычисление коэффициентов линейной множественной регрессии и проверка значимости в режиме регрессия
 - 15 Проверка статистических гипотез

- 16. Схема применения критерия Пирсона для проверки сложной гипотезы о законе распределения
- 17. Сбор и статистическая обработка в химической промышленности
 - 18. Тесты статистической значимости.
 - 19. Представление данных в расчётах.
 - 20. Погрешности и их распространение
- 21. Проверка нормальности распределения результатов химического анализа
 - 22. Системы регистрации и обработки данных
 - 23. Двухфакторный дисперсионный анализ
 - 24. Трёхфакторный дисперсионный анализ
- 25. Алгоритмы оценки случайной составляющей погрешности при отсутствии проб, идентичных по физико-химическим свойствам.

Критерии оценивания рефератов

1-балльная. Критерии оценивания:

1 балл (или оценка «отлично») выставляется обучающемуся, если он владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0,5 балла (или оценка «удовлетворительно») выставляется обучающемуся, если он неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 балла (или оценка «неудовлетворительно») выставляется обучающемуся, если он допускает грубые ошибки; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя

Вопросы для устного опроса

- 1. Надежность и воспроизводимость эксперимента.
- 2. Запись и представление результатов выполненного эксперимента.
- 3. Последовательно хронологическая запись действий и операций, табличный, графический и комбинированные варианты.

- 4. Рабочая гипотеза и ее правомерность, пути обоснования.
- 5. Лабораторный, технологический и инженерный эксперимент. Общность и различие понятий.
- 6. Эксперимент научно-исследовательский, производственный, учебный и демонстрационный.
- 7. Назначение, цели проведения, характерные признаки, специфика получаемых результатов эксперимента.
 - 8. Кинетический эксперимент и его специфические особенности.
- 9. Кинетический вариант научно-исследовательского и учебного эксперимента.
- 10. Эксперимент, направленный на получение новых химических веществ и новых материалов. Специфика и отличительные черты.
- 11. Специфика научно-исследовательского эксперимента, проводимого в производственных условиях.
- 12. Преимущества и недостатки, рекомендации по использованию различных вариантов хронологической записи действий и операций.
 - 13. Рабочая гипотеза и ее правомерность, пути обоснования.
- 14. Ошибки эксперимента и источники их происхождение. Систематическая и случайная ошибки. Пути их обнаружения и устранения.
- 15. Средние значения величины в химии и химической технологии. Средняя арифметическая простая и взвешенная. Медиана. Мода.
- 16. Средние значения величины. Средняя логарифмическая и геометрическая. Средняя квадратичная и средняя гармоническая величины.
- 17. Математическое ожидание и дисперсия случайной дискретной величины.
- 18. Математическое ожидание и дисперсия случайной непрерывной величины.
 - 19. Плотность распределения и кривая распределения.
- 20. Нормальное распределение. Кривая Гаусса и ее характеристика.
 - 21. Закон распределения ошибок.
- 22. Средняя квадратичная ошибка отдельного измерения и среднего арифметического.
- 23. Оценка меры точности отдельных измерений и среднего арифметического.

- 24. Последовательность статистической обработки экспериментальных данных.
- 25. О среднем значении и о дисперсии функции нескольких независимых случайных величин.
 - 26. О неравноточных наблюдениях (измерениях).
- 27. Среднее значение и дисперсия функции нескольких независимых случайных величин.
- 28. Назовите виды статистических показателей. Приведите примеры.
- 29. Что понимается под абсолютными статистическими величинами и каково их значение? Приведите примеры абсолютных величин.
 - 30. Порядок обработки неравноточных измерений
- 31. О среднем значении и о дисперсии функции нескольких независимых случайных величин.
- 32. Что характеризует доверительный интервал, как вычисляют доверительные границы?
- 33. Как сравнить по воспроизводимости две выборочные совокупности результатов химического анализа?
- 34. Как доказать, что результаты двух выборочных совокупностей принадлежат одной и той же генеральной совокупности данных?
 - 35. Неравноточные наблюдения. Классификация.
- 36. Каковы причины происхождения неравноточных измерений? Являются ли неравноточные измерения отрицательной характеристикой деятельности производящих такие измерения людей?
- 37. «Вес» наблюдения и принципы его определения. Общая арифметическая середина неравноточных измерений.
 - 38. Порядок и методы обработки неравноточных измерений.
- 39. Классификация неравноточных измерений с четко оговоренным (известным) числом их.
- 40. Сущность обработки неравноточных измерений с известным числом и одинаковой точностью отдельных измерений.
- 41 Сущность обработки неравноточных измерений с известным числом, но не одинаковой точностью отдельных измерений
- 42. Сущность обработки неравноточных измерений, когда число их неизвестно.
- 43. Использование методов статистической обработки экспериментальных данных при обработке неравноточных измерений.

- 44. Обработка неравноточных наблюдений по принципу статистической обработки экспериментальных данных.
 - 45. Неравноточные наблюдения. Классификация.
 - 46. Порядок и методы обработки неравноточных измерений.
- 47. «Вес» наблюдения и принципы его определения. Общая арифметическая середина неравноточных измерений.
- 48. Варианты обработки рядов неравноточных наблюдений, отличающихся числом измерений в каждом ряду, но при одинаковой точности каждого из отдельных измерений.

Шкала оценивания ответов на контрольные вопросы:

1-балльная. Критерии оценивания:

1 балл (или оценка «отлично») выставляется обучающемуся, если он владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0,5 балла (или оценка «удовлетворительно») выставляется обучающемуся, если он неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 балла (или оценка «неудовлетворительно») выставляется обучающемуся, если он допускает грубые ошибки; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя