Документ подписан простой электронной подписью

Информация о владельце:

ФИО: ВикльюноваСФисейа €енеддеевина Должность: рркредктор по учебной работе Дата подписания: 20.09.2023 00:09:49

Уникальный программный ключ:

9b81d3a94t06868a466fd2d488d659t85f968beal30fd52e974ftdf469t86c465666689

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Юго-Западный государственный университет»

(ЮЗГУ)

Кафедра фундаментальной химии и химической технологии

УТВЕРЖДАЮ Прорестор по учебной работе О.Г. Локтионова 2017 г.

Процессы массопереноса

Методические указания к практической и самостоятельной работе по курсам: «Процессы массопереноса» и «Аппаратурное оформление химических процессов» для студентов направления 18.04.01 - Химическая технология

УДК 66.02 (076.1): 66-93 (075.8)

Составители: С.Д. Пожидаева, А.М. Иванов

Рецензент

кандидат химических наук, доцент Н.А. Борщ

Процессы массопереноса: методические указания к практической и самостоятельной работе по курсам: «Процессы массопереноса» и «Аппаратурное оформление химических процессов» для студентов направления 18.04.01 - Химическая технология / Юго-Зап.гос.ун-т; сост.: С.Д. Пожидаева, А.М. Иванов. Курск, 2017. 31 с. табл.2. рис.2

Приведены задачи и вопросы для самоподготовки для закрепления теоретических знаний по дисциплине «Процессы массопереноса» и «Аппаратурное офрмление химических процессов » с целью формирование у студентов современных представлений об обязательных в любом химическом процессе стадий массопереноса на должном макрокинетическом уровне, их научных основах и перспективных направлениях, освоение принципов составления математических моделей обозначенного процесса, а также оперирования такими моделями для получения необходимых результатов в химической практике.

Методические указания предназначены для практической и самостоятельной работы для студентов направления 18.04.01 - Химическая технология

Методические указания соответствуют требованиям программы.

Текст печатается в авторской редакции

Подписано в печать . Формат 64х18 1/16 Усл.печ.л. Уч.-изд.л. Тираж экз. Заказ . Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

СОДЕРЖАНИЕ

	стр								
Введение	4								
Практическая работа №1. Основы массопередачи. Абсорбция									
Практическая работа №2. Основы массопередачи. Адсорбция									
Практическая работа №3. Сушка									
Практическая работа №4. Расчет сушилки									
Практическая работа №5. Выпаривание. Кристаллизация. Расчет выпарных установок.	9								
Практическая работа №6. Растворение	11								
Практическая работа №7. Перегонка и ректификация	12								
Практическая работа №8. Экстрагирование	13								
Задачи для индивидуальной и контрольной работы	14								
Вопросы для подготовки к итоговой работе	23								
Справочные данные	30								
Библиографический список	31								

Введение

Работы предназначены для закрепления теоретических знаний по дисциплине «Процессы массопереноса» и «Аппаратурное оформление химических процессов » с целью формирование у студентов современных представлений об обязательных в любом химическом процессе стадий массопереноса на должном макрокинетическом уровне, их научных основах и перспективных направлениях, освоение принципов составления математических моделей обозначенного процесса, а также оперирования такими моделями для получения необходимых результатов в химической практике.

Методические указания способствуют использованию студентами знаний, полученных при изучении разных фундаментальных и технологических дисциплин, в интерпретации закономерностей протекания разнообразных процессов массопереноса, а также вычленение подобных закономерностей из закономерностей протекания их нехимических стадий и управление ими при реализации химических процессов.

Практическая работа №1

Основы массопередачи. Абсорбция

Задачи для решения под контролем преподавателя

1.1 В насадочной колонне происходит адсорбция CO_2 водой. Начальная концентрация $y_1 = 10$ объемн. %; конечная концентрация $y_2 = 0.3$ объемн. %. Начальная концентрация жидкости $c_2 = 25$ мг/л. расход газа при нормальных условиях $Q_{o6} = 1000$ м³/час (при нормальных условиях). Давление 15,5 ат, температура 25°C.

Определить: минимальный расход абсорбента; построить рабочую линию при расходе воды, превышающем минимальный в 2 раза; определить среднюю движущую силу вверху и внизу колонны.

1.2 Определить высоту насадки в колонне для абсорбции CO_2 водой при следующих условиях: давление 15,5 ат, температура 25°C; расход газа при нормальных условиях на входе : $V_1 = 4430$ м³/час; на выходе $V_2 = 2965$ м³/час; содержание CO_2 на входе: $y_1 = 0,297$; на выходе $y_2 = 0,009$; концентрация CO_2 в абсорбенте: на входе $c_2 = 0,025$ кг/м³; на выходе $c_1 = 4,250$ кг/м³; диаметр колонны

 d_{H} =2150 мм, тип насадки - кольца Рошига 75×75×10 мм, нагруженные внавал.

Коэффициенты массоотдачи: внизу колонны

 $k_{\Gamma,1} = 0,537$ кмоль·м⁻²·ч⁻¹·(кмоль/кмоль)⁻¹, вверху колонны $k_{\Gamma,2} = 0,281$ кмоль·м⁻²·ч⁻¹·(кмоль/кмоль)⁻¹ ; для всей колонны $k_{\mathbb{K}} = 83,5$ кмоль·м⁻²·ч⁻¹·(кмоль/кмоль)⁻¹

1.3 Определить высоту насадки в колонне для десорбции аммиака из водного раствора воздухом. Колонна работает при следующих условиях: расход раствора аммиака $L_2 = 1069,90$ кмоль/час; концентрация аммиака в растворе: на входе $c_2 = 0,0698$ кг/кг, на выходе $c_1 = 0,0186$ кг/кг; расход воздуха G = 530 кмоль/ч; концентрация аммиака в выходящем из колонны воздухе $y_2 = 0,1$; средняя температура 40° C; диаметр колонны $d_H = 2200$ мм; тип насадки - кольца Рошига $50 \times 50 \times 5$ мм, нагруженные внавал.

Коэффициенты массопередачи, отнесенный к газовой фазе: $K_{\Gamma} = 0.7$ кмоль·м-2·ч-1·(кмоль/кмоль) -1

- 1.4 Скруббер для поглощения паров ацетона из воздуха орошается водой в количестве 3000 кг/ч. Средняя температура в скруббере 20°С. Через скруббер пропускается под атмосферным давлением смесь воздуха с парами ацетона, содержащая 6%(об) ацетона. Чистого воздуха в этой смеси содержаит 1400 м³/час (считая на нормальные условия). В скруббере улавливаются 98% ацетона. уравнение линии равновесия $Y^* = 1,68X$, где Y^* и X выражены соответственно в 0015 кмоль ацетона/кмоль воздуха и кмоль ацетона/кмоль воды. Найти диаметр и высоту скруббера, заполненного керамическими кольцами $25 \times 25 \times 3$ мм. Скорость газа принять на 25% меньше скорости захлебывания. Коэффициент массопередачи $K_y = 0,4$ кмоль ацетона/ $\binom{\kappa MOJb}{\kappa MOJb} \frac{\alpha \mu e moha}{\kappa MOJb}$. Коэффициент смоченности насадки принять равным 1.
- 1.5 Рассчитать насадочный абсорбер для улавливания аммиака из газовой смеси водой по исходным данным: количество газовой смеси, поступающей на установку 45000 м^3 /час при начальной концентрации аммиака у₁ =12 %(объем), степень извлечения 95%; начальная концентрация аммиака в воде 0,2%(масс.); степень насыщения аммиаком воды 0,75; начальная температура воды, по-

ступающей в абсорбер 15°C, начальная температура охлаждающей воды 15°C, работает под атмосферным давлением.

Практическая работа №2

Основы массопередачи. Адсорбция

Задачи для решения под контролем преподавателя.

- 2.1 Определить требуемое количество активного угля, высоту слоя адсорбента и диаметр адсорбера периодического действия для поглощения паров бензина из смеси его с воздухом. Расход паровоздушной смеси $3450 \text{ м}^3/\text{ч}$. Начальная концентрация бензина C_0 =0,02 кг/м³. Скорость паровоздушной смеси ω = 0,23 м/с, считая на полное сечение аппарата, динамическая активность угля по бензину 7% (масс.), остаточная активность после десорбции 0,8% (масс.), насыпная плотность угля $\rho_{\text{нас}}$ = 500 кг/м³. Продолжительность десорбции, сушки и охлаждения адсорбента составляет 1,45 ч
- 2.2 По опытным данным продолжительность поглощения паров хлорпикрина ($C_0 = 6,6 \text{ г/м}^3$) слоем активного угля высотой H=0,05 м и площадью поперечного сечения S=0,01 м² при объемной скорости V=0,03 м³/мин составляет $\tau=336$ мин. По изотерме хлорпикрина активность угля $a_0*=222$ кг/ м³. Диаметр частиц угля $d_3 = 1,5$ мм. Определить: а) коэффициент защитного действия слоя K; б) потерю защитного действия τ_0 ; величину динамических характеристик B_1 и B_2 .
- 2.3 Через адсорбер периодического действия за один период проходит 2000 м³ паровоздушной смеси с концентрацией диэтилового эфира C_0 =0,006 кг/м³. Температура процесса 20°С, давление атмосферное, скорость потока паровоздушной смеси ω = 13 м/мин, концентрация смеси после выхода из адсорбера C =3·10⁻⁵ кг/м³. В качестве поглотителя применяется активный уголь марки АГ-5 с диаметром зерен d_3 =0,004 м и насыпной плотностью 500 кг/м³. Высота слоя угля H=0,7 м.

По изотерме бензола при 20°C на том же угле построить изотерму адсорбции диэтилового эфира из воздуха при 20°C. Пользуясь изотермой, определить количество активного угля, необходимое на одну загрузку, диаметр абсорбера и продолжительность поглощения до проскока.

Практическая работа №3

Сушка

Задачи для решения под контролем преподавателя

3.1 Определить по *I-х* диаграмме Рамзина (рисунок 1) энтальпию и влагосодержание воздуха при 60° С и ϕ =0,3.

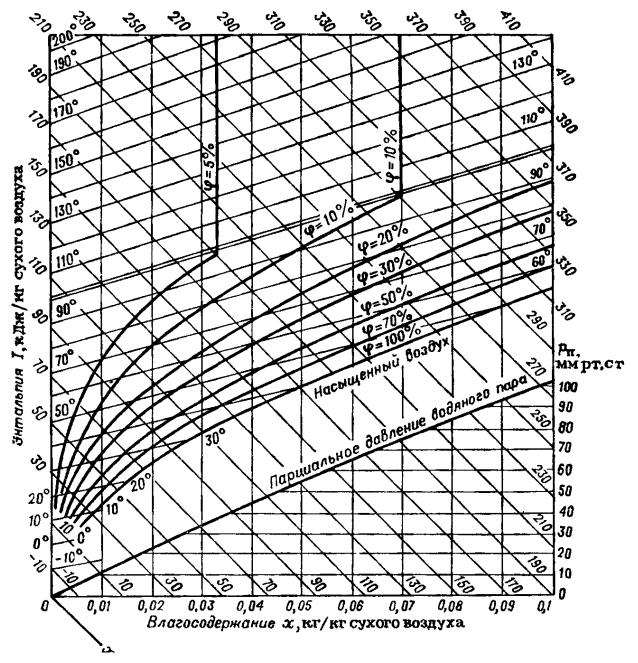


Рисунок 1 – Диаграмма Рамзина для влажного воздуха

3.2 Определить парциальное давление водяного пара в паровоздушной смеси при 80° С иI=150 кДж/кг сухого воздуха

- 3.3 Воздух с температурой 24° С и ϕ =0,7 нагревается в калорифере до 90° С. Найти энтальпию и влагосодержание воздуха на выходе из калорифера.
- 3.4 Найти аналитически влагосодержание, энтальпию воздуха при 30°С и ϕ =0,75; Π =0,098 Мпа (1 кгс/см²) и удельный объем влажного воздуха, приходящийся на 1 кг сухого воздуха, т.е. на (1+х) кг паровоздушной смеси. 3.5 Определить расход воздуха, а также расход и необходимое давление греющего пара для непрерывнодействующей противоточной сушилки, работающей по нормальному сушильному варианту: производительность сушилки G_H =350 кг/ч; начальная влажность материала u_H = 42%; конечная влажность $u_K = 11\%$; температура материала, поступающего на сушку 18°C, температура материалы, выходящего из сушилки 47°C. Характеристики состояния воздуха: до калорифера 15°C, φ₀=70%; после сушилки: 45°C, ϕ_2 =60%; удельная теплоемкость высушенного материала $2,35\cdot10^3$ Дж /(кг·К); масса трансопртирующего устройства $G_{TD} = 600$ кг (стальной транспортер); тепловые потери сушилки и калорифера в окружающую среду 12% (от суммы всех остальных слагаемых теплового баланса); влажность греющего паpa 6%.

3.6 Паста красителя высушивалась в камерной сушилке с рециркуляцией воздуха. Анализ проб на влажность дал следующие результаты

Время от начала сушки, ч	0	2	2,5	4	5	6	8	10	12	14	16	20
Влагосодержание, %	104	84	79	64	54	11	32	22	1./	Q	7	1.5
на сухое вещество	104	04	13	04	54	44	32	22	14	O	5	1,5

Определить скорость сушки в зависимости от времени; по полученным данным построить кривую и найти критическое влагосодержание.

Практическая работа №4

Расчет сушилки

4.1 Определить размеры двухвальцовой сушилки для сушки пасты углекислого никеля производительностью 90 кг/ч пасты. Начальная влажность 75%, конечная 10% (на общую массу). Сушилка обогревается глухим паром (p_{a6c} = 1 кгс/см²). Толщина слоя

материала ~ 1 мм. Над поверхностью материала продувается воздух со скоростью 1,5 м/с. Температура воздуха 40 °C, φ=40%.

4.2 Рассчитать барабанную сушилку для сушки сульфата аммония нагретым в калорифере воздухом при следующих условиях: производительность сушилки по высушенному материалу 1,25 кг/с; начальная влажность 4%, конечная 0,4%; начальная температура материала на сушку 35°С, конечная 55°С; температура воздуха на входе в сушилку (после калорифера) 120°С; на выходе из сушилки 60°С; напряжение рабочего объема аппарата по испарившейся влаге 11 кг/м³ час, давление греющего пара 0,3 МПа; максимальный размер частиц, унесенных из сушилки 0,3 мм; сушилка прямоточная, давление в сушилке атмосферное. Характеристика атмосферного воздуха: температура 6,3°С; относительная влажность 76,5%. Средняя плотность продукта 1750 кг/м³, насыпная плотность продукта 800 кг/м³, теплоемкость сернокислого аммония 1,64 кДж/кгК. Система насадки — лопастная. Коэффициент заполнения барабана насадкой 0,05; материалом 0,15.

Практическая работа №5

Выпаривание. Кристаллизация. Расчет выпарных установок.

5.1 Определить расход греющего насыщенного водяного пара в одиночном выпарном аппарате при непрерывном концентрировании раствора гидроксида натрия. Расход начального раствора 2 т/ч, его концентрация 14,1% (масс.), конечная концентрация 24,1% (масс.), температура греющего пара 150°С, давление вторичного пара в аппатаре атмосферное. Тепловые потери выпарного аппарата 58000 Вт.

Расчет провести для трех вариантов: а) раствор поступает на выпаривание с начальной температурой 20°С; б) раствор поступает на выпаривание с температурой кипения в аппарате; раствор поступает подогретым до 130 °С.

5.2 Определить количество теплоты, которое необходимо отводить в кристаллизаторе непрерывного действия для охлаждения от 90 до 40°С 5000 кг/ч водного раствора нитрата натрия, содержащего при 90°С 16 моль нитрата натрия на 1000 г воды. Учесть, что в кристаллизаторе при охлаждении раствора одновременно испаряется вода в количестве 3% от исходного количества раствора.

5.3 Определить необходимую поверхность выпарного вакуумаппарата и расход греющего насыщенного водяного пара для выпаривания раствора хлористого кальция от 15 до 25%. Производительность по исходному (разбавленному раствору) 20000 кг/час. Абсолютное давление греющего пара 1,4 кгс/см², его влажность 5%. Абсолютное давление в барометрическом конденсаторе p₀= 0,345 кгс/см². Слабый раствор поступает в аппарат при начальной температуре 75°C.

Коэффициент теплопередачи принять равным $1000 \text{ Br/(}\text{м}^2\text{K}\text{)}, \text{ а}$ тепловые потери 5% от полезно затрачиваемой теплоты.

- 5.4 Рассчитать трехкорпусную выпарную установку с естественной рециркуляцией раствора для концентрирования 5 т/час 12%-ного водного раствора азотнокислого натрия. Конечная концентрация 40% (масс.). Раствор поступает подогретым до температуры кипения. Абсолютное давление греющего насыщенного пара 4 кгс/см². Высота греющих труб 4 м. Вакуум в барометрическом конденсаторе 0,8 кгс/см².
- 5.5 Спроектировать однокорпусную выпарную установку для концентрирования $18\,000\,$ кг/ч (5 кг/с) водного раствора нитрата аммония от начальной концентрации 10% (масс) до конечной 60% (масс) при следующих условиях: обогрев осуществляется водяным паром под давлением $p_{\Gamma,\Pi}$ = 0,157 МПа; абсолютное давление в паровом пространстве выпарного аппарата $p_{5,K}$ = 0,0196 МПа, температура раствора, поступающего на установку 20° С, поступающего в выпарной аппарат 60° С; начальная температура охлаждающей воды и конденсата. Выходящей из барометрического конденсатора, ниже температуры конденсации на Δt = 5° С; выпарной аппарат с выносной нагревательной камерой тип 1, исполнение 2.
- 5.6 Спроектировать трехкорпусную вакуум- выпарную установку для концентрирования раствора едкого натра от начальной концентрации 10% (масс) до конечной 50% (масс) при следующих условиях: количество поступающего раствора 25200 кг/ч; обогрев насыщенным водяным паром 0,7848 МПа, абсолютное давление в барометрическом конденсаторе $p_{b,K}=0,01947$ МПа; направление пара и раствора прямоток; выпарной аппарат с выносной нагревательной камерой тип 1, исполнение 2.

Растворе перед подачей в первый корпус подогревается до температуры, близкой к температуре кипения в одном теплообменнике, насыщенным водяным паром из котельной; температура раствора, поступающего на установку 25°C, начальная температура охлаждающей воды 15°C; температура конденсата вторичного пара, выходящего из барометрического конденсатора, ниже температуры конденсации на 5°C.

Практическая работа №6

Растворение

- 6.1 Смесь кислот (плотность 1600 кг/м^3 , динамический коэффициент вязкости $2 \cdot 10^{-2} \text{ Па·с}$) приготавливают в аппарате без перегородок (диаметр 1200 мм, высота 1500 мм), заполненном на 0.75 объема. Исходные кислоты перемешивают пропеллерной мешалкой с частотой вращения 3.5 об/c. Определить требуемую установочную мощность электродвигателя.
- 6.2 Электродвигатель мощностью 16,5 кВт с приводом, понижающим частоту вращения до 240 об/мин, приводит в действие открытую турбинную мешалку с шестью лопатками; мешалка интенсивно размешивает реакционную массу для приготовления раствора (плотность 1200 кг/м³, динамический коэффициент вязкости 1,6 Па⋅с) в сосуде диаметром 1630 мм с перегородками. Какой должен быть диаметр мешалки?
- 6.3 Рассчитать реактор с механическим перемешиванием реагирующих веществ для поведения непрерывного процесса получения раствора полимера. Исходные данные: производительность аппарата по сухому веществу 14,43 т/сут, массовая концентрация мономера в исходной смеси 40%, степень превращения мономера в полимер 0,8, удельная теплота реакции $8,9\cdot10^5$ Дж/кг продукта, температура реакции 307 К; исходная смесь поступает в реактор при температуре 313 К. Физические свойства реакционной смеси: плотность 1056 кг/м³, теплоемкость $3,14\cdot10^3$ Дж/кг·К, $\lambda_{\text{см}}=0,407$ Вт/(м·К), вязкость смеси $4\cdot10^3$ Па·с.

В качестве хладагента используется рассол с температурой на входе 260 K, который нагревается не более, чем на 4K. Физические свойства рассола: плотность 1240 кг/м³, вязкость смеси $8,56\cdot10^{-3}$ Па·с, теплоемкость $2,84\cdot10^3$ Дж/кг·K, $\lambda_{cm}=0,456$ Вт/(м·K).

На внутренней поверхности реакционного аппарата образуется слой отложений с тепловым сопротивлением $5\cdot 10^{-4}$ (м²·К /Вт). По технологическим условиям процесс продолжается 5 ч

Практическая работа №7 Перегонка и ректификация

- 7.1 3000 кг неочищенного скипидара, содержащего 8% воды, подвергают перегонке, подвергают перегонке с водяным паром при давлении 760 мм рт.ст. Для перегонки применяют насыщенный пар давлением 1,725 кг/см². Определить общий расход пара.
- 7.2 Смесь, содержащую 15% (мольн) пропана, 65 % (мольн) бутана и 20 % (мольн) пентана, подвергают равновесной перегонке при температуре 5°C и давлении 600 760 мм рт.ст. Определить мольную степень разделения и состав жидкой и паровой фаз. Константы равновесия k_1 = 6,34; k_2 = 1,37; k_3 =0,32
- 7.3 В тарельчатой ректификационной колонне подвергают ректификации 775,8 кмоль/ч дебутанизированного газойля для получения дистиллята, содержащего 94,3 % (мольн) изопентана; остаток должен содержать 2,54 % (мольн) изопентана. Колонна работает с флегмовым числом $R=2,80R_{\text{мин}}$. Определить действительное число тарелок, если общий кпд 0,70. Состав исходной смеси % (мольн): н-бутан 0,59; изопентан 18.00; н-пентан 27,5; гексан 53,55
- 7.4 Рассчитать ректификационную колонну непрерывного действия для разделения бинарной смеси метиловый спирт-вода по следующим данным: производительность по исходной смеси 1,4 кг/с, содержание легколетучего компонента в исходной смеси 40% (по масс), в дистилляте 98,5 %(по масс), в кубовом остатке 1,5%(по масс). Давление в паровом пространстве дефлегматора 0,1МПа; тип колонны —тарельчатая; тип тарелок ситчатые с переливными устройствами. Исходная смесь перед подачей в колонну нагревается до температуры кипения насыщенным паров давлением 0,4 М Па.
- 7.5 Рассчитать ректификационную колонну непрерывного действия с ситчатыми тарелками для разделения под атмосферным давлением 10 т/ч жидкой смеси, содержащей 50% (по масс) бензола и 50% (по масс) толуола. Требуемое содержание бензола в дистил-

ляте 96% (по масс), толуола в кубовом остатке 98% (по масс). Исходная смесь перед подачей подогревается до температуры кипения. Греющий пар имеет давление $p_{изб} = 3 \text{ кгс/см}^2$. В расчет входит определение расходов дистиллята, кубового остатка, флегмового числа, греющего пара, охлаждающей воды и определение основных размеров колонны D и H. Определение числа тарелок выполнить графически с помощью метода теоретической тарелки.

Практическая работа №8

Экстрагирование

- 8.1 1000 кг раствора ацетона (В) в воде (А), содержащего 50% ацетона, подвергают экстракции метилизобутилкетоном (S) для получения рафината, содержащего 10% ацетона. Определить потребное количество теоретических ступеней, если экстракцию проводят перекрестным током, причем в каждой ступени используют 250 кг чистого растворителя
- 8.2 100 кг раствора ацетона (В) в воде (А), содержащего 50% ацетона, подвергают экстракции четыреххлористым углеродом (S) для получения рафината, содержащего 10% ацетона. Определить потребное количество теоретических ступеней, если экстракцию проводят перекрестным током, причем в каждой ступени используют 25 кг чистого растворителя. Кривая равновесия и сопряженные точки приведены на треугольной диаграмме (рисунок 2)

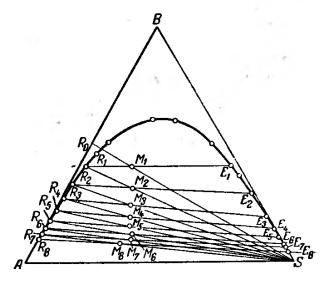


Рисунок 2— Расчет многоступенчатой перекрестноточной экстракции ацетона из воды четыреххлористым углеродом

8.3 С целью извлечения меди колчеданные огарки подверга-

ются обжигу с поваренной солью. В обожженной массе медь содержится в виде CuCl₂. Содержание хлорида меди составляет 11 %. Обожженный продукт подвергается выщелачиванию в противоточной батарее подкисленной водой, получающейся от промывки отходящих газов. Инертная твердая масса удерживает 2 кг воды на 1 кг твердого вещества. На каждой ступени достигается равновесие. Сколько ступеней необходимо иметь в батарее для получения раствора, содержащего 12% (масс.) CuCl₂ и извлечения 98% Cu из обожженного продукта?

- 8.4 В противоточном экстракторе непрерывного действия обрабатываются чистым бензолом сточные фенольные воды с целью очистки воды и извлечения фенола. Определить необходимое количество растворителя и число теоретических ступеней экстрагирования, если в 1 ч обрабатывается 10 м³ воды. Содержание фенола в воде: начальное: 8 кг/м³, конечное 0,5 кг/м³, конечное содержание фенола в бензоле 25 кг/м³, температура жидкости 25°С.
- 8.5 В вертикальном отстойнике с коническим дном находятся осадок и 7 м³ раствора, содержащего 2 т гидроксида натрия. После отстаивания сливается прозрачная часть в количестве 6 м³, отстойник доливается чистой водой и суспензия перемешивается. После повторного отстаивания вновь сливается 6 м³ чистого раствора. Три слитых с осадка раствора смешиваются и направляются на выпарку. Определить: а) количество гидроксида натрия, остающееся в шламе; б) процент извлечения гидроксида натрия; в) процентное содержание гидроксида натрия в растворе, поступающем на выпарку.

Задачи для индивидуальной и контрольной работы

- 1.1 Смешаны два равных объема бензола и нитробензола. Считая, что объем жидкой смеси равен сумме объемов компонентов, определить плотность смеси, относительную массовую концентрацию \overline{X} нитробензола и его объемную мольную концентрацию C_x .
- 1.2 Состав жидкой смеси: хлороформа 20%, ацетона 40%, сероуглерода 40%. Проценты мольные. Определить плотность смеси, считая, что изменения объема при смешении не происходит.

- 1.3. Воздух насыщен паром этилового спирта. Общее давление воздушно-паровой смеси 600 мм рт.ст., температура 60° С. Принимая оба компонента смеси за идеальные газы, определить относительную массовую концентрацию \overline{Y} этилового спирта в смеси и плотность смеси.
- 1.4 Пар бинарной смеси хлороформ-бензол, содержащий 50% хлороформа и 50% бензола, вступает в контакт с жидкостью, содержащей 44% хлороформа и 56% бензола (проценты мольные). Давление атмосферное. Определить: а) из какой фазы в какую будут переходить хлороформ и бензол; б) движущую силу процесса массопередачи по паровой и по жидкой фазе на входе пара в жидкость (в мольных долях). Данные о равновесных составах в таблицах равновесных составов жидкости и пара для некоторых бинарных систем при 760 мм.рт.ст.
- 1.5 Рассчитать коэффициенты молекулярной диффузии под атмосферным давлением: а) пара бензола в паре толуола при температуре 100°C; б) пара этилового спирта в водяном паре при температуре 92°C.
- 1.6 Определить коэффициент массопередачи в орошаемом водой абсорбере, в котором $\beta_y = 2,76\cdot 10^{-3}$ кмоль/(м²·ч·кПа), а $\beta_X = 1,17\cdot 10^{-4}$ м/с. Давление в аппарате $p_{abc} = 1,07$ кгс/см². Уравнение линии равновесия У*= 102x.
- 1.7 В скруббере поглощается водой диоксид серы из инертного газа (азота) под атмосферным давлением (760 мм рт.ст.). Начальное содеражние диоксида серы в газе 5% (об.). Температура воды 20°С, ее расход на 20% больше теоретически минимального. Извлекается из газа 90% SO₂. Определить: 1) расход воды на поглощение 1000 кг/ч сернистого газа; 2) среднюю движущую силу процесса; 3) число единиц переноса n_{0y} . Линия равновесия может быть принята за прямую: коородинаты двух ее точек: 1) парциальное давление SO₂ в газовой фазе р = 39 мм рт.ст., \overline{X} =0,007 (кг SO₂/кг воды); 2) р = 26 мм рт.ст. \overline{X} =0,005 (кг SO₂/кг воды).
- 1.8 В насадочном абсорбере производится поглощение пара метилового спирта водой под атмосферным давлением при средней темпертуре 27°С. Содержание метилового спирта в газе, поступаю-

щем в скруббер, 100 г на 1m^3 инертного газа (считается объем газа при рабочих условиях). На выходе из скруббера вода имеет концентрацию 67% от максимально возможной, т.е. от равновесной с входящим газом. Уравнение растворимости метилового спирта в воде в относительных мольных концентрациях 98% от исходного спирта. Коэффициент массопередачи 98% от исходного спирта. Коэффициент массопередачи 98% спирта 98% от исходного спирта. Расход инертного газа 98% (при кмоль спирта). Расход инертного газа 98% (при

рабочих условиях). Абсорбер заполнен насадкой из керамических колец с удельной поверхностью $190 \text{ м}^2/\text{м}^3$. Коэффициент смачивания насадки ψ =0,87. Фиктивная скорость в абсорбере ω =0,4 м/с. Определить расход воды и требуемую высоту слоя насадки.

- 1.9 В скруббер диаметром 0,5 м подается 550 м³/ч (760 мм рт.ст., температура 20°С) воздуха, содержащего 2,8% (об.) аммиака, который поглощается водой под атмосферным давлением. Степень извлечения аммиака 0,95. Расход воды на 40% больше теоретически минимального. Определить: 1) расход воды; 2) общее число единиц переноса n_{0y} ; 3) высоту слоя насадки из керамических колец $50 \times 50 \times 5$ мм. Коэффициент массопередачи $K_y = 0,001$ кмоль аммиа-ка/ $\binom{M^2 \cdot C}{KMOJD} \frac{RMOJD}{ROJD} \frac{AMMUAKA}{ROJD}$. Коэффициент смачивания насадки $\psi = 0,9$.
- 1.10 Воздух с примесью аммиака пропускается через орошаемый водой скруббер, заполненный насадкой из колец с удельной поверхностью 89,5 м 2 /м 3 . Свободный объем насадки 0,79 м 3 /м 3 . Температура 28°С, абсолютное давление 1 кгс/см 3 . Среднее содержание аммиака в газовой смеси 5,8% (об.). Массовая скорость газа, отнесенная к полному сечению скруббера 1,1 кг/(м 2 ·с). Определить коэффициент массоотдачи для газа, считая, что скруббер работает при пленочном режиме.
- 1.11 Абсорбер для улавливания паров бензола из парогазовой смеси орошается поглотительным маслом с мольной массой 260 кг/кмоль. Среднее давление в абсорбере рабс = 800 мм рт.ст., температура 40°С. Расход парогазовой смеси 3600 м³/ч (при рабочих условиях). Концентрация бензола в газовой смеси на входе в абсорбер 2% (об.), извлекается 95% бензола. Содержание бензола в поглотительном масле, поступающем в абсорбер после регенерации 0,2% (мол.). Расход поглотительного масла в 1,5 раза больше теоре-

тически минимального. Для расчета равновесных составов принять, что растворимость бензола в масле определяется законом Рауля. При концентрациях бензола в жидкости до X=0,1 кмоль бензола/кмоль масла равновесную зависимость $Y^*=f(X)$ считать прямолинейной.

Определить: 1) расход поглотительного масла в кг/ч; 2) концентрацию бензола в поглотительном масле, выходящем из абсорбера; 3) диаметр и высоту насадочного абсорбера при фиктивной скорости в нем 0.5 м/с и высоте единицы переноса h_{0y} =0.9 м.

1.12 В насадочном абсорбере диаметром 1 м SO_2 поглощается водой из воздуха. Начальное содержание SO_2 в поступающей смеси 7% (об.). Степень поглощения 0,9. На выходе из абсорбера вода содержит 0,0072 кг SO_2 / кг воды. Коэффициент массопередачи K_y = 0,005 кмоль SO_2 / $\binom{\kappa MOJb}{\kappa MOJb} \frac{SO_2}{\kappa OJb}$. Насадка из керамических колец

 $50 \times 50 \times 5$ мм. Коэффициент смачивания насадки $\psi = 1$. Высота единицы переноса $h_{0y} = 1,17$ м. Определить расход воды в абсорбере.

- 1.13 Определить минимальный расход абсорбента при абсорбции аммиака водой в насадочной колонне. Расход инертного газа G=120 кмоль/ч; концентрация аммиака в газе: начальная: $Y_1=0,0309$ кмоль/кмоль; конечная $Y_2=0,0016$ кмоль/кмоль; конечная равновесная концентрация аммиака в жидкости $X_1=0,0318$ кмоль/кмоль; начальная концентрация аммиака в жидкости $X_2=0,0002$ кмоль/кмоль.
- 1.14 Определить необходимый расход воды для поглощения двуокиси серы из газовой смеси, содержащей 5% SO₂. Расход газа при нормальных условиях Q_{06} = 350 м³/час. Абсорбция происходит при 20° С и атмосферном давлении. В колонне поглощается 90% SO₂, содержащегося в газе; конечная концентрация SO₂ в воде составляет 90% от равновесной.
- 1.15 В насадочной колонне происходит абсорбция аммиака водой из воздуха от начальной концентрации $y_1 = 0.05$ до конечной $y_2 = 0.0027$. Расход газа, определенный при нормальных условиях, составляет $Q_{06} = 10000$ м³/час. Начальная концентрация аммиака в абсорбенте 0.2%. Расход абсорбента в 1.2 раза больше минимального. Абсорбция происходит при 20° С и атмосферном давлении.

Определить расход воды и построить рабочую и равновесную линии в координатах Y и X. равновесные данные:

X	0,0021	0,0053	0,0106	0,0159	0,0212	0,0265	0,0318	0,037
Y*	0,0015	0,0043	0,0097	0,0165	0,0250	0,0360	0,0485	0,063

- 1.16 По условиям предыдущей задачи определить поверхность насадки, необходимой для обеспечения требуемой очистки, если коэффициент массопередачи, отнесенный к газовой фазе постоянный и составляет K_{Γ} = 1,75 кмоль·м⁻²·ч⁻¹·(кмоль/кмоль)⁻¹
- $1.17~{
 m По}$ условиям предыдущей задачи определить требуемую высоту насадки, состоящей из беспорядочно загруженных колец Рошига размером $25{\times}25{\times}3$, если диаметр колонны $d_{
 m H}{=}1,8~{
 m M}$.
- 1.18 Определить концентрации на поверхности раздела фаз при абсорбции двуокиси серы водой из смеси с воздухом. Колонна работает при следующих условиях: начальная концентрация SO_2 у₁ = 0,06; конечная концентрация у₂ = 0,01; расход газа при нормальных условиях Q_{06} =455 кг/час; расход абсорбента в 2 раза больше минимального; диаметр колонны d_H =740 мм; тип насадки кольца Рошига размером 25×25×2 мм. Абсорбция происходит при 30°С и атмосферном давлении. Даны коэффициенты массоотдачи: k_Γ = 1,2 кмоль·м⁻²·ч⁻¹·(Δ y) ⁻¹; $k_{\text{ж}}$ = 28,8 кмоль·м⁻²·ч⁻¹·(Δ x) ⁻¹ и равновесные данные:

$x \cdot 10^3$	0,057	0,141	0,281	0,422	0,564	0,844	1,41	1,97	2,8
y*·10 ²	0,079	0,224	0,62	1,07	1,566	2,59	4,74	6,84	10,4

- 1.19 По условиям предыдущей задачи определить требуемую высоту насадки, пользуясь коэффициентом массоотдачи в газовой фазе и коэффициентом массопередачи, отнесенным к газовой фазе.
- 1.20 В абсорбере под атмосферным давлением при температуре 20°С поглощается из парогазовой смеси 300 кг бензола в час. начальное содержание пара бензола в парогазовой смеси 4% (об.). Степень извлечения бензола 0,85. Жидкий поглотитель, поступающий в абсорбер после регенерации, содержит 0,0015 кмоль бензола/кмоль поглотителя. Фиктивная скорость газа в абсорбере 0,9 м/с. Уравнение линии равновесия У*= 0,2X, где У* и X выражены соответственно в 0015 кмоль бензола/кмоль инертного газа и бензола/кмоль поглоти-

теля. Коэффициент избытка поглотителя ϕ =1,4. Определить диаметр абсорбера в поглотителе, выходящем из абсорбера.

- 2.1 Определить количество загружаемого активного угля, диаметр адсорбера и продолжительность периода поглощения 100 кг паров октана из смеси с воздухом при следующих данных: начальная концентрация $C_0 = 0.012$ кг/м³, скорость потока паровоздушной смеси $\omega = 20$ м/мин, активность угля по бензолу 7%, насыпная плотность угля 350 кг/м³. Высота слоя угля H=0.8 м.
- 2.2 Определить продолжительность поглощения до проскока τ и потерю времени защитного действия τ_0 для адсорбции паров четыреххлористого углерода слоем активного угля высотой H=0,10 м. Скорость потока паровоздушной смеси $\omega=5$ м/мин, диаметр частиц угля $d_3=2,75$ мм. Динамические коэффициенты $B_1=14500$ и $B_2=52945$.
- 2.3 Пользуясь изотермой адсорбции бензола, определить скорость и высоту слоя активного угля при непрерывной адсорбции парогазовой смеси с начальной концентрацией $C_0 = 0,011 \text{ кг/м}^3$, скоростью прохождения паровоздушной смеси $\omega = 20 \text{ м/мин и ко-эффициентом массоотдачи } \beta_{y-} = 4c^{-1}$. Уголь в процессе адсорбции насыщается до 80% своей статической активности. Остаточная активность угля после десорбции составляет 14,5% от первоначальной статической активности. Парогазовая смесь должна быть очищена до концентрации не более $C=0,01 \text{ кг/м}^3$.
- 2.4 В вертикальный адсорбер диаметром 3 м со стальной трубой диаметром 0,35 м поступает 170 м³/мин парогазовой смеси, содержащей C_0 =0,02 кг/м³ паров этилового спирта. Концентрация этилового спирта в отходящем газе C_1 =0,0002 кг/м³, высота слоя угля H=1,5 м, насыпная плотность 500 кг/м³, продолжительность одного периода поглощения 4 часа 37 мин. Определить количество теплоты, выделяющейся в адсорбере за первый период.
- 2.5 Определить минимальную скорость движения цеолита типа NaA в колонном аппарате при глубокой осушке воздуха при следующих данным: $C_0=0.01~\text{кг/m}^3$, $C_{np}=2.94\cdot10^{-6}~\text{кг/m}^3$, $d_3=0.002~\text{м}$, $a_0*=170~\text{кг/m}^3$, скорость газового потока, отнесенная к полному сечению аппарата 0.5~m/c.

- 3.1 Во сколько раз больше придется удалить влаги из 1 кг влажного материала при высушивании его от 50 до 25%, чем при высушивании от 2 до 1% влажности (считая на общую массу). В обоих случаях поступает на сушку 1 кг влажного материала.
- 3.2. Найти влагосодержание, энтальпию, температуру мокрого термометра и точку росы для воздуха, покидающего сушилку при 50° С и ϕ =0,7.
- 3.3 Найти влагосодержание и относительную влажность паровоздушной смеси при 50° C, если известно, что парциальное давление водяного пара в смеси 0,1 кгс/см².
- 3.4 Найти содержание водяного пара в смеси: а) с воздухом, б) с водородом; в) с этаном (считая на 1 кг сухого газа) при 35°C и ϕ =0,45. Общее абсолютное давление Π =1,033 кгс/см².
- 3.5 Влажный воздух с температурой 130°С и ϕ =0,3 находится под давлением p_{a6c} = 7 кгс/см² (~0,7 МПа). Определить парциальное давление воздуха, его плотность и влагосодержание
- 3.6 Какое количество влаги удаляется из материала в сушилке, если воздух поступает в сушилку в количестве 200 кг/час (считая на абсолютно сухой газ) с 95°C и ϕ =5% и уходит 50°C и ϕ =60%. Определить удельный расход воздуха.
- 3.7 Определить производительность вытяжного вентилятора для сушилки, в которой из высушиваемого материала удаляется 100 кг/ч влаги при следующих условиях: начальные 15°C и ϕ =0,8; конечные 45°C и ϕ =0,6, абсолютное давление Π =750 мм.рт. ст
- 3.8 Воздух перед поступлением в сушилку подогревается в калорифере до 113°C. При выходе из сушилки температура воздуха 60°C и ϕ =0,3. Определить точку росы воздуха, поступающего в калорифер. Процесс сушки идет по линии E=const.
- 3.9 Определить температуру поступающего в теоретическую сушилку воздуха, если средняя движущая сила сушильного процесса $\Delta x_{cp} = 0.0136$ кг/кг, температура уходящего из сушилки воздуха 45°C, а его относительная влажность ϕ =0,6.
- 3.10 Найти температуру и влагосодержание воздуха, уходящего из теоретической сушилки, если средний потенциал сушки $\chi_{cp} = 41^{\circ}C$.

Воздух поступает в калорифер при 15°C и ϕ =0,7. Энтальпия воздуха, поступающего из калорифера в сушилку I=144,2 кДж/кг. Определить температуру влажного материала (в первом периоде сушки).

- 5.1 Исходный раствор гидроксида натрия содержит 79 г/л воды. Плотность упаренного раствора при 30°C равна 1,555 г/см³, что соответствует концентрации 840 г/л раствора. Определить количество выпаренной воды на 1 т исходного раствора.
- 5.2 Найти удельную теплоемкость 25%-ного раствора натриевой соли салициловой кислоты.
- 5.3 Вычислить с помощью правила линейности теплоту парообразования анилина при абсолютном давлении 0,2 кгс/см².
- 5.4 Сколько надо выпарить воды из 1500 кг раствора хлорида калия, чтобы изменить его концентрацию от 8 до 30% (масс).
- 5.5 Как изменится производительность выпарного аппарата, если на стенках греющих труб отложится слой накипи толщиной 0,5 мм? Коэффициент теплопередачи для чистых труб 1390 Bt/(м²К). Коэффициент теплопроводности накипи 1,16 Bt/(мК).
- 7.1 Вычислить состав равновесной паровой фазы при 50°C для жидкости, состоящей из смеси гексана и воды, предполагая полную взаимную нерастворимость.
- 7.2 Вычислить состав равновесной паровой фазы при 60°С для жидкости, состоящей из 40% (мол) бензола и 60% (мол) толуола, считая, что данная смесь характеризуется законом Рауля. Найти, какого состава жидкая смесь бензола и толуола кипит при 90°С под давлением 760 мм рт. ст
- 7.3 Вычислить равновесные составы фаз и построить диаграммы равновесия в координатах t-x, y и y*-x для бензольно-толуольной смеси при атмосферном давлении считая, что данная смесь характеризуется законом Рауля.
- 7.4 2500 кг загрязненного скипидара перегоняются в токе насыщенного водяного пара под атмосферным давлением (760 мм рт. ст). Исходная смесь содержит 88%(масс.) скипидара, 12% (масс.) воды и подается в аппарат при 30°С. Внешнего подогрева нет.

- 7.5 При расчете ректификационной колонны с колпачковыми тарелками принято расстояние между тарелками 300 мм. Через колонну проходит 3200 кг/м³ пара. Плотность пара 1,25 кг/ м³ (расход и плотность при нормальных условиях). Плотность жидкости 430 кг/м³. Абсолютное давление 1,2 кгс/см³ и средняя температура 40°C. Определить требуемый диаметр колонны.
- 8.1 Определить состав и количество сосуществующих фаз, на которые расслаивается смесь 10 кг воды, 5 кг этилового эфира и 5 кг уксусной кислоты. При удалении такого количества этилового эфира эта смесь перестанет расслаиваться?
- 8.2. Уксусная кислота экстрагируется из водного раствора, содержащего ее 15%(масс). Масса исходной смеси 1200 кг. Определить состав и количество конечных продуктов после отгонки растворителя, если экстракция проводится чистым эфиром в перекрестном токе. Процесс проводится в две ступени при отношении массы растворителя к массе обрабатываемой смеси 1,5.
- 8.3 Уксусная кислота экстрагируется в противотоке эфиром из водного раствора, содержащего 20%(масс) кислоты. Определит необходимое количество растворителя на 1000 кг/ч исходной смеси и число теоретических ступеней экстрагирования, если экстракт должен содержать 60%(масс) кислоты, а рафинат не более 2%(масс) кислоты после отгонки растворителя.
- 8.4 Бензойная кислота экстрагируется из водного раствора с содержанием ее 1,5 кг на 1 м³ воды, последовательной промывкой бензолом, содержащем 0,2 кг бензойной кислоты на 1 м³ бензола, при отношении объемов воды и бензола равным 4. Определить, сколько понадобится промывок, если конечное содержание бензола в воде 0,4 кг/м³. Определить составы получающихся экстрактов. Равновесные данные при рабочей температуре

Концентрация кислоты в воде, кг/м ³	0,104	0,456	0,707	1,32	1,56
Концентрация кислоты в бензоле, кг/м ³	0,182	2,45	6,12	18,2	24,5

Вопросы для подготовки к итоговой работе

- 1. Классификация процессов массопередачи со свободной границей раздела фаз.
- 2. Способы выражения состава фаз.
- 3. Схемы материального баланса массообменного процесса со свободной границей раздела фаз.
- 4. Сформулируйте первый закон Фика. От чего зависят коэффициенты молекулярной диффузии, его физический смысл?
- 5. В чем состоят различия в переносе вещества конвекцией и массоодачей?
- 6. Раскройте физический смысл коэффициента массотдачи.
- 7. Охарактеризуйте основные модели массопереноса (пленочная, диффузионного пограничного слоя, обновления поверхности фазового контакта).
- 8. Охарактеризуйте подобие массообменных процессов. Раскройте физический смысл критериев подобия массообменных процессов.
- 9. Сформулируйте понятие движущей силы массообменных про-
- 10. Запишите уравнение массопередачи. Покажите связь и различие коэффициентов массопередачи и массоодачи.
- 11 Понятие лимитирующей стадии процесса массопередачи
- 12 Определение высоты массообменного аппарата с помощью уравнения массопередачи.
- 13 Физический смысл объемного коэффициента массопередачи. Его использование для определения высоты массообменного аппарата.
- 14 Определение высоты массообменного аппарата с помощью числа и высоты единиц переноса.
- 15 Определение высоты массообменного аппарата с помощью теоретической ступени изменения концентрации.
- 16 Сформулируйте принципы процессов абсорбции и десорбции. Для решения каких практических зада применяются эти процессы?
- 17 Закон Генри и закон фазового равновесия при абсорбции
- 18 Как составляется материальный баланс абсорбции. Раскройте понятие рабочей линии процессов абсорбции и десорбции.
- 19 Абсорбция как массообменный процесс.
- 20. Сущность абсорбции и ее возможности в химической практике.

- 21. Использование абсорбции при решении практических задач.
- 422 Минимальные и оптимальные удельные расходы абсорбента. Как влияет изменение удельного расхода абсорбента на расход абсорбента и объем абсорбера.
- 23 . Наиболее распространенные формы записи закона фазового равновесия при абсорбции.
- 24 Материальный баланс абсорбера.
- 25 Тепловой баланс абсорбера.
- 26 Влияние температуры на процесс абсорбции.
- 27 Методы поддержания изотермического режима при абсорбции.
- 28 Кинетические уравнения процесса абсорбции.
- 29 Особенности кинетики процессов абсорбции и хемосорбции
- 30 Основные требования к абсорбционным аппаратам. Классификация аппаратов.
- 31 Принцип действия пленочных абсорберов.
- 32 Характеристики работы противоточных и прямоточных пленочных абсорберов.
- 33 Принцип действия насадочных колонн. Почему насадку на высоте аппарата обычно располагают секциями? Охарактеризуйте методы улучшения смачивания насадки.
- 34 Особенности гидродинамических режимов работы насадочных колонн. Почему большинство насадочных абсорберов работают в пленочном режиме.
- 35 Сопоставьте поверхность насадки со смоченной и активной поверхностями.
- 36 Сопоставьте противоточные и прямоточные схемы работы насадочных абсорберов.
- 37 Особенности гидродинамических режимов работы тарельчатых абсорберов. Какой режим является оптимальным для проведения абсорбции?
- 38. Чем объясняется гидродинамическая неравномерность по длине тарелок с переточными устройствами
- 39 Сравнительная характеристика распыливающих абсорберов.
- 40 Основные показатели при выборе конструкции абсорбера для проведения конкретного процесса абсорбции.
- 41. Порядок расчета абсорберов.
- 42 Прямоточная схема абсорбции
- 43 Противоточная схема абсорбции

- 44 Сравнительная характеристика противоточной и прямоточной схем.
- 45 Схема многоступенчатой абсорбции
- 46 Абсорберы. Классификация.
- 47 Устройство и принцип действия абсорберов.
- 48 Вклад внешней диффузии в общий массоперенос в системах с твердой фазой. Запишите уравнение массоотдачи для массопереноса между жидкостью (газом) и твердой средой.
- 49 Массоперенос в твердой пористой фазе. Классификация пор по размерам. Определение коэффициента извилистости пор.
- 50 Уравнение диффузии в порах. Условия образования конвективной диффузии в порах.
- 51 Как определяются потоки свободной и кнудсеновской диффузии?
- 52 Запишите уравнение массопередачи для систем с участием твердой фазы. Как выражается коэффициента массопередачи для таких систем?
- 53 Коэффициент массопередачи в зависимости от способа выражения движущей силы.
- 54 Нанесение рабочих линий на X-Y диаграмму и графическое определение движущей силы процесса.
- 55 Средняя движущая сила в конкретном абсорбере и заданными направлениями движения материальных потоков.
- 56 Назовите наиболее рациональные области применения адсорбции.
- 57 Сущность статической и динамической активности адсорбентов.
- 58 Адсорбционный потенциал
- 59 Равновесие при адсорбции. Принцип построения изотерм адсорбции.
- 60 Материальный баланс адсорбции.
- 61 Особенности кинетики процесса равновесной адсорбции.
- 62 Устройство и принцип действия адсорберов с неподвижным слоем адсорбента
- 63 Устройство и принцип действия адсорберов с псевдосжиженным и плотным движущимися слоями адсорбента.
- 64 Принцип расчет и стадии расчета адсорберов
- 65 Что такое воздушная сушка покрытий?
- 66 Перечислить основные стадии процесса сушки и провести клас-

- сификацию с точки зрения основных процессов химической технологии.
- 67. Как меняются природа и соотношение конкурентных способностей промежуточных стадий воздушной сушки покрытий.
- 68 Как сочетаются термоокислительная кислородная полимеризации и окислительное старении в воздушной сушке покрытий и их дальнейшей эксплуатации?
- 69 Какова роль солей переходных металлов в воздушной сушке покрытий?
- 70 Какова роль твердой фазы в воздушной сушке покрытий?
- 71 Специфика воздушной сушки в зависимости от природы пленкообразующего.
- 72 Сушка как десорбция влаги из материала.
- 73 Свободная и связанная влага.
- 74 Химически связанная вода
- 75 Характеристика окружающего воздуха.
- 76 Абсолютная и относительная влажность.
- 77 Влагосодержание.
- 78. Температура сухого и мокрого термометра.
- 79 Точка росы.
- 80 Десорбция и адсорбция влаги.
- 81 Равновесная влажность материала и ее зависимость от относительной влажности воздуха.
- 82 Изотермы адсорбции и десорбции влаги.
- 83 Кривая фазового равновесия для сушки: области удаления свободной и связанной влаги и увлажнения материала.
- 84 Необходимые условия для протекания сушки.
- 85 Различие между абсолютной и относительной влажностью воздуха. Понятие о влагосодержании и энтальпии влажного воздуха.
- 86. Основные виды связи влаги с материалом
- 87 Принципы построения диаграммы состояния влажного воздуха. Как определяются параметры влажного воздуха с помощью этой диаграммы?
- 88 Особенности материального баланса конвективной сушки
- 89 Как определяется расход воздуха (общий и удельный) на сушку?
- 90 Скорость сушки. Основные уравнения, которым следует скорость сушки.
- 91 Основные способы сушки.

- 92 Контактная сушка.
- 93 Конвективная сушка.
- 94 Материальные балансы контактной и конвективной сушки.
- 95 Специальные виды сушки.
- 96 Тепловые балансы контактных сушилок периодического действия
- 97 Тепловые балансы конвективных сушилок периодического действия.
- 98 Тепловые балансы контактных сушилок непрерывного действия.
- 99 Кинетические закономерности конвективной сушки.
- 100 Первый и второй периоды периодического варианта и их характеристика.
- 101 Устройство и принцип действия контактных сушилок.
- 102 Преимущества и недостатки контактных сушилок.
- 103 Устройство и принцип действия наиболее распространенных конвективных сушилок.
- 104 Преимущества и недостатки конвективных сушилок.
- 105 Специфические особенности сушки как массообменного пронесса.
- 106 Способы выражения движущей силы процесса сушки
- 107 На чем основано определение коэффициентов массоотдачи для условий внешней и внутренней диффузии?
- 108 Как определяются области, лимитирующие общий процесс массопереноса при сушке?
- 109 На чем основано определение поверхности тепло-и массообмена для первого и второго периода сушки?
- 110 Методы интенсификации процессов сушки
- 111 Что понимается под перегонкой жидкостей. Виды простых перегонок.
- 112 Принцип составления материального баланса при перегонке.
- 113 Что такое азеотропные смеси.
- 114 В чем сущность азеотропной отгонки?
- 115 В чем сущность азеотропной ректификации?
- 116 Нарисуйте Х-У диаграмму для азеотропной смеси и объясните ее смысл.
- 117 Сущность молекулярной дистилляции. В каких случаях целесообразно ее применение?
- 118 Принцип ректификации.

- 119 Какие аппараты применяют для проведения процессов ректификации? В чем их отличие от абсорберов?
- 120 Материальный баланс при ректификации
- 121 Как определяется минимальное и рабочее флегмовое число? Как влияет флегмовое число на высоту ректификационной колонны?
- 122 Принцип построения кривой равновесия и рабочей линии. Как с помощью такой диаграммы определить высоту ректификационной колонны?
- 123 Тепловой баланс ректификационной колонны. Как определяется расход греющего пара для проведения ректификации? Какие способы экономии расхода теплоты возможны в ректификационной колонне?
- 124 Оптимальное флегмовое число.
- 125 Определение высоты и диаметра ректификационной колонны.
- 126 Особенности расчета многокомпонентной ректификации
- 127 Области использования азеотропных смесей в промышленности и лабораторной практике.
- 128 Эмульсии и их характеристики.
- 129 Особенности составления материальных балансов жидкостной экстракции при взаимной нерастворимости и при частичной взаимной растворимости. Рабочие линии этих процессов.
- 130 Основы кинетики процесса жидкостной экстракции, лимитирующие стадии процесса
- 131 Принципы интенсификации жидкостной экстракции
- 132 Способы проведения экстракции
- 133 Выбор скорости сплошной фазы при расчете диаметра колонных экстракторов.
- 134 Изобразите процесс непрерывной противоточной экстракции на треугольной и прямоугольной диаграммах
- 135 Расчет высоты колонных экстракторов
- 136 Особенности экстракционных установок с регенерацией экстракта.
- 137 Что понимается под процессами растворения и экстрагирования в системе твердое тело- жидкость?
- 138 Уравнение материального баланса для непрерывного и периодического процесса растворения.
- 139 Уравнение кинетики растворения. Определение параметров,

входящих в уравнение.

- 140 Основные закономерности растворения твердой фазы в жидкости как массообменного процесса
- 141. Время полного растворения и его определение в замкнутом аппарате при прямотоке и противотоке.
- 142 Уравнение материального баланса экстрагирования растворенного вещества при прямотоке и противотоке.
- 143 Определение длины экстракционного аппарата для обеспечения заданной концентрации экстрагируемого вещества в твердом теле.
- 144 Распределение концентраций в твердом теле при экстрагировании вещества из этого тела.
- 145 Определение полного экстрагирования твердого вещества.
- 146 Способы экстрагирования и растворения.
- 147 Устройство и принцип действия аппаратов для экстрагирования и растворения.
- 148 Кристаллизация. Достоинства и недостатки.
- 149 Изотермический и изгидрический методы кристаллизации. В каких случаях целесообразно применение этих методов?
- 150 Материальный и тепловой балансы кристаллизации
- 151 Анализ диаграммы газ-жидкость-твердое тело.
- 152 Особенности кинетики кристаллизации. Уравнение массопередачи и массотдачи для кристаллизации.
- 153. Опишите процессы разделения растворов частичной кристаллизацией.
- 154 Почему обезвоживание системы путем азеотропной отгонки воды более эффективно, чем простая перегонка?
- 155 Зачем для удаления кристаллизационной воды требуется плавление твердых солей?
- 156 В чем сущность методов удаления растворенной и сорбированной твердой фазой воды
- 157 В чем сущность методов удаления кристаллизационной воды?
- 158 Методы обезвоживания.
- 159 В чем сущность и различие в удалении свободной, сорбированной твердой фазы и кристаллизационной воды?
- 160 Как определяют число ступеней разделения при разделении растворов методом фракционной кристаллизации?
- 161 Определение ступеней изменения концентрации при разделе-

нии растворов противоточной многоступенчатой кристаллизацией

Справочные данные

Основные характеристики насадок. Часть 1

Насадка	Матери-	Размер н	асадки	число эле-	Свобод-	поверхность
	ал	d _н , мм	толщи-	ментов в	ный объ-	на единицу
			на, мм	1м ³ объема	ем ε	объема о
						M^2/M^3
		75	-	-	0,50	49
куско-	кокс	25-50	-	-	0,40	115
вые ма-		25	-	-	0,45	131
териалы	KDODII	50	-	-	0,46	62,5
	кварц	12-30	-	-	0,40	144
		50	1,5	6180	0,92	98,5
	металл	25	1,5	47600	0,86	194
		12	0,8	370000	0,87	377
	керами- ка	75	10,0	1840	0,72	65,5
неупо-		50	6,0	5820	0,74	92
рядочно загру-		50	5,0	6000	0,79	95
		38	5,0	14100	0,73	125
женные	Ka	25	2,5	46000	0,80	184
кольца		18	2,5	106000	0,74	236
		12	1,5	370000	0,73	377
		50	6,0	5,820	0,74	92
	графит	25	5,0	44000	0,66	170
		15	1,5	370000	0,73	377
пра-		100	10,0	950	0,73	62,5
вильно	керами-	75	10,0	2300	0,66	82
уло-		75	6,0	2300	0,76	82
женные	ка	50	6,0	7400	0,67	118
кольца		50	5,0	7400	0,72	118

Основные характеристики насадок. Часть 2

Насадка	Мате-	Размер	э насадки	Коэффици	ент пересче-	Оптимальн	ая
	риал			та Моррис	а-Джексона	скорость	газа,
		d _н , мм	толщина, мм	R_{Γ}	$R_{\mathbb{W}}$	м/сек	
куско-		75	-	2,5	0,45	0,55-0,93	
		25-	-	2,1	0,55	0,27	
	кокс	50					
		25	-	2,5	0,58	0,15-0,27	
териалы	140 040 11	50	-	2,7	0,50	0,52-0,61	
	кварц	12-30	-	2,2	0,55	0,13	
	металл	50	1,5	3,3	0,67	0,73-0,91	
		25	1,5	3,0	0,90	0,58-0,70	
		12	0,8	3,1	0,88	0,30	
		75	10,0	2,5	0,60	0,67-1,25	
неупо-		50	6,0	2,7	0,65	0,55-0,85	
рядочно		50	5,0	2,8	0,67	0,73-0,92	
загру-	кера-	38	5,0	2,7	0,75	0,52-0,79	
женные	мика	25	2,5	2,7	0,88	0,37-0,60	
кольца		18	2,5	2,7	0,88	-	
		12	1,5	2,7	0,88	0,20	
		50	6,0	2,7	0,65	0,85	
	графит	25	5,0	2,7	0,88	0,46	
		15	1,5	2,7	0,88	0,20	
правиль-		100	10,0	1,4	0,60	1,9-2,4	
но уло-	кера-	75	10,0	1,4	0,68	1,1-1,5	
женные	мика	75	6,0	1,4	0,68	1,7	
кольца		50	6,0	1,4	0,70	0,88	

Библиографический список

- 1. Новый справочник химика и технолога. [Текст] в 2 томах. Том I. Химическое равновесие. Свойства растворов. СПб.: Профессионал. 2004. 998 с
- 2. Павлов К. Ф., Романков П. Г., Носков А. А. Примеры и задачи по курсу процессов и аппаратов химической технологии. Л.: Химия, 1987.-576 с.
- 3. Флореа О., Смигельский О. расчеты по процессам и аппаратам химической технологии. М.: Химия, 1971.-448 с.
- 4. Дытнерский Ю.И. Процессы и аппараты химической технологии: Учебник для вузов. Часть 2. Массообменные процессы и аппараты. М.: Химия, 1995.-368 с.