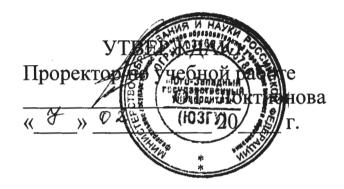
Документ подписан простой электронной подписью

Информация о владельце:


ФИО: Локтионова Оксана Геннадьевна

Должность: проректор по учебной работе МИНОБРНАУКИ РОССИИ

Дата подписания: 08.10.2023 16:33:43 Уникальный программенное государственное бюджетное образовательное 0b817ca911e6668abb13a5d426d39e5f1sytepe3xchefffae8sbfcfffer образования

«Юго-Западный государственный университет»

Кафедра «Машиностроительные технологии и оборудование»

ПРОВЕРКА СТАТИСТИЧЕСКИХ ГИПОТЕЗ

Методические указания к проведению практических занятий для студентов по направлению подготовки 15.03.05 Конструкторскотехнологическое обеспечение машиностроительных производств профиль «Технология машиностроения»

Составители: В.В. Куц, М.С. Разумов

Рецензент Кандидат технических наук, доцент А.О. Гладышкин

Проверка статистических гипотез: методические указания к проведению практических и лабораторных занятий / Юго-Зап. гос. ун-т; сост.: В.В. Куц, М.С. Разумов. – Курск, 2018. 19 с.: табл. 2.

Содержат сведения по вопросам построения гистограммы, полигона частот и полигона накопленных частот распределения результатов измерения. Указывается порядок выполнения практического занятия, подходы к решению и правила оформления.

Методические рекомендации соответствуют требования программы, утвержденной учебно-методическим объединением по специальности автоматизированного машиностроительного производства (УМОАМ).

Предназначено для студентов направлений 15.04.05 «Конструкторско-технологическое обеспечение машиностроительных производств» профиль «Технология машиностроения» дневной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать 07.02.18 г. Формат 60х84 1/16. Усл.печ.л. 1. Уч.-изд.л. 0,9. Тираж 40 экз. Заказ. В Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94. **1 Цель работы**: Получить сведения и практические навыки проверки статистических гипотез.

2 Задание:

- $2.1~\Pi$ о табл. 1~ приложения Γ в соответствии со своим вариантом выбрать уровень значимости критериев.
- 2.2 Для исходных данных, приведенных в табл. 2 приложения Г, провести проверку статистических гипотез о равенстве средних значений и дисперсий двух нормально распределенных выборок.
- 2.3. Для исходных данных, приведенных в табл. 3 приложения Г, провести проверку статистических гипотез о равенстве ряда дисперсий нормально распределенных выборок.
 - 2.4. Оформить отчет.

3 Краткие теоретические сведения

3.1. Задачи статистической проверки гипотез

Статистическая проверка гипотез, т. е. предположений, относящихся к эмпирическим распределениям изучаемых случайных величин, играет важную роль в статистических исследованиях.

Если эмпирическая кривая распределения большой выборки по своему внешнему виду приближается к какому-либо теоретическому закону распределения, то возникает вопрос, можно ли данную выборку рассматривать как выборку из генеральной совокупности, имеющей распределение именно по этому закону. Решение этого вопроса имеет важное значение для исследователя, так как знание закона распределения изучаемой величины позволяет извлечь из экспериментов дополнительную информацию. Если производится две серии испытаний с фактором A и без него и в результате получаются разные значения средних и дисперсий изучаемой переменной величины, то возникает вопрос, является ли это различие в средних и дисперсиях влиянием фактора A или оно носит чисто случайный характер.

Решение перечисленных и им подобных задач в математической статистике производится путем постановки и проверки так называемой «нулевой гипотезы». При этом под «нулевой гипотезой» подразумевается допущение об отсутствии интересующего нас различия

между выборками или их статистическими характеристиками. Например, нас интересует, можно ли по полученному распределению в большой выборке из генеральной совокупности считать, что последняя имеет нормальное распределение. Для того чтобы прийти к вполне определенному заключению, хотя бы и вероятностного характера, мы делаем гипотетическое допущение, что распределение выборки несущественно отличается от нормального и, следовательно, на основании закона больших чисел можно считать, что и генеральная совокупность имеет нормальное распределение. Другими словами, мы выдвигаем «нулевую гипотезу» об отсутствии различия между эмпирическим распределением и теоретическим нормальным или гипотезу о том, что данная выборка взята из нормальной совокупности. Теперь надо проверить эту гипотезу и в результате проверки либо отбросить ее, либо принять.

Для проверки гипотез в математической статистике пользуются рядом критериев, которые называют в этом случае критериями согласия. Для того чтобы принять или забраковать гипотезу при помощи этих критериев, установлены уровни значимости их. представляет собой достаточно малое значение вероятности, отвечающее событиям, которые в данной обстановке исследования можно считать практически невозможными. Обычно принимают пяти- двух- или однопроцентный уровень значимости. В технике чаще всего принимают пятипроцентный уровень значимости.

Уровень значимости называют также доверительным уровнем вероятности, который соответственно может быть принят равным q = 0,05; 0,02 или 0,01; иногда принимают q = 0,001. Эти уровни доверительной вероятности соответствуют классификации явлений на редкие (q = 0,05), очень редкие (q = 0,01) и чрезвычайно редкие (q = 0,001). Выбирая тот или иной уровень значимости критерия или уровень доверительной вероятности q, мы тем самым устанавливаем и область допустимых его значений, которая выражается вероятностью P = 1 - q.

С уменьшением уровня значимости расширяется область допустимых значений критерия и вместе с тем теряется его чувствительность, так как повышается вероятность принять гипотезу даже в тех случаях, когда эта гипотеза неверна. Но вместе с тем выбор доста-

точно малого уровня значимости гарантирует от возможности неправильно забраковать верную гипотезу.

Статистические приемы проверки гипотез не обладают полной определенностью. Если используемый критерий попадает в область допустимых значений, то нельзя еще сделать вывода о правильности гипотезы, а можно лишь заключить, что наблюденное значение критерия не противоречит этой гипотезе, что можно признать допустимость гипотезы до тех пор, пока более обстоятельные исследования, с помощью более точных критериев или при увеличенном числе наблюдений не подтвердят это или не приведут к противоположному заключению. Поэтому статистическими методами нельзя пользоваться формально, а необходимо их сочетать с анализом физической сущности изучаемого явления. Когда гипотеза, основанная на теоретическом анализе физической сущности явления, подтверждается. также статистическими приемами, то достоверность ее можно считать достаточно надежной.

3.2. Проверка гипотезы равенства двух выборочных средних

Предположим, что из одной и той же генеральной совокупности взяты две выборки, которые для величины x дают средние \overline{X}_1 и \overline{X}_2 , отличные одна от другой. Требуется узнать, случайно или не случайно они отличаются друг от друга. Этот вопрос имеет важное значение при проведении опытов. Если расхождение между \overline{X}_1 и \overline{X}_2 будет существенно, то это может указать на ошибки в опытах или в методике их выполнения, тогда как случайность их расхождения указывает на отсутствие таких ошибок.

Подобный вопрос возникает и при исследовании влияния различных факторов на изучаемый признак. Если опыты с фактором A и без него дали отличные друг от друга \overline{X}_1 и \overline{X}_2 , то при случайном отличии значений их очевидно, что фактор A не влияет на исследуемый признак и, наоборот, влияет при существенном расхождении между \overline{X}_1 и \overline{X}_2 . Наконец, может возникнуть на практике и такой вопрос: принадлежат ли две выборки одной и той же генеральной совокупности. И этот вопрос можно разрешить, сравнивая выборочные средние

 \overline{X}_1 и \overline{X}_2 и оценивая их расхождение. Если выборки взяты из одной и той же генеральной совокупности, то расхождение между \overline{X}_1 и \overline{X}_2 будет случайно, и, наоборот, оно будет существенно, когда выборки не будут принадлежать одной и той же совокупности.

Рассмотрим случай, когда выборки берутся из нормальной генеральной совокупности, тогда оценка расхождения двух выборочных средних производится при помощи критерия t Стюдента. Если выборки берутся из нормальной совокупности и при n<25, то величина

$$t = \frac{\left|\overline{X}_1 - \overline{X}_2\right|}{\sqrt{n_1 s_1^2 + n_2 s_2^2}} \sqrt{\frac{n_1 n_2 (n_1 + n_2 - 2)}{n_1 + n_2}}$$

где n_1 и n_2 - объем выборок; s_1^2 и s_2^2 - дисперсии выборок, подчинена распределению Стюдента и может быть оценена при помощи таблицы вероятностей $P(|t| \ge t_{_{\mathrm{T}}})$ (см. приложение A).

При оценке полученного значения t по таблице приложения А необходимо принимать $k=n_1+n_2-2$. Таблица $P(|t|\geq t_{\scriptscriptstyle T})$ дает вероятность случайных значений t, которые численно не менее наблюденного значения $t_{\scriptscriptstyle T}$. Если эта вероятность будет очень мала (практически, когда $P\leq q$), то наша нулевая гипотеза о несущественном, случайном расхождении между выборочными средними должна быть забракована. Если же вероятность $P(|t|\geq t_{\scriptscriptstyle T})$ будет достаточно велика (практически, когда P>q), то гипотеза однородности выборочных средних может быть принята.

При n>25, t критерий вычисляют по формуле

$$t = \frac{\left| \overline{X}_1 - \overline{X}_2 \right|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Пример 1. С автомата, обрабатывающего втулки $D = 20^{+0.2}$ мм, было взято в разное время две выборки по 5 шт. каждая. Результаты измерения диаметров втулок приведены в табл. 1 .

таолица 1- Резу	льтан	ы изме	рения	диаме	rpa Bi	улок	
No avecament		N:	о детал	ТИ		\overline{V}	, , , , , , , , , , , , , , , , , , ,
№ выборки	1	2	3	Δ	5	X	S

2 20,05 20,08 20,1 20,1 20,09 20,084 20,10 20,15 20,05 20,08 20,10 20,096 Выборка 1 0,0004 Выборка 2 0,0013

Распределение диаметров втулок предполагается нормальным. Поскольку выборки взяты из продукции одного и того же станка, можно предполагать, что $\sigma_1^2 = \sigma_2^2$. Пусть теперь наша гипотеза заключается в том, что генеральные средние в моменты взятия выборок были равны между собой, т. е. $\overline{X}_1 = \overline{X}_2$,. Другими словами, настройка станка в момент взятия пробы № 1 и № 2 не изменилась.

В результате вычислений средних арифметических и дисперсий выборок получено

$$\overline{X}_1 = 20,084; \ \overline{X}_2 = 20,096; \ s_1^2 = 0,0004; \ s_2^2 = 0,0013.$$

Определим *t*:

$$t = \frac{|20,084 - 20,096|}{\sqrt{5 \cdot 0,0004 + 5 \cdot 0,0013}} \sqrt{\frac{5 \cdot 5(5 + 5 - 2)}{5 + 5}} = 0,58.$$

Из таблицы приложения A находим, что при k=5+5-2=8 вероятность $P(|t| \ge t_{\rm T}) = 0.58$. Принимая q = 0.05, то вероятность не мала, она значительно больше доверительного уровня q=0.05, поэтому наша гипотеза может быть принята.

3.3 Проверка гипотезы равенства двух выборочных дисперсий

Пусть имеются две выборки из нормальной совокупности. Объем каждой выборки равен n_1 и n_2 . Дисперсии этих выборок соответственно равны s_1^2 и s_2^2 . Можно ли считать при наличии некоторых различий между величинами s_1^2 и s_2^2 , что данные выборки принадлежат одной и той же генеральной совокупности? Или можно поставить вопрос так: произведено два опыта, из которых один опыт производился с фактором A, а другой - без него. Каждый опыт повторялся n раз. В результате обработки статистических данных получено, что дисперсия признака x в опытах с фактором A равна величине s_A^2 , а без него $-s_0^2$. Оказывает ли существенное влияние исследуемый фактор A на признак x? Для ответа на поставленные вопросы необходимо произвести сравнение дисперсий и оценить, является ли существенным их различие. Сравнение дисперсий производится по их отношению:

$$F = \frac{s_1^2}{s_2^2}$$

В числителе всегда ставится наибольшее значение из двух наблюденных дисперсий. Отношение F, когда выборки берутся из нормальной генеральной совокупности, подчиняется обратному Fраспределению вероятностей (распределению Фишера). Табличные значения обратного F-распределения вероятностей приведены в таблицах приложения F (в зависимости от F (0,05 и 0,1), F (в 1 и F (в 2).

Для проверки нашей гипотезы необходимо вычислить наблюденное значение F, а затем определить k_1 = n_1 -1 и k_2 = n_2 -1, и найти для этих значений и величины q табличное значение $F_{\rm T}$.

Если окажется, что $F \ge F_{\rm T}$, то наша гипотеза должна быть забракована. Если же окажется, что $F < F_{\rm T}$ то гипотеза принимается.

Пример 3. С двух автоматов, обрабатывающих одинаковые детали, взято две выборки $n_1 = n_2 = 10$. При этом оказалось, что $s_1^2 = 400$ мкм² и $s_2^2 = 325$ мкм². Ранее было установлено, что рассеивание размеров деталей, обработанных на автоматах, следует нормальному закону распределения.

Можно ли считать, что оба станка обеспечивают одинаковую точность обработки? Предположим, что оба станка дают одинаковую точность и наблюденное расхождение между дисперсиями случайно. Для проверки нашей нулевой гипотезы определим критерий F:

$$F = \frac{400}{325} = 1,23$$

По таблице приложения Б для q=0.05 при $k_1=k_2=9$ находим $F_{\rm T}=3.23$, следовательно, $F < F_{\rm T}$. Поэтому надо считать нашу гипотезу верной, а наблюденное различие в значениях дисперсий выборок случайным.

3.4 Проверка гипотезы равенства ряда дисперсий

Пусть имеется m выборок не равных объемов $\binom{n_1,n_2,...n_m}{1}$ взятых из одной или m генеральных совокупностей, имеющих нормальные распределения. При этом дисперсии этих совокупностей имеют одинаковые значения, т. е. $\sigma_1^2 = \sigma_2^2 = ... = \sigma_m^2$, а математические ожидания могут быть и не равны друг другу.

Дисперсии выборок $s_1^2, s_2^2, ... s_m^2$ несколько отличаются друг от друга по величине. Требуется проверить гипотезу о том, что это различие дисперсий выборок носит случайный характер, и, следовательно, дисперсии генеральных совокупностей σ_i^2 , из которых взяты выборки, равны между собой, т. е. $\sigma_1^2 = \sigma_2^2 = ... = \sigma_m^2$.

Данная гипотеза может быть проверена по критерию Бартлета, в соответствии с которым случайная величина

$$Q = \frac{2,3026 \left[(N-m)\lg s^2 - \sum_{i=1}^m (n_i - 1)\lg s_i^2 \right]}{1 + \frac{1}{3(m-1)} \left(\sum_{i=1}^m \frac{1}{n_i - 1} - \frac{1}{N-m} \right)}$$

где

$$N = \sum_{i=1}^{m} n_{i} ;$$

$$s^{2} = \frac{\sum_{i=1}^{m} s_{i}^{2} (n_{i} - 1)}{N - m} ,$$

имеет распределение близкое к χ^2 с k=m-1 степенями свободы.

Задаваясь доверительным уровнем вероятности, например, q=0,05 и пользуясь таблицей приложения B, определяют верхний критический предел χ^2 . Если $Q<\chi^2$ то гипотеза принимается, если $Q>\chi^2$, то гипотеза отвергается.

Для вычисления Q рекомендуется составлять вспомогательную табл. 2.

Таблица 2 - Вспомогательная таблица для вычисления

№ вы- борки	s_i^2	n_i	$n_i - 1$	$s_i^2(n_i-1)$	1 1	$\lg s_i^2$	$(n_i - 1) \lg s_i^2$
					$n_i - 1$		
1							
m							
		$\sum n_i$	$\sum (n_i-1)$	$\sum s_i^2(n_i-1)$	$\sum \frac{1}{n_i - 1}$		$\sum (n_i - 1) \lg s_i^2$

Если объемы выборок равны, т. е. $n_1 = n_2 = ... = n_m = n$, то формула для Q принимает вид

$$Q = \frac{2,3026m(n-1)\left[\lg s^2 - \frac{1}{m}\sum_{i=1}^{m}\lg s_i^2\right]}{1 + \frac{m+1}{3m(n-1)}}$$

где s^2 вычисляется по формуле

$$s^2 = \frac{1}{m} \sum_{i=1}^{m} s_i^2$$

Однако при равном объеме выборок проверку гипотезы однородности дисперсий проще производить упрощенным приемом, основанным на вычислении критерия Кохрена G:

$$G = \frac{s_{i \max}^2}{\sum_{i=1}^{m} s_i^2}$$

Критические значения $G_{\scriptscriptstyle \rm T}$ для уровней значимости 0,05 и 0,1 в зависимости от объема выборок n и числа выборок m приведены в приложении B.

Если найденное по данным выборок G меньше табличного $G_{\rm T}$ ($G < G_{\rm T}$), то гипотеза однородности дисперсий генеральных совокупностей, из которых были взяты выборки, принимается. Если $G > G_{\rm T}$, то гипотеза отвергается.

Пример 4. С четырёх автоматов, настроенных на обработку одних и тех же деталей, взято по одной текущей выборке объема $n_1 = n_2 = n_3 = 10$. Дисперсии выборок имеют следующие значения: $s_1^2 = 100 \text{ мкm}^2$, $s_2^2 = 300 \text{ мкm}^2$, $s_3^2 = 200 \text{ мкm}^2$, $s_4^2 = 400 \text{ мкm}^2$. Требуется установить, одинакова ли точность автоматов, т. е. одинаково ли рассеивание случайных погрешностей обработки на этих автоматах, если предварительными исследованиями установлено, что это рассеивание подчиняется закону нормального распределения.

Для решения поставленной задачи необходимо проверить гипотезу однородности выборочных дисперсий. Проверку этой гипотезы произведем при помощи критерия Q Бартлета и критерия G.

Для вычисления критерия Q нужно вычислить s^2 , $\lg s^2$ и $\sum \lg s_i^2$.Получаем следующее

$$s^{2} = \frac{100 + 300 + 200 + 400}{4} = 250;$$

$$\lg 100 = 2; \lg 300 = 2,48; \lg 200 = 2,30; \lg 400 = 2,60;$$

$$\sum \lg s_{i}^{2} = 2 + 2,48 + 2,30 + 2,6 = 9,38$$

$$\lg s^{2} = \lg 250 = 2,398;$$

$$Q = \frac{2,3026 \cdot 4(10 - 1)\left[2,398 - \frac{9,38}{4}\right]}{1 + \frac{4+1}{3 \cdot 4(10 - 1)}}$$

По таблице приложения Б для k=3 и доверительной вероятности $P=0.05^{-\chi^2}=7.8$. Так как $Q<{^\chi^2}$, то гипотеза однородности диспер-

сии принимается, т. е. наблюденные значения s_i^2 отличаются друг от друга случайно. Это подтверждается и критерием G:

$$G = \frac{400}{100 + 300 + 200 + 400} = 0.4$$

По таблице приложения В для доверительной вероятности q=0,05 G=0,5. Так как $G < G_{\rm T}$, то гипотеза подтверждается.

4 Выполнение работы

Получив исходные данные для выполнения практической работы (см. приложение Γ), студент изучает теоретические сведения согласно пункту 3. Далее выполняет расчеты аналогичные рассмотренным примерах с учетом имеющихся особенностей задания.

В отчёте по практической работе должны найти отражение следующие пункты:

- название работы;
- цель работы;
- индивидуальное задание для выполнения работы;
- краткие теоретические сведения;
- результаты выполнения работы;
- подробные выводы по работе.

Контрольные вопросы

- 1. Что такое «нулевая гипотеза» при проверке статистических гипотез?
- 2. Что такое критериями согласия при проверке статистических гипотез?
 - 3. Что такое уровень значимости статистических критериев?
- 4. Как влияет уровень значимости на область допустимых значений критерия и его чувствительность?
- 5. Проверка гипотезы равенства двух выборочных средних при n < 25.

- 6. Проверка гипотезы равенства двух выборочных средних при n>25.
 - 7. Проверка гипотезы равенства двух выборочных дисперсий.
- 8. Проверка гипотезы равенства ряда дисперсий по критерию Бартлета для выборок не равных объемов.
- 9. Проверка гипотезы равенства ряда дисперсий по критерию Бартлета для выборок равных объемов.
- 10. Проверка гипотезы равенства ряда дисперсий по критерию Кохрена

Библиографический список

- 1. Сергеев, А.Г. Метрология [Текст]/ А.Г. Сергеев, В.В. Крохин. Учебное пособие для вузов. М.: Логос, 2001. 488 с.: ил.
- 2. Алексахин, С.В. Прикладной статистический анализ [Текст]/ С.В. Алексахин, А.В. Балдин, А.Б. Николаев, В.Ю. Строганов. Учебное пособие для вузов. М.: "Издательство ПРИОР", 2001. 224 с.

ПРИЛОЖЕНИЕ А Распределение Стьюдента (t_P)

1				1 400			$\frac{C}{P}$, ,	<u> </u>			
k	0,05	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	0,95	0,99
1	0,079	0,158	0,325	0,510	0,727	1,000	1,376	1,963	3,078	6,314	12,706	63,657
2	0,071	0,142	0,289	0,445	0,617	0,816	1,061	1,386	1,886	2,920	4,303	9,925
3	0,068	0,137	0,277	0,424	0,584	0,765	0,978	1,250	1,638	2,353	3,182	5,841
4	0,067	0,134	0,271	0,414	0,569	0,741	0,941	1,190	1,533	2,132	2,776	4,604
5	0,066	0,132	0,267	0,408	0,559	0,727	0,920	1,156	1,476	2,015	2,571	4,032
6	0,065	0,131	0,265	0,404	0,553	0,718	0,906	1,134	1,440	1,943	2,447	3,707
7	0,065	0,130	0,263	0,402	0,549	0,711	0,896	1,119	1,415	1,895	2,365	3,499
8	0,065	0,130	0,262	0,399	0,546	0,706	0,889	1,108	1,397	1,860	2,306	3,355
9	0,064	0,129	0,261	0,398	0,543	0,703	0,883	1,100	1,383	1,833	2,262	3,250
10	0,064	0,129	0,260	0,397	0,542	0,700	0,879	1,093	1,372	1,812	2,228	3,169
11	0,064	0,129	0,260	0,396	0,540	0,697	0,876	1,088	1,363	1,796	2,201	3,106
12	0,064	0,128	0,259	0,395	0,539	0,695	0,873	1,083	1,356	1,782	2,179	3,055
13	0,064	0,128	0,259	0,394	0,538	0,694	0,870	1,079	1,350	1,771	2,160	3,012
14	0,064	0,128	0,258	0,393	0,537	0,692	0,868	1,076	1,345	1,761	2,145	2,977
15	0,064	0,128	0,258	0,393	0,536	0,691	0,866	1,074	1,341	1,753	2,131	2,947
16	0,064	0,128	0,258	0,392	0,535	0,690	0,865	1,071	1,337	1,746	2,120	2,921
17	0,064	0,128	0,257	0,392	0,534	0,689	0,863	1,069	1,333	1,740	2,110	2,898
18	0,064	0,127	0,257	0,392	0,534	0,688	0,862	1,067	1,330	1,734	2,101	2,878
19	0,064	0,127	0,257	0,391	0,533	0,688	0,861	1,066	1,328	1,729	2,093	2,861
20	0,063	0,127	0,257	0,391	0,533	0,687	0,860	1,064	1,325	1,725	2,086	2,845
21	0,063	0,127	0,257	0,391	0,532	0,686	0,859	1,063	1,323	1,721	2,080	2,831
22	0,063	0,127	0,256	0,390	0,532	0,686	0,858	1,061	1,321	1,717	2,074	2,819
23	0,063	0,127	0,256	0,390	0,532	0,685	0,858	1,060	1,319	1,714	2,069	2,807
24	0,063	0,127	0,256	0,390	0,531	0,685	0,857	1,059	1,318	1,711	2,064	2,797
25	0,063	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,316	1,708	2,060	2,787
26	0,063	0,127	0,256	0,390	0,531	0,684	0,856	1,058	1,315	1,706	2,056	2,779
27	0,063	0,127	0,256	0,389	0,531	0,684	0,855	1,057	1,314	1,703	2,052	2,771
28	0,063	0,127	0,256	0,389	0,530	0,683	0,855	1,056	1,313	1,701	2,048	2,763
29	0,063	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,311	1,699	2,045	2,756
30	0,063	0,127	0,256	0,389	0,530	0,683	0,854	1,055	1,310	1,697	2,042	2,750
300	0,063	0,126	0,254	0,386	0,525	0,675	0,843	1,038	1,284	1,650	1,968	2,592

15 ПРИЛОЖЕНИЕ Б *F*-распределение (при q=0,05)

	k_1 для больших дисперсий										
k_2	1	2	3	4	5	6	8	12	24	∞	
2	18,51	19,00	19,16	19,25	19,30	19,33	19,37	19,41	19,45	19,50	
3	10,13	9,55	9,28	9,12	9,01	8,94	8,85	8,74	8,64	8,53	
4	7,71	6,94	6,59	6,39	6,26	6,16	6,04	5,91	5,77	5,63	
5	6,61	5,79	5,41	5,19	5,05	4,95	4,82	4,68	4,53	4,37	
6	5,99	5,14	4,76	4,53	4,39	4,28	4,15	4,00	3,84	3,67	
7	5,59	4,74	4,35	4,12	3,97	3,87	3,73	3,57	3,41	3,23	
8	5,32	4,46	4,07	3,84	3,69	3,58	3,44	3,28	3,12	2,93	
9	5,12	4,26	3,86	3,63	3,48	3,37	3,23	3,07	2,90	2,71	
10	4,96	4,10	3,71	3,48	3,33	3,22	3,07	2,91	2,74	2,54	
11	4,84	3,98	3,59	3,36	3,20	3,09	2,95	2,79	2,61	2,41	
12	4,75	3,89	3,49	3,26	3,11	3,00	2,85	2,69	2,51	2,30	
13	4,67	3,81	3,41	3,18	3,03	2,92	2,77	2,60	2,42	2,21	
14	4,60	3,74	3,34	3,11	2,96	2,85	2,70	2,53	2,35	2,13	
15	4,54	3,68	3,29	3,06	2,90	2,79	2,64	2,48	2,29	2,07	
16	4,49	3,63	3,24	3,01	2,85	2,74	2,59	2,42	2,24	2,01	
17	4,45	3,59	3,20	2,96	2,81	2,70	2,55	2,38	2,19	1,96	
18	4,41	3,55	3,16	2,93	2,77	2,66	2,51	2,34	2,15	1,92	
19	4,38	3,52	3,13	2,90	2,74	2,63	2,48	2,31	2,11	1,88	
20	4,35	3,49	3,10	2,87	2,71	2,60	2,45	2,28	2,08	1,84	
21	4,32	3,47	3,07	2,84	2,68	2,57	2,42	2,25	2,05	1,81	
22	4,30	3,44	3,05	2,82	2,66	2,55	2,40	2,23	2,03	1,78	
23	4,28	3,42	3,03	2,80	2,64	2,53	2,37	2,20	2,01	1,76	
24	4,26	3,40	3,01	2,78	2,62	2,51	2,36	2,18	1,98	1,73	
25	4,24	3,39	2,99	2,76	2,60	2,49	2,34	2,16	1,96	1,71	
26	4,23	3,37	2,98	2,74	2,59	2,47	2,32	2,15	1,95	1,69	
27	4,21	3,35	2,96	2,73	2,57	2,46	2,31	2,13	1,93	1,67	
28	4,20	3,34	2,95	2,71	2,56	2,45	2,29	2,12	1,91	1,65	
29	4,18	3,33	2,93	2,70	2,55	2,43	2,28	2,10	1,90	1,64	
30	4,17	3,32	2,92	2,69	2,53	2,42	2,27	2,09	1,89	1,62	
31	4,16	3,30	2,91	2,68	2,52	2,41	2,25	2,08	1,88	1,61	
35	4,12	3,27	2,87	2,64	2,49	2,37	2,22	2,04	1,83	1,56	
40	4,08	3,23	2,84	2,61	2,45	2,34	2,18	2,00	1,79	1,51	
45	4,06	3,20	2,81	2,58	2,42	2,31	2,15	1,97	1,76	1,47	
50	4,03	3,18	2,79	2,56	2,40	2,29	2,13	1,95	1,74	1,44	
60	4,00	3,15	2,76	2,53	2,37	2,25	2,10	1,92	1,70	1,39	
70	3,98	3,13	2,74	2,50	2,35	2,23	2,07	1,89	1,67	1,35	
80	3,96	3,11	2,72	2,49	2,33	2,21	2,06	1,88	1,65	1,33	
90	3,95	3,10	2,71	2,47	2,32	2,20	2,04	1,86	1,64	1,30	
100	3,94	3,09	2,70	2,46	2,31	2,19	2,03	1,85	1,63	1,28	
∞	3,84	3,00	2,61	2,37	2,21	2,10	1,94	1,75	1,52	1,03	

16 *F*-распределение (при q=0,1)

						их диспер		,		
k_2	1	2	3	4	5	6	8	12	24	∞
2	8,53	9,00	9,16	9,24	9,29	9,33	9,37	9,41	9,45	9,49
3	5,54	5,46	5,39	5,34	5,31	5,28	5,25	5,22	5,18	5,13
4	4,54	4,32	4,19	4,11	4,05	4,01	3,95	3,90	3,83	3,76
5	4,06	3,78	3,62	3,52	3,45	3,40	3,34	3,27	3,19	3,11
6	3,78	3,46	3,29	3,18	3,11	3,05	2,98	2,90	2,82	2,72
7	3,59	3,26	3,07	2,96	2,88	2,83	2,75	2,67	2,58	2,47
8	3,46	3,11	2,92	2,81	2,73	2,67	2,59	2,50	2,40	2,29
9	3,36	3,01	2,81	2,69	2,61	2,55	2,47	2,38	2,28	2,16
10	3,29	2,92	2,73	2,61	2,52	2,46	2,38	2,28	2,18	2,06
11	3,23	2,86	2,66	2,54	2,45	2,39	2,30	2,21	2,10	1,97
12	3,18	2,81	2,61	2,48	2,39	2,33	2,24	2,15	2,04	1,90
13	3,14	2,76	2,56	2,43	2,35	2,28	2,20	2,10	1,98	1,85
14	3,10	2,73	2,52	2,39	2,31	2,24	2,15	2,05	1,94	1,80
15	3,07	2,70	2,49	2,36	2,27	2,21	2,12	2,02	1,90	1,76
16	3,05	2,67	2,46	2,33	2,24	2,18	2,09	1,99	1,87	1,72
17	3,03	2,64	2,44	2,31	2,22	2,15	2,06	1,96	1,84	1,69
18	3,01	2,62	2,42	2,29	2,20	2,13	2,04	1,93	1,81	1,66
19	2,99	2,61	2,40	2,27	2,18	2,11	2,02	1,91	1,79	1,63
20	2,97	2,59	2,38	2,25	2,16	2,09	2,00	1,89	1,77	1,61
21	2,96	2,57	2,36	2,23	2,14	2,08	1,98	1,87	1,75	1,59
22	2,95	2,56	2,35	2,22	2,13	2,06	1,97	1,86	1,73	1,57
23	2,94	2,55	2,34	2,21	2,11	2,05	1,95	1,84	1,72	1,55
24	2,93	2,54	2,33	2,19	2,10	2,04	1,94	1,83	1,70	1,53
25	2,92	2,53	2,32	2,18	2,09	2,02	1,93	1,82	1,69	1,52
26	2,91	2,52	2,31	2,17	2,08	2,01	1,92	1,81	1,68	1,50
27	2,90	2,51	2,30	2,17	2,07	2,00	1,91	1,80	1,67	1,49
28	2,89	2,50	2,29	2,16	2,06	2,00	1,90	1,79	1,66	1,48
29	2,89	2,50	2,28	2,15	2,06	1,99	1,89	1,78	1,65	1,47
30	2,88	2,49	2,28	2,14	2,05	1,98	1,88	1,77	1,64	1,46
31	2,87	2,48	2,27	2,14	2,04	1,97	1,88	1,77	1,63	1,45
35	2,85	2,46	2,25	2,11	2,02	1,95	1,85	1,74	1,60	1,41
40	2,84	2,44	2,23	2,09	2,00	1,93	1,83	1,71	1,57	1,38
45	2,82	2,42	2,21	2,07	1,98	1,91	1,81	1,70	1,55	1,35
50	2,81	2,41	2,20	2,06	1,97	1,90	1,80	1,68	1,54	1,33
60	2,79	2,39	2,18	2,04	1,95	1,87	1,77	1,66	1,51	1,29
70	2,78	2,38	2,16	2,03	1,93	1,86	1,76	1,64	1,49	1,27
80	2,77	2,37	2,15	2,02	1,92	1,85	1,75	1,63	1,48	1,25
90	2,76	2,36	2,15	2,01	1,91	1,84	1,74	1,62	1,47	1,23
100	2,76	2,36	2,14	2,00	1,91	1,83	1,73	1,61	1,46	1,22
∞	2,71	2,30	2,08	1,95	1,85	1,77	1,67	1,55	1,38	1,03

17 приложение в **Критические значения** G при q=0,05

122						n-1					
m	2	3	4	5	6	7	8	9	10	16	32
2	0,9750	0,9392	0,9057	0,8772	0,8534	0,8332	0,8159	0,8010	0,7880	0,7341	0,6694
3	0,8709	0,7977	0,7457	0,7070	0,6770	0,6531	0,6333	0,6167	0,6025	0,5466	0,4835
4	0,7679	0,6839	0,6287	0,5894	0,5598	0,5365	0,5175	0,5018	0,4884	0,4365	0,3797
5	0,6838	0,5981	0,5440	0,5063	0,4783	0,4564	0,4387	0,4241	0,4118	0,3645	0,3134
6	0,6161	0,5321	0,4803	0,4447	0,4184	0,3980	0,3817	0,3682	0,3568	0,3136	0,2674
7	0,5612	0,4800	0,4307	0,3972	0,3726	0,3536	0,3384	0,3259	0,3154	0,2756	0,2334
8	0,5157	0,4377	0,3910	0,3594	0,3362	0,3185	0,3043	0,2927	0,2829	0,2461	0,2073
9	0,4775	0,4027	0,3584	0,3285	0,3067	0,2901	0,2768	0,2659	0,2568	0,2226	0,1867
10	0,4450	0,3733	0,3311	0,3028	0,2823	0,2666	0,2541	0,2439	0,2353	0,2033	0,1698
12	0,3924	0,3264	0,2880	0,2624	0,2440	0,2299	0,2187	0,2096	0,2020	0,1735	0,1441
15	0,3346	0,2758	0,2419	0,2195	0,2034	0,1912	0,1815	0,1737	0,1671	0,1427	0,1177
20	0,2705	0,2205	0,1921	0,1735	0,1602	0,1502	0,1422	0,1358	0,1305	0,1106	0,0905
24	0,2354	0,1908	0,1656	0,1491	0,1374	0,1286	0,1216	0,1160	0,1113	0,0940	0,0765
30	0,1979	0,1593	0,1377	0,1236	0,1137	0,1061	0,1003	0,0955	0,0915	0,0769	0,0622
40	0,1575	0,1258	0,1082	0,0968	0,0887	0,0827	0,0779	0,0741	0,0709	0,0593	0,0477
60	0,1132	0,0895	0,0765	0,0682	0,0623	0,0579	0,0544	0,0517	0,0494	0,0410	0,0326
120	0,0633	0,0494	0,0419	0,0371	0,0337	0,0312	0,0292	0,0277	0,0264	0,0217	0,0170

при *q*=0,1

						<u>1</u> • , .					
l m						n-1					
m	2	3	4	5	6	7	8	9	10	16	32
2	0,9500	0,9027	0,8646	0,8347	0,8107	0,7911	0,7747	0,7607	0,7486	0,7000	0,6434
3	0,8174	0,7430	0,6934	0,6578	0,6307	0,6092	0,5918	0,5772	0,5647	0,5161	0,4619
4	0,7076	0,6286	0,5787	0,5438	0,5178	0,4974	0,4809	0,4672	0,4557	0,4110	0,3621
5	0,6239	0,5462	0,4983	0,4654	0,4409	0,4220	0,4067	0,3941	0,3835	0,3427	0,2988
6	0,5591	0,4842	0,4389	0,4079	0,3852	0,3676	0,3535	0,3418	0,3321	0,2947	0,2548
7	0,5074	0,4359	0,3931	0,3640	0,3427	0,3263	0,3132	0,3025	0,2934	0,2590	0,2225
8	0,4653	0,3970	0,3565	0,3292	0,3092	0,2939	0,2817	0,2716	0,2632	0,2314	0,1977
9	0,4302	0,3651	0,3267	0,3009	0,2821	0,2677	0,2562	0,2469	0,2390	0,2093	0,1780
10	0,4005	0,3383	0,3018	0,2774	0,2596	0,2461	0,2353	0,2264	0,2190	0,1912	0,1620
12	0,3529	0,2958	0,2626	0,2405	0,2245	0,2123	0,2026	0,1947	0,1881	0,1633	0,1375
15	0,3009	0,2500	0,2207	0,2013	0,1874	0,1767	0,1684	0,1615	0,1558	0,1345	0,1124
20	0,2434	0,2001	0,1756	0,1594	0,1478	0,1390	0,1321	0,1265	0,1218	0,1044	0,0865
24	0,2120	0,1734	0,1515	0,1372	0,1269	0,1192	0,1131	0,1081	0,1040	0,0888	0,0732
30	0,1785	0,1450	0,1262	0,1139	0,1051	0,0985	0,0933	0,0891	0,0856	0,0727	0,0596
40	0,1424	0,1147	0,0993	0,0893	0,0822	0,0769	0,0727	0,0693	0,0665	0,0561	0,0457
60	0,1028	0,0820	0,0705	0,0631	0,0579	0,0540	0,0509	0,0484	0,0464	0,0389	0,0313
120	0,0578	0,0455	0,0388	0,0345	0,0315	0,0292	0,0275	0,0260	0,0249	0,0206	0,0164

ПРИЛОЖЕНИЕ Г Исходные данные к работе

Таблица 1

							№ 1	вариа	нта						
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
q	0,05	0,1	0,05	0,1	0,05	0,1	0,05	0,1	0,05	0,1	0,05	0,1	0,05	0,1	0,05

Таблица 2

№ вар-та 1 2 3 4 5 6 7 8 9 1 10,17 9,36 10,22 10,07 10,11 9,87 10,47 8,98 9,40 1 10,46 9,85 10,71 10,74 10,35 10,03 10,52 9,50 10,14 2 30,39 30,15 30,86 30,16 29,93 30,07 29,24 29,99 28,75 29,97 30,21 30,36 29,90 30,84 30,13 30,41 29,92 29,90 3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06	10 9,38 10,51 30,15 30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70 129,96
1 10,17 9,36 10,22 10,07 10,11 9,87 10,47 8,98 9,40 1 10,46 9,85 10,71 10,74 10,35 10,03 10,52 9,50 10,14 2 30,39 30,15 30,86 30,16 29,93 30,07 29,24 29,99 28,75 29,97 30,21 30,36 29,90 30,84 30,13 30,41 29,92 29,90 3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 40,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,03 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95	9,38 10,51 30,15 30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70
1 10,46 9,85 10,71 10,74 10,35 10,03 10,52 9,50 10,14 2 30,39 30,15 30,86 30,16 29,93 30,07 29,24 29,99 28,75 29,97 30,21 30,36 29,90 30,84 30,13 30,41 29,92 29,90 3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,03 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 </td <td>10,51 30,15 30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70</td>	10,51 30,15 30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70
2 30,39 30,15 30,86 30,16 29,93 30,07 29,24 29,99 28,75 29,97 30,21 30,36 29,90 30,84 30,13 30,41 29,92 29,90 3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,08 49,95 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 110,10 109,94 110,04 110,21 110,65 110,37	30,15 30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70
2 29,97 30,21 30,36 29,90 30,84 30,13 30,41 29,92 29,90 3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,03 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 110,10 109,94 110,04 110,21 110,65 110,37 109,99 110,17 110,25 130,07 130,08 130,08 130,05 130,04 129,99 130,02 <td>30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70</td>	30,10 49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70
3 49,99 49,95 49,96 49,94 49,91 49,86 50,03 50,08 49,95 50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,03 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 110,10 109,94 110,04 110,21 110,65 110,37 109,99 110,17 110,25 110,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 7 130,07 130,08 130,08 130,05 130,04 129,99	49,99 50,07 68,59 69,38 90,01 89,99 110,20 109,70
50,20 50,13 50,03 50,14 50,13 50,03 50,16 50,03 50,03 4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 110,10 109,94 110,04 110,21 110,65 110,37 109,99 110,17 110,25 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,0	50,07 68,59 69,38 90,01 89,99 110,20 109,70
4 70,46 70,03 70,00 70,30 69,75 70,47 70,02 69,72 70,58 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 110,03 109,56 110,34 110,43 109,62 110,37 109,99 110,17 110,25 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,23 150,07 150,01 150,02 170,34 170,12 169,86 17	68,59 69,38 90,01 89,99 110,20 109,70
4 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 6 110,03 109,56 110,34 110,43 109,62 110,37 109,99 110,17 110,25 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,28 150,00 149,94 149,71 149,95 149,91 150,50 149,80 14	69,38 90,01 89,99 110,20 109,70
5 70,18 70,06 70,11 70,66 70,03 70,95 70,09 69,36 70,20 5 89,97 90,02 89,83 89,99 90,06 89,99 90,01 90,04 90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 10,03 109,56 110,34 110,43 109,62 110,37 109,99 110,17 110,25 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 169,94 170,18	90,01 89,99 110,20 109,70
90,05 89,90 89,95 89,96 89,91 89,99 89,93 90,06 89,96 6 110,03 109,56 110,34 110,43 109,62 110,37 109,99 110,17 110,25 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,28 150,00 149,94 149,71 149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 169,94 170,18	89,99 110,20 109,70
6 110,03 109,56 110,34 110,43 109,62 110,37 109,99 110,17 110,25 10,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 149,74 150,00 150,24 150,04 149,98 150,28 150,00 149,94 149,71 149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 169,94 170,18	110,20 109,70
6 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,28 150,00 149,94 149,71 149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 169,94 170,18	109,70
7 110,10 109,94 110,04 110,21 110,65 110,56 110,11 110,29 110,60 7 130,10 129,98 129,95 130,01 130,13 130,14 129,99 129,98 130,00 130,07 130,08 130,08 130,05 130,04 129,99 130,02 129,98 130,00 8 149,74 150,00 150,24 150,04 149,98 150,28 150,00 149,94 149,71 149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 169,94 170,18	,
8	129 96
8	1,,- 0
8	130,04
149,95 149,91 150,50 149,80 149,95 150,23 150,07 150,01 150,02 170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 170,18	150,16
170,34 170,12 169,86 170,17 169,87 169,90 169,94 169,94 170,18	150,24
	169,85
9 170,04 169,99 169,89 170,05 169,71 170,12 170,01 169,98 170,00	169,96
189,85 189,88 190,29 189,38 190,37 189,82 189,37 189,62 189,41	189,18
10 189,99 190,91 189,74 190,04 189,95 189,43 189,95 190,37 189,88	189,60
11 210,40 210,83 209,76 209,82 209,95 210,12 209,85 210,87 210,11	210,21
11 209,89 210,14 209,94 210,14 209,32 210,45 210,05 210,79 210,51	209,54
230,49 230,13 230,08 230,06 230,01 229,54 229,68 230,19 229,63	230,14
12 230,36 230,06 230,75 230,02 230,25 230,14 230,07 229,94 229,50	230,20
250 21 249 94 250 11 249 87 249 84 250 18 250 16 250 19 249 93	250,28
13 249,96 250,31 250,15 249,63 249,86 250,44 250,78 250,15 250,22	250,24
269 91 269 48 269 64 270 03 270 09 269 85 269 65 269 81 269 72	269,73
14 269,77 270,25 270,24 270,29 269,96 269,91 270,42 270,01 270,10	269,96
290 16 289 82 289 66 290 09 290 17 289 47 290 19 290 45 290 18	209,90
15 290,28 290,13 290,00 289,99 290,09 290,40 289,94 290,55 289,87	289,95

Таблица 3

<u> No</u>	Пица э			№ выборки		
вар-та		1	2	3	4	5
1	n_i	24	24	24	24	24
1	s_i^2	430	150	170	400	400
2	n_i	16	19	43	49	28
2	s_i^2	250	360	150	360	500
2	n_i	50	50	50	50	50
3	s_i^2	130	370	230	240	320
4	n_i	20	31	46	29	39
4	s_i^2	190	410	180	310	280
E	n_i	18	18	18	18	18
5	s_i^2	370	420	370	460	280
(n_i	36	31	29	32	24
6	s_i^2	420	470	240	170	420
7	n_i	24	24	24	24	24
/	s_i^2	250	410	310	220	340
0	n_i	35	3	7	44	47
8	s_i^2	400	410	130	130	470
9	n_i	17	17	17	17	17
9	s_i^2	310	290	110	180	110
10	n_i	1	3	43	44	41
10	s_i^2	190	450	220	130	120
11	n_i	45	45	45	45	45
11	s_i^2	490	460	130	390	420
12	n_i	27	36	39	0	45
12	s_i^2	130	120	450	120	180
13	n_i	19	19	19	19	19
13	s_i^2	300	290	230	380	230
14	n_i	22	35	40	17	25
14	s_i^2	450	260	350	370	350
15	n_i	38	38	38	38	38
15	s_i^2	420	480	280	270	200