Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Андронов Владимир Германович Должность: Заведующий кафедрой

Дата подписания: 13.11.2023 12:31:31 Юго—Западный государственный университет

Уникальный программный ключ:

a483efa659e7ad657516da1b78e295d4f08e5fd9

УТВЕРЖДАЮ:

Заведующий кафедрой

космического приборостроения

и систем связи

В.Г. Андронов

(подпись)

«31» августа 2023 г

ОЦЕНОЧНЫЕ СРЕДСТВА

МИНОБРНАУКИ РОССИИ

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Метрология, стандартизация и сертификация в инфокоммуникациях (наименование дисциплины)

11.03.02 Инфокоммуникационные технологии и системы связи, направленность (профиль) «Сети связи и системы коммутации» (код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ КОНТРОЛЬНОГО ОПРОСА

Раздел 1. Методы обеспечения единства измерений

- 1. Основные термины, применяемые в метрологии
- 2. Классификация измерений
- 3. Принципы и методы измерений
- 4. Основные характеристики измерений
- 5. Физические величины и единицы
- 6. Эталоны и образцовые средства измерений
- 7. Метрологическая служба РФ
- 8. Дайте определение физической величины. Приведите примеры физических величин, относящихся к механике, оптике, электричеству, магнетизму.
- 9. Что является качественной характеристикой физической величины? 6. Что является количественной характеристикой физической величины?
- 10. Используя основное уравнение измерения, объясните, почему значение физической величины не зависит от выбора единиц измерений?
 - 11. В чем заключается суть измерения?
 - 12. Является ли шкала наименований шкалой физических величин?
- 13. Объясните, почему на шкале порядка невозможно ввести единицу измерения.
- 14. Назовите наиболее универсальные способы описания случайных величин.
- 15. Опишите формирование закона распределения плотности вероятностей случайной величины.
- 16. Запишите условие нормирования дифференциального закона распределения случайной величины.
- 17. Дайте определение интегральной функции распределения, приведите ее график и перечислите основные свойства.
- 18. Поясните суть различных способов нахождения центра распределения случайной величины.
- 19. Какие способы нахождения центра распределения случайной величины наиболее чувствительны к наличию промахов.
- 20. Запишите формулы для начальных и центральных моментов распределений дискретных и непрерывных случайных величин.
 - 21. Что характеризует дисперсия случайной величины?
- 22. Определите точечную оценку математического ожидания случайной величины.
- 23. Является ли точечная оценка дисперсии несмещенной и состоятельной. Приведите формулу для точечной оценки дисперсии.

- 24. Приведите формулу для оценки СКО. Как связаны СКО и рассеяние результатов наблюдений?
- 25. Определите характеристики нормального закона распределения, согласно центральной предельной теореме теории вероятностей. Приведите формулу для распределения Гаусса

Раздел 2. Средства обеспечения точности измерений

- 1. Погрешности измерений, основные понятия
- 2. Систематические погрешности: методические, инструментальные, субъективные систематические погрешности
 - 3. Способы исключения и учета систематических погрешностей
 - 4. Определение случайных погрешностей
 - 5. Математические модели случайной погрешности
 - 6. Погрешности косвенных измерений
 - 7. Нормирование погрешностей средств измерений
 - 8. Классы точности средств измерений
- 9. Особенности нормирования погрешностей средств измерений с неравномерной шкалой
 - 10. Нормирование метрологических характеристик средств измерений
- 11. Перечислите виды распределений случайных величин, для числовых оценок которых можно использовать предельную погрешность.
- 12. Каким образом осуществляется суммирование статистически независимых отдельных составляющих случайных погрешностей?
- 13. В чем заключается недостаток оценивания случайных погрешностей доверительным интервалом?
- 14. Дайте определение понятию грубая погрешность. Назовите причины её возникновения.
- 15. Поясните суть критериев выявления грубых погрешностей: критерий «трех сигм», критерий Романовского, вариационный критерий Диксона.
- 16. Почему нельзя считать измерением определение значений величин с помощью шкал порядка?
- 17. Поясните, от каких величин зависит выбор начала отсчета на шкале интервалов. Приведите примеры шкал интервалов.
- 18. Можно ли определить размер физической величины с помощью шкал порядка?
- 19. Каким образом устанавливаются единицы измерений в шкалах отношений?
- 20. Поясните, почему абсолютные шкалы не зависят от принятой системы единиц измерения.
 - 21. Дайте определение системы единиц ФВ.
- 22. Проведите классификацию ФВ по степени условной независимости от других величин данной группы ФВ.
 - 23. Приведите примеры основных и производных ФВ.
 - 24. Дайте определение кратных и дольных единиц. Приведите примеры.

Раздел 3. Принципы построения и особенности средств измерений основных электрических и радиотехнических величин

- 1. Аналоговые электромеханические измерительные приборы
- 2. Общие сведения и классификация электромеханических измерительных приборов
 - 3. Магнитоэлектрические измерительные приборы
 - 4. Электродинамические приборы
 - 5. Электромагнитные приборы
 - 6. Электростатические приборы
 - 7. Термоэлектрические приборы
 - 8. Аналоговые методы измерения частоты
- 9. Запишите формулу для определения погрешности результата измерения.
- 10. Проведите классификацию погрешностей измерений в зависимости от характера проявления.
- 11. Отличаются ли признаки классификации погрешностей результатов измерений и погрешностей средств измерений?
- 12. Наблюдается ли какая-нибудь закономерность в появлении случайных погрешностей измерений?
- 13. Каким образом можно существенно уменьшить случайные погрешности измерений? Можно ли совсем устранить случайные погрешности?
 - 14. Можно ли устранить систематические погрешности?
- 15. Может ли систематическая погрешность измерения изменяться при повторных измерениях одной и той же физической величины?
- 16. Может ли абсолютная погрешность измерений в полной мере служить показателем точности измерений?
- 17. Как изменяется относительная погрешность измерений с уменьшением действительного или измеренного значения измеряемой величины?
 - 18. Укажите причины возникновения погрешности метода измерений.
 - 19. Можно ли устранить прогрессирующие погрешности?
- 20. Погрешность метода измерений по характеру проявления относится к систематической или случайной погрешности?
- 21. Укажите причины возникновения дополнительной погрешности средства измерений.
- 22. Чем обусловлено наличие динамической погрешности средства измерения?
- 23. Приведите классификацию погрешностей измерения по зависимости абсолютной погрешности от значений измеряемой величины.
 - 24. Что характеризует термин «неопределенность измерения»?
- 25. Укажите два типа неопределенности измерений в соответствии со способом оценки их численного значения.

Раздел 4. Принципы построения цифровых средств измерений

- 1. Цифровые частотомеры и измерители переменных интервалов
- 2. Измерение фазового сдвига
- 3. Измерение амплитудно-частотных характеристик
- 4. Методы анализа спектра сигнала
- 5. Генераторы измерительных сигналов
- 6. Классификация генераторов
- 7. Основные параметры генераторов
- 8. Низкочастотные генераторы
- 9. Генераторы высоких частот
- 10. Генераторы СВЧ
- 11. Назовите причины разработки новой концепции представления результатов измерений и введения нового термина «неопределенность измерения».
- 12. Определите чему равна предельная погрешность, обусловленная округлением.
- 13. Дайте определение понятию «систематическая погрешность измерения».
- 14. Поясните особенности влияния систематических погрешностей на результат измерения.
- 15. Определите основные составляющие процесса измерения, влияющие на оценку систематических погрешностей.
- 16. По каким двум признакам принято классифицировать систематические погрешности?
- 17. Проведите классификацию систематических погрешностей измерения в зависимости от характера измерения.
- 18. Укажите отличия и приведите примеры следующих разновидностей систематических погрешностей: постоянных, прогрессивных, периодических и погрешностей, изменяющихся по сложному закону.
- 19. Проведите классификацию систематических погрешностей измерения в зависимости от причин возникновения.
- 20. Укажите отличия и приведите примеры следующих разновидностей систематических погрешностей: инструментальная, погрешность метода измерений, погрешность (измерения) из-за изменения условий измерения, субъективная (личная).
- 21. Назовите способ выявления постоянных инструментальных погрешностей СИ.
 - 22. Чем обусловлена погрешность метода измерений.
- 23. Поясните, что такое неисключенная систематическая погрешность и определите правила определения её границ.
- 24. Определите пути исключения и учета влияния систематических погрешностей.
- 25. Определите методы устранения постоянных систематических погрешностей.

Раздел 5. Методы измерения напряжения и мощности

- 1. Особенности измерения напряжения в технике связи
- 2. Общая характеристика и классификация электронных вольтметров
- 2. Структурные схемы и принципы действия электронных вольтметров
- 3. Зависимость показаний вольтметров от формы измеряемого сигнала
- 4. Абсолютные уровни по мощности, напряжению и току
- 5. Относительные и измерительные уровни
- 6. Единицы передачи
- 7. Структурные схемы измерителей уровня
- 8. Измерение мощности
- 9. Классификация измерителей мощности
- 10. Измерение мощности в цепях СВЧ
- 11. Методы измерения мощности СВЧ
- 12. Приведите примеры применения метода измерений замещением для устранения постоянных систематических погрешностей.
- 13. Приведите примеры применения метода измерений противопоставлением для устранения постоянных систематических погрешностей.
- 14. Приведите примеры измерения с помощью метода компенсации погрешности по знаку для устранения постоянных систематических погрешностей.
- 15. Объясните область применения, достоинства методов противопоставления и симметричных наблюдений при исключении систематических погрешностей.
- 16. Определите методы устранения переменных и монотонно изменяющихся систематических погрешностей.
- 17. Определите специальные статистические методы устранения систематических погрешностей.
- 18. Определите исключение систематических погрешностей путем введения поправок. Приведите примеры.
 - 19. Определите суть понятия «единство измерений».
 - 20. Какие задачи метрологии охватывает понятие «единство измерений»?
- 21. Какими документами регламентируется деятельность по обеспечению единства измерений?
- 22. Каким образом достигается тождественность единиц, в которых проградуированы все существующие СИ одной и той же величины?
 - 23. Каким образом осуществляется воспроизведение основной единицы?
 - 24. Что является технической основой обеспечения единства измерений?
- 25. Совпадает ли перечень существующих эталонов и перечень принятых ФВ?

Раздел 6. Автоматизация измерений

1 Основные направления автоматизации измерений

- 2 Агрегатирование и условие совместимости средств измерений
- 3 Стандартные интерфейсы для автоматизации измерений в системах передачи
 - 4 Информационно-измерительные системы (ИИС)
 - 5 Задачи, решаемые с помощью ИИС
 - 6. Платы сбора данных
- 7. .Какими признаками должен обладать эталон? Поясните суть этих признаков.
 - 8. Перечислите основные виды эталонов. В чем состоит их различие?
 - 9. Какие эталоны являются высшим звеном эталонной базы страны?
 - 10. Опишите современный эталон единицы длины метр.
 - 11. Приведите определение секунды.
 - 12. Назовите основные виды измерений.
 - 13. Всегда ли можно провести прямые измерения?
- 14. Приведите примеры прямых, косвенных, совокупных и совместных измерений.
 - 15. Что является целью совместных измерений?
 - 16. Перечислите основные методы измерений.
- 17. Объясните, чем нулевой метод измерения отличается от дифференциального метода. В чем заключается преимущество нулевого метода перед дифференциальным методом?
- 18. Укажите, какой метод измерения позволяет получить результат высокой точности при использовании относительно грубых средств измерения.
 - 19. Дайте определение термину «стандартизация».
 - 20. Назовите общие цели стандартизации.
 - 21. Приведите определение аспекта стандартизации.
 - 22. Назовите 5 аспектов стандартизации конкретной продукции.
 - 23. Какие можно выделить уровни стандартизации?
 - 24. В чем сущность неравноточных измерений?
- 25. Назовите этапы обработки результатов многократных прямых равноточных измерений.

Раздел 7. Основы стандартизации и сертификации

- 1. Сущность и содержание стандартизации
- 2. Нормативные документы по стандартизации и виды стандартов
- 3. Правовые основы стандартизации в области связи
- 4. Сущность и содержание сертификации
- 5. Правовые основы сертификации в области связи
- 6. Особенности сертификации аппаратуры связи различного назначения
- 7. Сертификация средств измерений
- 8. При стандартизации на каком уровне участие открыто для любой страны?
 - 9. Какой уровень стандартизации используется в одном государстве?
 - 10. Что такое предварительный стандарт?

- 11. Какая организация принимает регламент?
- 12. Назовите три вида стандартизации. 111. Что называется симплификацией?
- 13. Какую форму стандартизации используют для уменьшения числа типов, видов объектов
 - 14. Является ли типизация разновидностью стандартизации?
- 15. Перечислите разновидности нормативных документов по стандартизации
 - 16. Является ли ТУ нормативным документом по стандартизации?
 - 17. Как называется стандарт конкретной отрасли?
 - 18. Как называется международная организация по стандартизации?
 - 19. Является ли МЭК (ІЕС) организацией по стандартизации?
 - 20. Расшифруйте аббревиатуры: ИСО, МЭК, МСЭ.
- 21. Назовите основные задачи государственного надзора и контроля в области стандартизации.
 - 22. Дайте определение термину «стандартизация».
 - 23. Назовите общие цели стандартизации.
 - 24. Приведите определение аспекта стандартизации.
 - 25. Назовите 5 аспектов стандартизации конкретной продукции.

Шкала оценивания: 12-ти балльная.

Критерии оценивания:

- 11-12 баллов (или оценка «отлично») выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **9-10 баллов** (или оценка **«хорошо»**) выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.
- **6-8 баллов** (или оценка **«удовлетворительно»**) выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **0-5 баллов** (или оценка **«неудовлетворительно»**) выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или)

дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1. Вопросы в закрытой форме.
- 1.1 Разработка общей теории измерений, совершенствование системы единиц, разработка эталонов, исследования вопросов математической обработки результатов измерений являются задачами метрологии
 - а) научными
 - б) практическими
 - в) законодательными
 - г) теоретическими
 - д) математическими
- 1.2 Производство и выпуск в обращение рабочих средств измерений, обеспечивающих определение с требуемой точностью характеристик продукции, государственные испытания средств измерений, ведомственные поверки средств измерений, ревизии состояния измерений на предприятиях и организациях являются.... задачами метрологии
 - а) практическими
 - б) научными
 - в) законодательными
 - г) математическими
 - д) теоретическими
- 1.3 Разработки комплексов взаимосвязанных и взаимообусловленных общих правил, требований и норм, требующих регламентации и контроля со стороны государства и направленным на обеспечение единства измерений, являются ...задачами метрологии
 - а) законодательными
 - б) научными
 - в) практическими
 - г) теоретическими
 - д) математическими
- 1.4 Познавательный процесс, заключающийся в сравнении путем физического эксперимента данной физической величины и известной, принятой за единицу измерения называется
 - а) измерением
 - б) познанием
 - в) определением
 - г) анализом
- 1.5 Состояние измерений, при котором их результаты выражены в узаконенных единицах и погрешности измерений известны с заданной вероятностью и не выходят за установленные пределы отражают....

- а) единство измерений
- б) точность измерений
- в) непрерывность измерений
- г) погрешность измерений
- д) автономность измерений
- 1.6 Отклонение результата измерения от действительного (истинного) значения измеряемой величины называется измерения
 - а) погрешностью
 - б) точностью
 - в) дискретностью
 - г) результативностью
 - д) стабильностью
- 1.7 Характеристика качества измерений, отражающая близость их результатов к истинному значению измеряемой величины называется ... измерений..
 - а) точностью
 - б) погрешностью
 - в) правильностью
 - г) эффективностью
- 1.8 Техническое средство, используемое при измерениях и имеющее нормированные метрологические свойства, называется
 - а) средством измерения
 - б) мерой
 - в) эталоном
 - г) объектом измерения
 - д) рабочим эталоном
- 1.9 Средство измерений, предназначенное для выработки сигнала измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем называется...
 - а) измерительным преобразователем
 - б) основным средством измерения
 - в) измерительной установкой
 - г) измерительным комплексом
- 1.10 По характеру зависимости измеряемой величины от времени измерения делятся на:
 - а) статические и динамические
 - б) прямые и косвенные
 - в) абсолютные и относительные
 - г) качественные и количественные

- 1.11 Измерения, при которых искомое значение величины находят непосредственно из опытных данных называют ...
 - а) прямыми
 - б) косвенными
 - в) совокупными
 - г) совместными
- 1.12 Измерения, при которых искомое значение измеряемой величины находят на основании известной зависимости между этой величиной и величинами, подвергаемыми прямым измерениям, называют ...
 - а) прямыми
 - б) косвенными
 - в) совокупными
 - г) совместными
- 1.13 Физическое явление или совокупность физических явлений, положенных в основу измерений называется ... измерений
 - а) принципом
 - б) способом
 - в) методом
 - г) этапом
- 1.14 Совокупность приемов использования принципов и средств измерений называют ... измерения
 - а) методом
 - б) способом
 - в) этапом
 - г) алгоритмом
- 1.15 Значение, приближающееся к истинному значению в степени, достаточной для практических целей называют ... значением измеряемой величины.
 - а) действительным
 - б) точным
 - в) достоверным
 - г) абсолютным
- 1.16 Характеристика качества измерений, отражающая близость к нулю систематических погрешностей отражает ... измерений.
 - а) правильность
 - б) достоверность
 - в) точность
 - г) сходимость

- 1.17 Характеристику качества измерений, отражающую близость друг к другу результатов измерений, выполненных в разных условиях, называют ... измерений.
 - а) воспроизводимостью
 - б) достоверностью
 - в) точностью
 - г) сходимостью
- 1.18 Эталон, обеспечивающий воспроизведение единицы с наивысшей в стране (по сравнению с другими эталонами той же единицы) точностью, называется...
 - а) первичным
 - б) специальным
 - в) рабочим
 - г) основным
- 1.19 Эталон, предназначенный для передачи размера единицы физической величины рабочим средствам измерений, называют ...
 - а) рабочим
 - б) исходным
 - в) первичным
 - г) Государственным
- 1.20 Операция, проводимая уполномоченным органом и заключающаяся в установлении пригодности средства измерений к применению на основе экспериментально определенных метрологических характеристик и контроля их соответствия предъявляемым требованиям, носит название средств измерений.
 - а) поверки
 - б) оценки
 - в) проверки
 - г) регламентации
- 1.21 Нанесение отметок на шкалу, соответствующих показаниям рабочего эталона и определения по его показаниям уточненных значений величины, соответствующих нанесенным отметкам на шкале рабочего средства измерений, называется ...
 - а) градуировкой
 - б) калибровкой
 - в) поверкой
 - г) фокусировкой
 - 1.22 Результатом калибровки средства измерений являются ...
 - а) поправки к показаниям
 - б) ошибки измерений

в) погрешности измерений г) точности показаний
1.23 Утвержденный в установленном порядке документ устанавливающий средства, методы и точность передачи размера единицы от
эталона рабочим средствам измерений, называется
а) поверочной схемой
б) дорожной картой
в) технологической схемой
г) поверочным графиком
т) повере ниям трафиком
1.24 Разность между результатом измерения и истинным значением
измеряемой величины называется
а) абсолютной погрешностью измерений
б) абсолютным значением
в) точным значением измерения
г) относительной погрешностью измерения
1.25 Отношение (в процентах) абсолютной погрешности измерения и истинному значению измеряемой величины называется а) относительной погрешностью измерения б) абсолютным значением в) точностью измерения г) точным значением измерения
2. Вопросы в открытой форме
2.1 Составляющая погрешности измерения, изменяющаяся случайным
образом при повторных измерениях одной и той же величины, называется
погрешностью измерения.
2.2 Погрешности, которые при повторных измерениях остаются
неизменными или закономерно изменяются носят название
<u></u>
2.3 Составляющая погрешности измерения, происходящая от
несовершенства метода измерений называется
2.4 Составляющая погрешности измерения, зависящая от погрешностей
применяемых средств измерений называется погрешностью.
2.5 При достаточно большом количестве измерений алгебраическая
сумма случайных отклонений отдельных измерений от среднего
арифметического значения измеряемой величины

2.6 Предельное, гарантированное значение погрешности для данного средства измерений определяет
2.7 Составляющая погрешности, значение которой неизменно во всем диапазоне измеряемых значений называется
2.8 Составляющая погрешности, зависящая от значения измеряемой величины называется
2.9 Приведенная погрешность средства измерения нормируется к величине, равной
2.10 Чувствительность омметра в данной точке шкалы имеет размерность
2.11 Приборы, показания которых являются непрерывной функцией изменений измеряемой величины называются
2.12 В стрелочных приборах энергия измеряемого сигнала принимается и преобразуется в угловое перемещение подвижной части прибора.
2.13 Преобразование непрерывной измеряемой величины в цифровой код выполняет
2.14 Процесс преобразования непрерывного сигнала измерительной информации в дискретный носит название
2.15 Последовательность цифр или сигналов, подчиняющаяся определенному закону, с помощью которой, осуществляется условное представление численного значения величины называется
2.16 Процесс преобразования кодовых групп в соответствующие напряжения, управляющие работой цифрового индикатора выполняется в
2.17 Максимальное число измерений, выполняемых в единицу времени с нормированной погрешностью называется цифрового измерительного прибора.
2.18 Временной интервал от начала цикла преобразования измеряемой величины до получения результата в цифровом измерительном приборе называется

2.19 Обозначение В2 согласно принятой классификации электронных

вольтметров по видам имеют

	означение В3 со видам имеют	-	й классификаци	и электронных
положительная	нение входного и отрицате. м и отрицател	льная амплиту	ды сигнала	совпадают с
сигнала в циф	тепенное повыц ровой системе г выходе АЦП прі	передачи до поя	вления максима	льной кодовой
ошибками к об	ношение числа шему числу элем	ментов, приняты		
	значение В4 со видам имеют	_	й классификаци	и электронных
обнаружения о	дства измерения ошибок путем сропсевдослучайно	равнения едини	ных элементов	принимаемого
3. Bonpoc	сы на установле	ние правильной	последовательн	ости
3.1 Устан	овите правиль	ьную последов	зательность пу	иктов схемы
	льтатов измерені			
•	среднеариф	метического,	определение	остаточных
погрешностей	over a M von com over	···		
	ение <i>N</i> измерени ка правильности			
каждого измере		определения, по	ихождение сумм	ы, оценка ско
- · · · · · · · · · · · · · · · · · · ·	доверительного	интервала, запис	ь результатов из	мерения
-	СКО среднеар	_	_	_
выбор доверите	ельной вероятнос			
1.	2.	3.	4.	5.
3.2 Устан	овите праг	вильную п	оследовательнос	ть этапов
	ания сети аналого	~		
а) инстал.				
	г, калибровка			
,	отка, интеграция,	, проверка на сос	тветствие	
г) произв	одство			

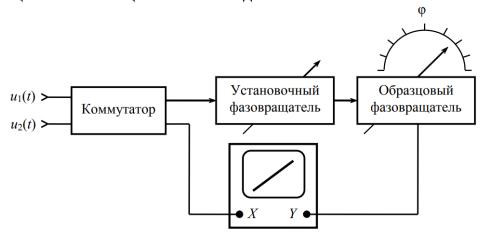
д) поиск неисправностей и техническое обслуживание

1.	2.	3.	4.	5.

- 3.3 Установите правильную последовательность этапов разработки методики выполнения измерений (МВИ)
- а) составление и утверждение технического задания на разработку МВИ; выбор методов и средств измерений (по стоимости, трудоёмкости и погрешности), включая нестандартные
- б) установление последовательности операций, выполняемых при измерении, и условий измерения; установление приписанных характеристик или предельно допустимых погрешностей измерения
- в) составление алгоритма обработки экспериментальных данных и правил оформления результатов измерений; составление текста документа МВИ
- г) метрологическая экспертиза проекта МВИ; аттестация МВИ (обязательная процедура только для измерений, проводимых в сферах распространения ГМКН государственного метрологического контроля и надзора)

д) стандартизация МВИ (выполняется по ГОСТР 8.563)

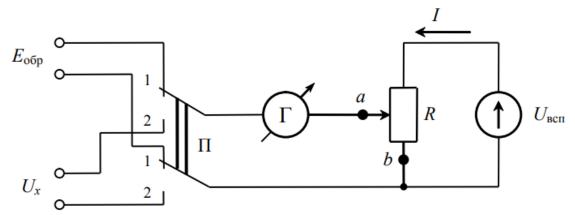
77 71	. 1)	
1.	2.	3.	4.	5.


- 3.4 Установите правильную последовательность этапов функционирования сети цифровой связи
 - а) инсталляция
 - б) ремонт, калибровка
 - в) разработка, интеграция, проверка на соответствие
 - г) производство
 - д) поиск неисправностей и техническое обслуживание

1.	2.	3.	4.	5.

- 3.5 Установите правильную последовательность измерения периода гармонического сигнала с помощью цифрового измерителя
 - а) из исследуемого сигнала u(t) формируются короткие импульсы $u_{\rm {dy}}$
- б) формируется прямоугольный импульс $u_{y\phi y}$ (строб-импульс) с длительностью T_x , равной периоду колебания исследуемого сигнала u(t)
- в) строб-импульс заполняется определенным числом m счетных импульсов $u_{\scriptscriptstyle \mathrm{KB}}$
- г) измеряемый период $T_{\rm x}$ равен числу импульсов m, умноженных на коэффициент 10^{α} , определяющий единицу измерения периода и количество значащих цифр при отсчете

1.	2.	3.	4.


3.6 Установите правильную последовательность измерения разности фаз с помощью компенсационного метода

- а) указатель образцового фазовращателя устанавливают на нуль и, используя установочный фазовращатель в измерительной цепи канала Y, устраняют собственный фазовый сдвиг
- б) в момент компенсации фазового сдвига на экране осциллографа наблюдается прямая линия, затем с помощью коммутатора напряжение $u_1(t)$ подают в канал Y, а напряжение $u_2(t) = U_{\rm m2} \sin{(\omega t + \varphi)} \text{в канал X}$
- в) с помощью образцового фазовращателя на экране осциллографа вновь устанавливается осциллограмма в виде прямой линии
- г) с помощью коммутатора напряжение $u_1(t) = U_{\rm m1} \sin \omega t$ подают на оба входа Y и X осциллографа
- д) измеряемая разность фаз $\Delta \phi$ отсчитывается по показанию образцового фазовращателя

1.	2.	3.	4.	5.

3.7 Установите правильную последовательность измерения напряжения методом сравнения с мерой

- а) переключатель устанавливают в первое (верхнее) положение
- б) с помощью потенциометра R получают нулевое показание гальванометра. При этом $I\,R_{\rm ab}=E_{\rm oбp}.$
 - в) переключатель устанавливают во второе (нижнее) положение

г) с помощью потенциометра R вновь уравновешивается схема. При этом							
движок потенциом	етра займет ново	ое положение, сопрот	тивление участка ав				
будет равно R^*_{ab} . Ис	комое напряжени	е равно $U_{\rm x}=E_{\rm oбp}R^*_{\rm ab}/R$	R_{ab} .				
1.	2.	3.	4.				
3.8 Установит	е правильную	последовательность	схемы цифровых				

- электронных вольтметров
- а) измеряемое напряжение преобразуется входным аналоговым преобразователем
 - б) с помощью АЦП происходит его дискретизация
- в) в цифровом отсчетном устройстве осуществляется цифровой отсчет значения измеряемой величины

г) с помощью АЦП происходит его кодирование

1	1	2	4
1.	2.	3.	4.

- 3.9 Установите правильную схемы последовательность термоэлектрического метода измерения напряжения
 - а) термопреобразователь
 - б) фильтр нижних частот
- низкой в) усилитель фазовый частоты, детектор (выпрямитель), усилитель постоянного тока
- г) интегральный преобразователь (модулятор), формирующий ИЗ постоянного пульсирующее напряжение

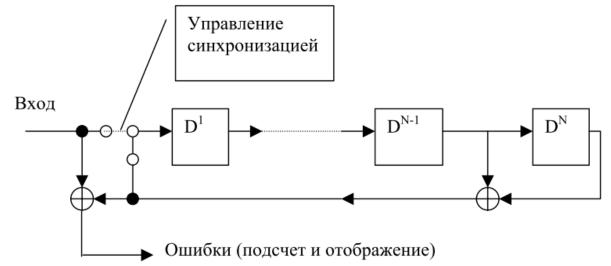
д) стрелочный прибор, проградуированный в единицах мощности

1.	2.	3.	4.	5.

- 3.10 Установите правильную последовательность схемы оптические измерители мощности
 - а) усилитель
 - б) дисплей
 - в) сигнальный процессор
 - г) термостабилизатор, фотодиод
 - д) АЦП

1.	2.	3.	4.	5.

- 3.11 Установите правильную последовательность приоритетов ДЛЯ эксплуатационного измерительного оборудования
 - а) стоимость
 - б) надежность
 - в) многофункциональность


г) портативность

1.	2.	3.	4.

- 3.12 Установите последовательность измерения бинарного канала с отключением
- а) анализатор приемника обеспечивать предсказание структуры последовательности
 - б) на другом конце канала (приемник) принимается сигнал
 - в) проводится анализ ошибок, вносимых каналом
 - г) сигнал передается в виде тестовой последовательности

1.	2.	3.	4.

3.13 Установите правильную последовательность анализа псевдослучайной последовательности с обратной связью для синхронизации

- а) производится синхронизация по тестовой последовательности
- б) производится загрузка данных в регистры сдвига до полного заполнения
 - в) петля обратной связи размыкается
 - г) петля обратной связи замыкается

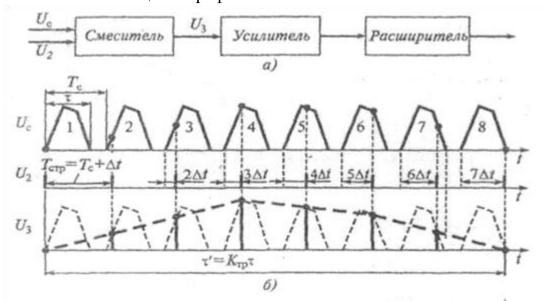
1.	2.	3.	4.

- 3.14 Установите правильную последовательность методики измерения максимально допустимого джиттера
- а) по одному из описанных ниже критериев делается вывод о максимально допустимом джиттере для данной частоты
- б) амплитуда вносимого джиттера варьируется, а на выходе измеряемого оборудования/канала измеряется параметр ошибки
 - в) измерения повторяются для другой частоты

- г) на измеряемое оборудование/канал подается тестовый сигнал (обычно ПСП) с внесенным джиттером на определенной частоте
- д) получается зависимость амплитуды максимально допустимого джиттера (MTJ) от частоты для данного измеряемого оборудования

1 \	r 1	1	1 7 7	
1.	2.	3.	4.	5.

- 3.15 Установите правильную последовательность методики измерения максимально допустимого джиттера
- а) по одному из описанных ниже критериев делается вывод о максимально допустимом джиттере для данной частоты
- б) амплитуда вносимого джиттера варьируется, а на выходе измеряемого оборудования/канала измеряется параметр ошибки
 - в) измерения повторяются для другой частоты
- г) на измеряемое оборудование/канал подается тестовый сигнал (обычно ПСП) с внесенным джиттером на определенной частоте

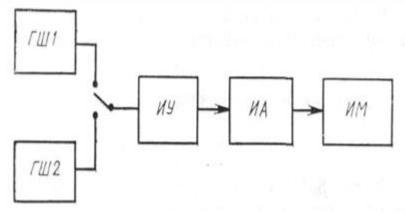

д) получается зависимость амплитуды максимально допустимого джиттера (MTJ) от частоты для данного измеряемого оборудования

~	, 			
1.	2.	3.	4.	5.

- 3.16 Установите правильную последовательность метода измерения джиттера (MTJ) по критерию увеличения параметра коэффициент ошибок по битам (BER)
- а) определяются два значения BER в зависимости от отношения сигнал/шум в эталонных точках измеряемого канала
- б) при нулевом джиттере к сигналу добавляется шум или сигнал ослабляется до получения нужного первоначального BER
- в) шум или затухание сигнала снижается до момента, когда BER уменьшится в 2 раза
- г) на определенной частоте в испытательный сигнал вводится джиттер до момента получения первоначально выбранного значения BER. Для измерения, точно показывающего постоянный допуск синусоидального входного джиттера для испытываемого объекта в используемом диапазоне частот, данный пункт повторяется для достаточного количества частот

1.	2.	3.	4.

3.17 Установите правильную последовательность работы стробоскопического осциллографа



- а) Исследуемые импульсы $U_{\rm c}$ длительностью т и периодом повторения $T_{\rm c}$, подаются вместе со специальными (очень короткими) строб-импульсами U_2
- б) Импульсы U_3 усиливают, затем расширяют до длительности, меньшей $T_{\rm c}$, и подают через усилитель канала У на отклоняющие пластины стробоскопического осциллографа
- в) на выходе смесителя появляются короткие импульсы $U_{3)}$, совпадающие по времени со строб-импульсами (U_2) , но имеющие амплитуду, равную амплитуде исследуемых импульсов $U_{\rm c}$ в момент поступления строб-импульсов U_2

г) формируется прямоугольный импульс $u_{y\phi y}$ (строб-импульс) с длительностью T_{x} , равной периоду колебания исследуемого сигнала u(t)

¬ х)			
1.	2.	3.	4.

3.18 Установите правильную последовательность процедуры измерения коэффициента шума на радиоэлектронных устройствах методом аттенюатора

- а) измерительный аттенюатор устанавливают на отметку n_1 включают генератор Γ ш1 и замечают показания ваттметра α_1
 - б) выключают генератор Гш1 и включают Гш2

в) регулируя	ослабление	аттенюатора	ИА,	добиваются	прежних
показаний α ₁ ваттме	тра				

 $T_{u.y} = \Gamma$) найти температуру шума, используя формулу

$T_{\mu\nu} = (T_{\mu\nu})$	$-\frac{n_2}{T_n}T_n$	$(\frac{n_2}{n_1})/(\frac{n_2}{n_2}-1)$
,2	n_{1}	n_1

 1.
 2.
 3.
 4.

- 3.19 Установите правильную последовательность элементов структурной схемы цифрового импульсного генератора
 - а) делитель частоты
 - б) счетчик
 - в) цифро-аналоговый преобразователь
 - г) усилитель с фильтром низких частот

д) генератор импульсов

1.	2.	3.	4.	5.

- 3.20 Установите правильную последовательность прохождения сложного сигнала через супергетеродинный анализатор спектра
 - а) входной сигнал проходит через аттенюатор
- б) через фильтр нижних частот (позже мы поймем, зачем здесь фильтр) на смеситель, где он смешивается с сигналом от гетеродина
 - в) попадает в полосу фильтра промежуточной частоты (ПЧ)
 - г) выпрямляется детектором огибающей

д) оцифровывается и выводится на дисплей

<u></u>	BBIBUCTON II BBIBC	Alli on the Allothic	**	
1.	2.	3.	4.	5.

- 3.21 Установите правильную последовательность электромеханических приборов по классу точности
 - а) магнитоэлектрические
 - б) электромагнитные
 - в) электродинамические
 - г) электростатические

1.	2.	3.	4.

- 3.22 Установите правильную последовательность электромеханических приборов по максимальной рабочей частоте
 - а) магнитоэлектрические
 - б) электромагнитные
 - в) электродинамические
 - г) электростатические

1.	2.	3.	4.

- 3.23 Установите правильную последовательность этапов калибровки
- а) выбор эталонов
- б) анализ погрешностей
- в) проверка точности за счет сопоставления показаний прибора с эталонными значениями

г) корректировка показаний прибора

1.	2.	3.	4.

- 3.24 Установите правильную последовательность основных этапов проведения поверки
 - а) проведение визуального осмотра системы измерения
 - б) проверка на месте или изъятие прибора в лабораторию
 - в) осуществление проверки на специальном оборудовании
 - г) подача заявления на проверку или допуск экспертов к устройству

д) выдача готового экспертного заключения

1.	2.	3.	4.	5.

- 3.25 Установите правильную последовательность действий при измерении коэффициента затухания оптической линии методом вносимых потерь
- а) стабилизированный источник оптического сигнала соединяют с оптическим измерителем мощности через эталонный отрезок оптического кабеля
- б) стабилизированный источник оптического сигнала соединяют с оптическим измерителем мощности через тестируемую оптическую линию

в) по полученным значения рассчитывается коэффициент затухания

1.	2.	3.	

4. Вопросы на установление соответствия

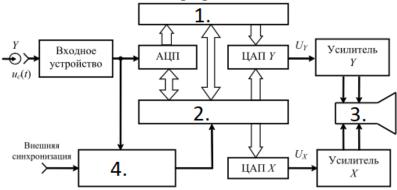
4.1 Установите соответствие между типами преобразователей мгновенных значений напряжений и токов и их способами реализации

Тип преобразователей	Способ реализации
1. средневыпрямленных	а) диодных аппроксиматоров и термоэлектрических
значений	преобразователей
2. среднеквадратических	б) по схемам двухполупериодного или
значений	однополупериодного выпрямления
3. пиковых значений	в) необходимы элементы памяти, запоминающие

пиковое значение напряжения

4.2 Установите соответствие между типами генераторов электрических сигналов и их выходной мощностью

Тип генератора	Мощность
1. маломощные	а) от 1 до 100 Вт
2. средней мощности	б) более 100 Вт
3. мощные	в) менее 1 Вт


4.3 Установите соответствие между типами генераторов электрических сигналов и их частоте

Тип избирательности	Способ реализации
1. инфранизкочастотные	а) выше 100 МГц
2. низкочастотные	б) от 10 Гц до 100 кГц
3. высокочастотные	в) от 100 кГц до 100 МГц
4. СВЧ	г) менее 10 Гц

4.4 Установите соответствие между понятием и определением

Понятие	Определение
1. Метрология	а) наука об измерениях, методах и средствах
	обеспечения их единства и способах достижения
	требуемой точности
2. Измерение	б) процесс, заключающийся в определении значения
	физической величины с помощью специальных
	технических средств
3. Погрешность	в) отражает близость результатов измерения к
измерений	истинному значению измеряемой величины
4. Точность измерений	г) отклонение результата измерения от истинного
_	значения физической величины

4.5 Установите соответствие между недостающими элементами на схеме цифрового запоминающего осциллографа и названиями

№	Название
1.	а) запоминающее устройство

2.	б) микроконтроллер
3.	в) электронно-лучевая трубка
4.	г) схема синхронизации

4.6 Установите соответствие между понятием и определением

Понятие	Определение
1. Измерительные	а) определение метрологическим органом
приборы	погрешности средств измерений и установление его
	пригодности к применению
2. Поверка средств	б) средства измерения, предназначенные для
измерений	выработки сигнала измерительной информации в
	форме удобной для восприятия наблюдателя
3. Mepa	в) предназначены для выработки сигнала
	измерительной информации в форме удобной для
	передачи дальнейшего преобразования, обработки или
	хранения, но не поддающиеся восприятию
	наблюдателя
4. Измерительные	г) средства измерений предназначенные для
преобразователи	воспроизведения физической величины заданного
	размера с определенной точностью

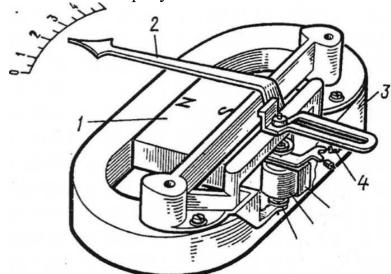
4.7 Установите соответствие между видами измерением и определением

Вид измерения	Определение
1. Прямые измерения	а) измерения, при которых искомое значение физической величины находят на основании математической зависимости между искомой величиной и величинами аргументами, полученными при прямых измерениях
2. Косвенные измерения	б) измерения, при которых искомое значение физической величины находят непосредственно из опытных данных
3. Совместные измерения	в) проводимые одновременно измерения двух или нескольких не одноимённых величин для определения зависимости между ними
4. Совокупные измерения	г) проводимые одновременно измерения нескольких одноимённых величин, при которых искомые значения величин определяют путём решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях

4.8 Установите соответствие между методом измерения и определением

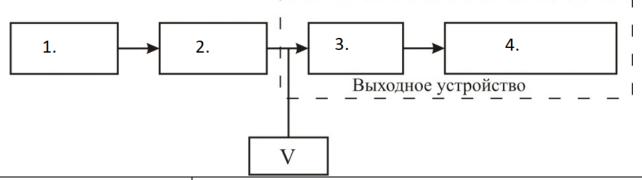
Метод				Определе	ние		
1. Метод сравнения	c	а) частный	случай	дифферен	циального	метода,	при
мерой		котором	результи	ирующий	эффект	воздейс	твия

	измеряемой физической величины и известной
	величины, воспроизводимой мерой на прибор
	сравнения, доводят до нуля
2. Дифференциальный	б) основан на измерении разности между искомой
метод	величиной и истинным значением. Он применяется
	при измерении параметров цепи
3. Нулевой метод	в) метод, при котором измеряемая величина
	замещается известной величиной, воспроизводимой
	мерой равной по значению замещенной
4. Метод замещений	г) заключается в определении искомой определяемой
	физической величины сравнением с величиной
	воспроизводимой мерой

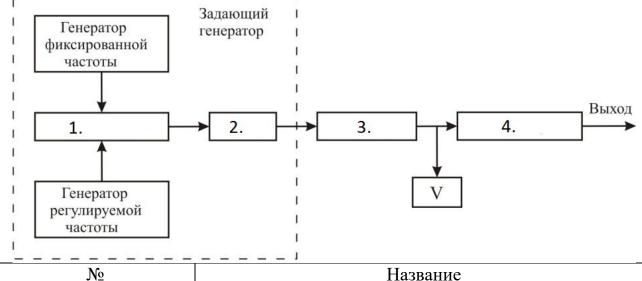

4.9 Установите соответствие между характеристикой измерительного прибора и определением

Характеристика	Определение
1. Быстродействие	а) отражает функциональную зависимость между выходным сигналом X и входным Y
2. Надежность	б) это разность между погрешностью прибора в динамическом режиме и его статической погрешностью соответствующей значению величины в данный момент времени
3. Динамическая погрешность	в) время затраченное на одно измерение
4. Градуировочная характеристика	г) способность прибора сохранять эксплуатационные параметры в установленных пределах в течении
	заданного времени

4.10 Установите соответствие между характеристикой измерительного прибора и определением


Характеристика	Определение
1. Порог	а) обобщенная характеристика определяемая
чувствительности	пределами допускаемых основных и дополнительных
	погрешностей
2. Диапазон измерений	б) полоса частот, в пределах которой погрешность
	прибора, вызванная изменением частоты, не
	превышает допускаемого предела
3. Область рабочих	в) отражает изменения входного сигнала,
частот	вызывающего наименьшие изменения выходного
	сигнала, которые могут быть обнаружены
	наблюдателем с помощью данного прибора без
	дополнительных устройств
4. Класс точности	г) область значений измеряемого сигнала для которой
	нормированы допускаемые погрешности

4.11 Установите соответствие между элементом магнитоэлектрического измерительного механизма на рисунке и его названием


№	Название
1.	а) внешний магнит
2.	б) стрелка
3.	в) противовесы-грузики
4.	г) магнитопровод

4.12 Установите соответствие между элементами схемы измерительного генератора низкой частоты на рисунке и их названием

No	Название			
1.	а) аттенюатор			
2.	б) выходной усилитель			
3.	в) согласующий трансформатор			
4.	г) задающий генератор			

4.13 Установите соответствие между элементами схемы генератора на биениях на рисунке и их названием

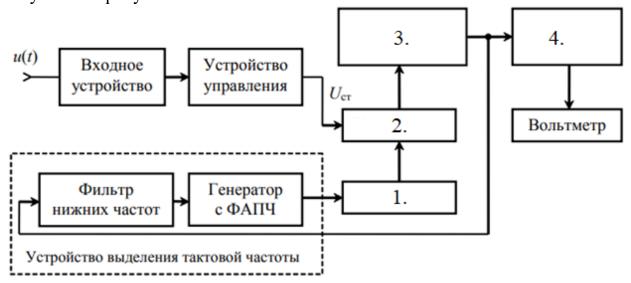
<u>No</u>	Название
1.	а) фильтр
2.	б) смеситель
3.	в) аттенюатор
4.	г) усилитель

4.14 Установите соответствие между измеряемыми параметрами оптического волокна и их определениями

Параметр	Определение					
1. Затухание	а) параметр, наряду с числовой апертурой,					
оптического волокна	определяющий значение оптической мощности,					
	которое можно ввести в многомодовое волокно					
2. Дисперсия	б) параметр, характеризующий ослабление мощности					
	оптического сигнала при его распространении в					
	волокне, обусловленное поглощением в материале					
	сердцевины и рассеянием излучения на					
	неоднородностях материала					
3. Числовая апертура	в) технический термин для обозначения расширения					
	светового импульса при его распространении в					
	волокне (сужения полосы пропускания) вследствие					
	рассеивания во времени спектральных или модовых					
	составляющих оптического сигнала					
4. Диаметр	г) один из важнейших измеряемых оптико-					
сердцевины	геометрических параметров волокна, определяющий					
	значение оптической мощности, которое можно ввести					
	В ВОЛОКНО					

4.15 Установите соответствие между измеряемыми параметрами только для одномодового оптического волокна и их определениями

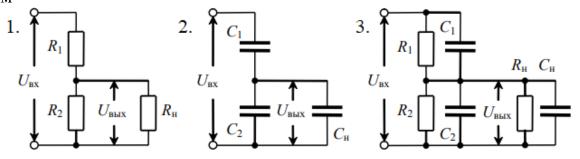
Парамо	етр				Опре	деление		
1. Длина	волны	а) парам	иетр	одн	омодової	о волок	на, опред	еляющий
отсечки		самую	низ	кую	длину	волны,	которую	следует


	использовать, если особую важность имеет полоса
	пропускания
2. Диаметр модового	б) параметр, характеризующий расширения светового
пятна	импульса при его распространении в волокне
3. Поляризационная	в) параметр, характеризующий распределение
модовая дисперсия	интенсивности светового поля в поперечном сечении
	на выходе волокна

4.16 Установите соответствие между элементами схемы а фотоприемного устройства на рисунке и названиями

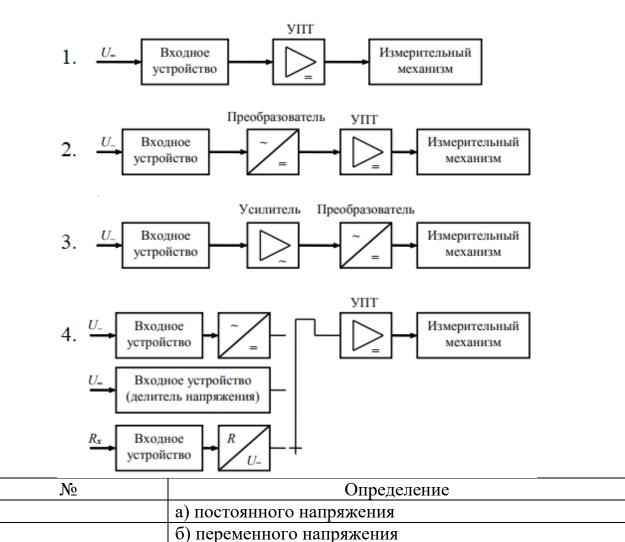
№	Название
1.	а) оконечный усилитель
2.	б) предусилитель
3.	в) фотодиод
4.	г) корректирующий фильтр

4.17 Установите соответствие между элементами схемы реализации метода преобразования фазового сдвига в амплитудно-модулированные импульсы на рисунке и названиями


$N_{\underline{0}}$	Название			
1.	а) коммутатор			

2.	б) нормализатор длительности
3.	в) интегратор
4.	г) преобразователь среднеквадратического значения

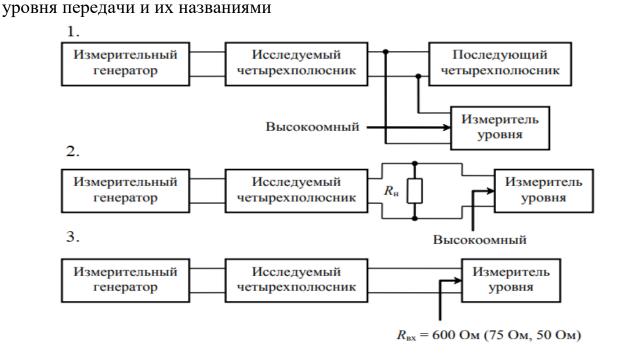
4.18 Установите соответствие между шумовыми параметрами устройств и формулами


Параметрами	Формула
1. Спектральная	a) $\lim_{\Delta f \to 0} \frac{P_u(f)}{\Delta f}$
плотность мощности	$\Delta f \rightarrow 0$ Δf
шума S(f)	
2. Коэффициент шума	$6) 1 + \frac{P_{u.sbix.coó}}{}$
интегральный $K_{\text{ши}}$	$6) 1 + \frac{r_{u.s\omega x.co6}}{kT_0\Delta f}$
3. Коэффициент шума	B) $1 + \frac{S_{u.\text{ex.co6}}}{}$
стандартный K_{mc}	kT_0
4. Эффективная	Γ) $(K_{uu}-1)T_0$
температура шума	
входа	
четырехполюсника	
$T_{ m 9\phi.m}$	

4.19 Установите соответствие между схемами делителей напряжений и их типом

№	Определение
1.	а) с корректирующими элементами
2.	б) емкостной
3.	в) резистивный

4.20 Установите соответствие между структурными схемами аналоговых электронных вольтметров и их названиями



4. г) для измерения малых переменных напряжений 4.21 Установите соответствие между схемами включения измерителей

в) универсальный вольтметр

1. 2.

3.

№ Определение		
1.	а) с реальной нагрузкой	
2.	б) с подключенной нагрузкой	
3.	в) с непосредственным подключением	

4.22 Установите соответствие между видом испытаний по целям и назначению и определением

Вид испытаний	Определение			
1. исследовательские	а) проводимые для изучения свойств изделий			
2. контрольные	б) проводимые для контроля качества изделий			
3. сравнительные	в) проводимые для изучения свойств изделий			
4. определительные	г) проводимые для сравнения свойств изделий-			
	аналогов			

4.23 Установите соответствие между способом проведения испытаний и определением

Способ проведений	Определение			
1. Последовательный	а) из партии готовой продукции отбирают несколько			
	выборок и каждую подвергают воздействию одного из			
	факторов			
2. Параллельный	б) один и тот же объект испытаний подвергается всем			
	видам испытаний, предусмотренным программой для			
	данного изделия			
3. Последовательно-	в) на изделие действует одновременно несколько			
параллельный	внешних воздействующих факторов			
(смешанный)				
4. Комбинированный	г) из партии готовой продукции отбирают несколько			
	выборок. Каждую выборку подвертают			
	последовательному воздействию нескольких внешних			
	воздействующих факторов			

4.24 Установите соответствие между видом погрешности и определением

Вид погрешности	Определение		
1. Систематическая	а) это часть погрешности, наблюдающаяся в череде измерений		
2. Случайная	б) составляющая погрешности случайным образом, изменяющаяся при повторных измерениях		
3. Абсолютная	в) разница между измеренным и действительным показателем измеряемой величины		

4.25 Установите соответствие между методом измерения и определением

1126 T TIMEBITT TOOTESTETEN MONAY MOTOGOM HOMES HOPE THE HOMES						
Понятие	Определение					
1. Метод	а) метод,	при	котором	измеряемая	величина	И
противопоставлений	известная	вел	личина,	воспроизводи	мая мер	ой,

	одновременно воздействуют на прибор сравнений, с				
	помощью показаний которого устанавливают				
	соотношения между ними				
2. Методика	б) детально намеченный порядок процесса измерений,				
измерений	регламентирующие методы, средства, алгоритмы				
	выполнения измерений, которые в определенных				
	условиях обеспечивают измерения с заданной				
	точностью				
3. Алгоритм	в) точное предписание о выполнении в определенном				
измерений	порядке совокупности операций, обеспечивающих				
	измерения значений физической величины				
4. Метод	г) заключается непосредственном определении				
непосредственной	значения физической величины по отчетному				
оценки	устройству измерительного устройства заранее				
	проградуированного в значениях измеряемой				
	величины				

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов (установлено положением П 02.016-2018).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале		
100-50	зачтено		
49 и менее	не зачтено		

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено - **2 балла**, не выполнено - **0 баллов**.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

(производственные (или ситуационные) задачи и (или) кейс-задачи)

Компетентностно – ориентированная задача №1

Произвести запись значения заданного параметра, используя дольные и кратные приставки. Результат представить в виде десятичной дроби либо целого числа необходимой разрядности, а также с применением сомножителя $10^{\rm n}$. Исходные данные и единицы измерения представляемого результата сведены в табл. 1.4, 1.5, 1.8.

Таблица 1.4 Частота

	Значение	Елиг	ницы изм	ерения
NN	параметра	параметра		
n.n		napamerpa		P
1	2	3	4	5
1	3500 Гц	кГц	МГц	ГГц
2	0.15 кГц	Гц	МΓц	ГГц
3	34.5 кГц	ГГц	Гц	ΜΓц
4	0.003 ГГц	Гц	МΓц	кГц
5	18 300 Гц	кГц	ГГц	МГц
6	348 кГц	МГц	Гц	ГГц
7	0.35 МГц	ГГц	Гц	кГц
8	1.45 кГц	Гц	ГГц	МГц
9	0.024 ГГц	кГц	МГц	Гц
10	0.00019 ГГц	МГц	Гц	кГц
11	157 000 Гц	кГц	ГГц	МГц
12	75.4 МГц	ГГц	Гц	кГц
13	135.3 МГц	кГц	ГГц	Гц
14	0.063 ГГц	МГц	кГц	Гц
15	2.55 кГц	МГц	Гц	ГГц
16	950 Гц	ГГц	кГц	МГц
17	185 кГц	МГц	Гц	ГГц
18	0.00027 ГГц	Гц	МГц	кГц
19	0.047 ГГц	МГц	Гц	кГц
20	470 МГц	кГц	ГГц	Гц
21	290 кГц	Гц	МГц	ГГц
22	650000 Гц	МГц	кГц	ГГц
23	185 кГц	ГГц	Гц	МГц
24	3.1 МГц	ГГц	кГц	Гц
25	14.8 кГц	МГц	Гц	ГГц
26	0.0035 ГГц	Гц	кГц	МГц
27	24500 Гц	кГц	ГГц	МГц
28	57.3 кГц	МГц	Гц	ГГц
29	68.1 МГц	ГГц	кГц	Гц
30	3400000 Гц	МГц	ГГц	кГц

Таблица 1.5 Сила тока

NN n.n	Значение параметра	Единицы измерения параметра		
1	2	3	4	5
1	1.5 A	нА	мА	мкА
2	150000 нА	мкА	мА	A
3	45000 нА	A	мкА	мА
4	0.75 A	мА	нА	мкА
5	354 мА	мкА	A	нА
6	0.12 A	мкА	A	нА
7	473мА	A	мкА	нА
8	1300мкА	A	нА	мА
9	85мА	мкА	A	нА
10	0.045 A	мА	нА	мкА
11	345мкА	нА	A	мА
12	0.051 A	нА	мА	мкА
13	62мА	мкА	A	нА
14	27000 нА	A	мкА	мА
15	472мкА	мА	нА	A
16	0.225 A	нА	мА	мкА
17	173мА	нА	A	мкА
18	437000 нА	мкА	A	мА
19	48мкА	мА	нА	A
20	39мА	нА	мкА	A
21	510мкА	A	нА	мА
22	3.4 A	нА	мА	мкА
23	450мА	мкА	A	нА
24	13мА	A	нА	мкА
25	184мкА	нА	A	мА
26	615мА	нА	A	мкА
27	0.0005 A	мкА	мА	нА
28	480мА	A	нА	мкА
29	0.91 A	нА	мА	мкА
30	350000 нА	мА	A	мкА

NN n.n	Значение параметра	Единицы измерения параметра		
1	2	3	4	5
1	1550 нм	ММ	СМ	МКМ
2	0.93 м	HM	MM	мкм
3	375 мм	см	НМ	мкм
4	0.006 м	МКМ	MM	НМ
5	518 мм	HM	СМ	мкм
6	238 мкм	HM	СМ	MM
7	37.6 мм	M	HM	МКМ
8	345.7 мм	MKM	СМ	HM
9	1.13 м	HM	MM	МКМ
10	947 мкм	СМ	НМ	MM
11	58.4 мм	НМ	НМ	см
12	42.8 мкм	MM	НМ	см
13	287164 нм	МКМ	СМ	ММ
14	143 мм	HM	СМ	МКМ
15	0.316 м	HM	СМ	МКМ
16	851мм	MM	HM	СМ
17	1310 нм	СМ	MKM	MM
18	48.3 мм	MKM	см	HM
19	0.545 см	HM	MM	МКМ
20	325 мкм	HM	СМ	ММ
21	0.064 см	ММ	НМ	МКМ
22	74.5 мм	СМ	HM	МКМ
23	2315 мкм	MM	HM	СМ
24	54000 нм	МКМ	СМ	ММ
25	23.2 мм	СМ	HM	мкм
26	276 мкм	HM	СМ	ММ
27	850 нм	MM	СМ	мкм
28	0.06 м	HM	MM	мкм
29	437 мм	СМ	НМ	мкм
30	0.008 м	MKM	HM	ММ

Компетентностно – ориентированная задача №2

При многократных измерениях давления маслонасосной станции получены следующие значения: 12,38; 12,43; 12,32; 12,32; 12,48; 12,74; 12,45; 12,46 МПа. Предполагая нормальный закон распределения, проверьте наличие «грубой» погрешности в результатах измерений с уровнем значимости 0,01.

Компетентностно – ориентированная задача №3

Полное отклонение стрелки миллиамперметра достигается при значении I_1 =100мкA, внутреннее сопротивление катушки прибора R_1 = 500 Ом. Рассчитайте шунт R_2 , чтобы стрелка прибора отклонялась на максимальное значение при общем токе $I_{\text{общ}}$ = 6A.

Компетентностно – ориентированная задача №4

Экспериментатор проводит измерение электрического напряжения, возникающего в электрической схеме. Среднеквадратичное отклонение электромагнитной помехи от сети 50 Гц составляет 20 мВ. Укажите, какую минимальную погрешность может получить экспериментатор, используя усреднение сигнала по 100 измерениям с временем квантования 0,2 с. (доверительную вероятность принять равной 0,99).

Компетентностно – ориентированная задача №5

Полное отклонение стрелки миллиамперметра достигается при значении I_1 =10мA, внутреннее сопротивление катушки прибора R_1 = 600 Ом. Рассчитайте шунт R_2 , чтобы стрелка прибора отклонялась на максимальное значение при общем токе $I_{\text{обш}}$ = 1,5A.

Компетентностно – ориентированная задача №6

Номинальное напряжение в электрической сети 220~B, имеющее отклонение $\pm~10\%$. Необходимо ли скорректировать величину напряжения, если измеренное значение равно 199~B? Ответ обоснуйте математическим неравенством.

Компетентностно – ориентированная задача №7

Определить оперативные нормы на показатели BISO, S_1 , S_2 для ОЦК, передаваемого по СМП протяженностью L_1 =1650 км и по двум ВЗПС протяженностью L_2 =190км и L_3 =450 км, организованных по ВОЛС.

Компетентностно – ориентированная задача №8

При шаге квантования $0{,}04$ В определите диапазон напряжений 7-разрядного кода со знаковым разрядом: 1) 0110101; 2) 0000011; 3) 1000001; 4) 0111111; 5) 1000000.

Компетентностно – ориентированная задача №9

Стрелочным амперметром с классом точности 0,5 и верхним пределом измерения 40 А измерено значение электрического тока I=24 А. Найдите абсолютную, относительную и приведенную погрешности.

Компетентностно – ориентированная задача №10

Определите, в каком случае относительная погрешность измерения тока $I=10\,$ мА меньше, если для измерения использованы два прибора, имеющие

соответственно шкалы на 15 мA (класс точности прибора 0,5) и 100 мA (класс точности прибора 0,1).

Компетентностно – ориентированная задача №11

Телевизионный сигнал изображения занимает полосу частот шириной примерно 6,5 МГц. Изображение передается с частотой 25 кадров в секунду. Считая, что динамический диапазон телевизионного сигнала составляет 48 дБ, определите время, необходимое для передачи одного ТВ-кадра по телефонному каналу с полосой частот от 300 до 3 400 Гц и динамическим диапазоном 20 дБ.

Компетентностно – ориентированная задача №12

Для проверки работоспособности омметра класса точности 0,5 провели измерение эталонного сопротивления $(300 \pm 0,1)$ Ом. В результате измерения получено значение 298,3 Ом. Необходимо ли отправить омметр на внеочередную поверку (ответ подтвердите математическим неравенством)?

Компетентностно – ориентированная задача №13

При измерении напряжения на нагрузочном резисторе вольтметр показал 13,5 В. Найти абсолютную и относительную методические погрешности измерения, если сопротивление резистора 7 Ом, ЭДС источника 14,2 В, его внутреннее сопротивление 0,1 Ом.

Компетентностно – ориентированная задача №14

Для измерения напряжения U=9,5 В используются два вольтметра: класса точности 1,0 с верхним пределом измерения 50 В и класса точности 1,5 с верхним пределом измерения 10 В. Определите, при измерении каким вольтметром наибольшая относительная погрешность меньше и во сколько раз.

Компетентностно – ориентированная задача №15

Отсчет по шкале прибора с пределами измерений от 0 до 100 В и равномерной шкалой составил 75 В. Не учитывая другие виды погрешностей измерения, оценить пределы допускаемой абсолютной погрешности при использовании различных СИ с классами точности: 0,02/0,01; 0,5 и 1,0.

Компетентностно – ориентированная задача №16

Аналоговым вольтметром класса точности 0,5 с диапазоном измерения от 0 до 3 В и шкалой, содержащей 150 делений, в нормальных условиях измерено напряжение постоянного тока. С округлением до десятых долей деления сделан отсчет: 51,3 дел. Выходное сопротивление источника сигнала пренебрежимо мало. Записать результат измерения.

Компетентностно – ориентированная задача №17

Полное отклонение стрелки миллиамперметра достигается при значении I_1 =25мA, внутреннее сопротивление катушки прибора R_1 = 185 Ом. Рассчитайте

шунт R_2 , чтобы стрелка прибора отклонялась на максимальное значение при общем токе $I_{\text{обш}} = 1,78 \text{ A}$.

Компетентностно – ориентированная задача №18

Оцените случайную погрешность измерения сопротивления с доверительной вероятностью 99,5 %, если при равноточных измерениях были получены следующие результаты: 46,43; 46,49; 46,42; 46,52; 46,38; 46,40; 46,51 Ом. Распределение случайной погрешности считать нормальным.

Компетентностно – ориентированная задача №19

Прибор для измерения длины волны аттестуется по стандартному источнику λ = 546,07 нм. Прибор при 3-х измерениях дал отсчеты: 546,01 нм, 542,20 нм, 546,30 нм. Оцените случайную составляющую погрешности при измерении этим прибором с уровнем значимости 0,1. Имеет ли в результатах систематическая погрешность?

Компетентностно – ориентированная задача №20

В результате измерений сопротивлений получены следующие значения: $R1=200\,$ Ом; $R2=100\,$ Ом; $R3=600\,$ Ом; $R4=500\,$ Ом. Среднеквадратичные отклонения измеренных сопротивлений соответственно равны 0,3; 0,2; 0,6; 0,3 Ом. Определить среднеквадратичное отклонение сопротивления R, если R=R1+R2+R3+R4.

Компетентностно – ориентированная задача №21

Экспериментатор проводит измерение электрического напряжения, возникающего в электрической схеме. Среднеквадратичное отклонение электромагнитной помехи от сети 50 Гц составляет 20 мВ. Укажите, какую минимальную погрешность может получить экспериментатор, используя усреднение сигнала по 100 измерениям с временем квантования 0,2 с. (доверительную вероятность принять равной 0,99).

Компетентностно – ориентированная задача №22

В результате измерения напряжения на аккумуляторе вольтметром М30 (класс точности 1,5; предел измерения 5 В, внутреннее сопротивление 75 кОм) получено значение ЭДС 1,35 В. При измерении вольтметром Э90 (класс точности 1; предел измерения 10 В, внутреннее сопротивление 150 кОм) результат измерения 1,50 В.

- оцените инструментальную погрешность прибором Э90
- оцените методическую погрешность измерения ЭДС прибором М30
- будет ли работать электрическая схема с внутренним сопротивлением 10 кОм, если необходимое минимальное напряжение питания составляет 1,2 В?

Компетентностно – ориентированная задача №23

Определить абсолютную и относительную погрешности установки частоты 200 Γ ц на генераторе Γ 3-34, если в паспорте прибора указано $\Delta f = \pm (1 +$

Компетентностно – ориентированная задача №24

Измерено два значения напряжения (50 и 400 В) вольтметром с номинальным значением 400 В с одной и той же абсолютной погрешность 0,5 В. Какое напряжение будет измерено с меньшей погрешностью?

Компетентностно – ориентированная задача №25

Измерено напряжение 40 В вольтметром 6-го класса точности (1,0 %) с верхним пределом 50 В. Измерен ток 2 мА с абсолютной погрешностью 0,1 мА. Определить значение измеренного сопротивления резистора, абсолютную и относительную погрешности измерения этого резистора

Компетентностно – ориентированная задача №26

Какие средства измерений представляют собой совокупность измерительных преобразователей и отсчетного устройства?

Компетентностно – ориентированная задача №27

Вольтметром класса точности 0,5 с пределом измерений в 30 В, измеряется напряжение постоянного тока. Показание вольтметра равно 10 В, чему равен модуль предельной относительной погрешности результата измерения?

Компетентностно – ориентированная задача №28

Получен предварительный результат измерения силы тока в виде U = (9,1548 + -0,0107) А. Каким является окончательный ответ?

Компетентностно – ориентированная задача №29

Необходимо измерить напряжение порядка 20...25 В. Имеется вольтметр класса точности 1 с пределами измерений 15; 30; 50; 100 В. Выберите предел измерений.

Компетентностно – ориентированная задача №30

Определяется сила тока путем измерения падения напряжения на образцовом сопротивлении R=1 Ом класса точности 0,10. Падение напряжения, измеренное вольтметром класса точности 0,20 на пределе измерений 10 B, равно 5 B. Чему равен модуль предельной относительной погрешности (%) силы тока?

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов (установлено положением П 02.016-2018).

Максимальное количество баллов за решение компетентностно-ориентированной задачи - 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по дихотомической шкале следующим образом:

Соответствие 100-балльной и дихотомической шкал

Сумма баллов по 100-балльной шкале	Оценка по дихотомической шкале		
100-50	зачтено		
49 и менее	не зачтено		

Критерии оценивания решения компетентностно-ориентированной задачи:

- выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и конструируемая разностороннее рассмотрение; свободно ee представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, эффективное, наиболее нестандартное решение или наиболее (или рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **3-4 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **1-2 балла** выставляетсяобучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.