Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Бессонова Елена Анатольевна

МИНОБРНАУКИ РОССИИ

Должность: Заведующий кафедрой дата подписания: 22.09.2022 23:25: Ого-Западный государственный университет

Уникальный программный ключ:

184ae2b9519ce0bcdf633141cbd1820fc6a75f56

УТВЕРЖДАЮ:

Заведующий кафедрой

экономики, управления и аудита

(наименование кафедры полностью)

(подпись)

«85 12

2021r

Е.А. Бессонова

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Методы оптимальных решений

(наименование дисциплины)

38.03.01 Экономика, направленность (профиль) «Финансы и кредит»

(код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ УСТНОГО ОПРОСА

Тема 1 Предмет математического программирования

- 1. Как формулируется математическая модель распределения ресурсов?
- 2. Как формулируется математическая модель об оптимальной смеси?
- 3. Как формулируется математическая модель сбалансированной транспортной задачи?
- 4. Как формулируется математическая модель транспортной задачи с избыточным предложением?
- 5. Как формулируется математическая модель транспортной задачи с избыточным спросом?
 - 6. Как формулируется математическая модель задачи о рюкзаке?
 - 7. Как формулируется математическая модель задачи о раскрое?
- 8. Как формулируется математическая модель задачи о минимизации складских издержек?
 - 9. Как формулируется математическая модель задачи о потребительском выборе?
 - 10. Какой вид в общем случае имеет нелинейная задача оптимизации?

Тема 2 Линейное программирование

- 1. Как записывается задача линейного программирования в стандартной форме для случая двух независимых переменных?
 - 2. Какими уравнениями определяется допустимая область неизвестных на плоскости?
 - 3. Как строится линия нулевого уровня целевой функции?
 - 4. Как определяется направление возрастания целевой функции от нулевого уровня?
- 5. Как перемещением нулевой линии уровня мы определяем наибольшее и наименьшее значение целевой функции в допустимой области?

Тема 3 Двойственность в линейном программировании

- 1. Какой вид имеет каноническая задача линейного программирования?
- 2. Что такое базисное решение, допустимое базисное решение?
- 3. Какой вид имеет преобразованная задача линейного программирования после исключения базисных переменных?
- 4. Какой критерий оптимальности в преобразованной задаче линейного программирования?
 - 5. Назвать шаги алгоритма симплекс-метода.

Тема 4 Транспортные задачи

- 1. Как записывается двойственная задача к стандартной задаче линейного программирования?
- 2. Какой экономический смысл имеет задача двойственная к стандартной задаче линейного программирования?
 - 3. Сформулировать первую теорему двойственности.
 - 4. Сформулировать вторую теорему двойственности.
- 5. Как по решению исходной задачи симплекс-методом получить решение двойственной задачи?

Тема 5 Целочисленное программирование

- 1. Привести математическую модель транспортной задачи.
- 2. На какие два основных этапа делится процесс нахождения оптимального решения транспортной задачи?

- 3. Объяснить значение этапа поиска начального опорного плана.
- 4. Описать алгоритм северо-западного угла.
- 5. Привести описание алгоритма наименьшего значение.
- 6. Описать алгоритм Фогеля.

Тема 6 Нелинейное программирование

- 1. Записать математическую модель сбалансированной транспортной задачи?
- 2. Что называется базисом транспортной задачи?
- 3. Дать определение базисного решения.
- 4. Что такое смежный базис?
- 5. Дать определение потенциалов строк и столбцов таблицы транспортной задачи.
- 6. По какой формуле рассчитываются относительные оценки небазисных клеток.
- 7. Как определить клетку, включаемую в базис.
- 8. Как определяется клетка, исключаемая из базиса.
- 9. Перечислить основные шаги метода потенциалов для транспортной задачи.

Тема 7 Динамическое программирование

- 1. Что называется сетевым графиком работ?
- 2. Как рассчитываются ранние и поздние сроки наступления событий?
- 3. Что такое критический путь и как он находится?
- 4. Как рассчитываются полные и независимые резервы работ?

Тема 8 Сетевое планирование и управление

- 1. Дать математическое определение понятия сетевой график.
- 2. Каким образом связаны в сетевом графике события и работы.
- 3. Что означает свершение события?
- 4. Какие типичные числовые метки приписываются работам на сетевом графике?
- 5. Сформулировать математическую модель оптимизации сетевого графика по ресурсам.
- 6. Сформулировать математическую модель оптимизации сетевого графика по времени выполнения.

Тема 9 Теория игр

- 1. Перечислите основные этапы метода анализа иерархий.
- 2. Опишите процесс попарного сравнения объекта по какому-либо признаку.
- 3. Опишите шкалу выбора приоритетов.
- 4. Перечислите основные свойства матрицы попарных сравнений.
- 5. Как происходит формирование вектора локальных приоритетов?
- 6. Опишите процесс свертки сводной матрицы локальных приоритетов.
- 7. На основании чего происходит выбор оптимального варианта в методе анализа иерархий?
- 8. Используются ли в методе анализа иерархий основные принципы синтеза сложных систем?
 - 9. Можно ли отнести метод анализа иерархий к методам экспертных оценок?

Шкала оценивания: 3 балльная.

Критерии оценивания:

3 балла (или оценка **«отлично»**) выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

2 балла (или оценка «хорошо») выставляется обучающемуся, если он владеет

содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.

1 балл (или оценка **«удовлетворительно»**) выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов (или оценка «неудовлетворительно») выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1 Вопросы в закрытой форме.
- 1.1 Базисным решением системы m линейных уравнений с n переменными называется решение, в котором.
 - 1) все т неосновных переменных равны нулю
 - 2) все n-m неосновных переменных равны нулю
 - 3) все т неосновных переменных не равны нулю
 - 4) все n-m неосновных переменных не равны нулю
- 1.2 При решении задачи линейного программирования геометрическим методом оптимальным решением может быть.
 - 1) одна точка
 - 2) две точки
 - 3) отрезок
 - 4) интервал
- 1.3 Общая задача линейного программирования может включать в себя.
 - 1) систему ограничений в виде неравенств
 - 2) систему ограничений в виде равенств
 - 3) требования оптимизации нелинейной целевой функции
 - 4) требования оптимизации линейной целевой функции
- 1.4 Критерий оптимальности решения задачи линейного программирования при отыскании максимума линейной функции с выражением линейной функции через неосновные переменные ..., то решение задачи оптимально.
 - 1) отсутствуют отрицательные коэффициенты при неосновных переменных
 - 2) отсутствуют положительные коэффициенты при неосновных переменных
 - 3) отсутствуют положительные коэффициенты при основных переменных
 - 4) присутствуют положительные коэффициенты при основных переменных
- 1.5 Оценочные ограничения строки і разрешающего столбца s для симплекс таблицы задача линейного программирования в следующие правила.
 - 1) Ψ , если $b_i = 0$ и $a_{is} < 0$
 - 2) Ψ , если $b_i = 0$ и $a_{is} > 0$
 - 3) 0, если $b_i = 0$ и $a_{is} > 0$

- 4) 0, если $b_i = 0$ и $a_{is} < 0$
- 1.6 Для взаимно-двойственных задач линейного программирования.
 - 1) в общих задачах ищется максимум или в обоих минимум
 - 2) в одной задаче ищется максимум в другой минимум
 - 3) матрицы коэффициентов при переменных в системах ограничений обеих задач совпадают
 - 4) матрицы коэффициентов при переменных в системах ограничений обеих задач являются транспонированными друг другу
- 1.7 Метод северо-западного угла: «поставщик» «потребитель» так, чтобы:
 - 1) переменной x_{11} дается минимально возможное значение
 - 2) переменной x_{11} дается максимально возможное значение
 - 3) после вычеркивания первого столбца северо-западным элементом будет является элемент \mathbf{x}_{12}
 - 4) после вычеркивания первого столбца северо-западным элементом будет является элемент х11
 - 5) после вычеркивания первого столбца северо-западным элементом будет является элемент \mathbf{x}_{21}
- 1.8 Согласно первой теореме двойственности:
 - 1) если одна задача имеет оптимальное решение, то двойственная задача оптимального решения не имеет
 - 2) если одна задача имеет оптимальное решение, то двойственная задача тоже имеет оптимальное решение
 - 3) если линейная функция одной из задач не ограничена, то условия двойственной задачи противоречивы
 - 4) если линейная функция одной из задач не ограничена, то линейная функция двойственной задачи тоже не ограничена
- 1.9 Распределенный метод решения транспортной задачи
 - 1) поставка, передаваемая по циклу определяется как минимум среди поставок в клетках цикла со знаком \ll +»
 - 2) поставка, передаваемая по циклу определяется как минимум среди поставок в клетках цикла со знаком «-«
 - 3) поставка, передаваемая по циклу не может быть ни меньше, ни больше минимума поставок клеток цикла со знаком «-«
 - 4) поставка, передаваемая по циклу не может быть ни меньше, ни больше минимума поставок клеток цикла со знаком «+»
- 1.10 Задачи конечномерной оптимизации делятся на ...
 - 1) точные
 - 2) приближенные
 - 3) аналитические
 - 4) эвристические

1.1 Пусть решается задача определенного экстремума. Составим функцию Лагранжа: $L(x_1,...,x_n)=f(x_1,...,x_n)+Sl_{i}j_i(x_1,...,x_n)$. Для определения стационарных точек необходимо.

- 1) приравнять к нулю производные L по переменным $x_1,...,x_n$
- 2) приравнять к нулю производные L по переменным $l_1, ..., l_m$
- 3) приравнять к нулю производные L по переменным x_1, \dots, x_n и производные L по переменным l_1, \dots, l_m
- 4) приравнять к нулю производные L по переменным x_1, \dots, x_n и приравнять к нулю функции i_1, \dots, i_m
- 1.12 Математическая постановка задачи оптимального уравнения включает следующие элементы
 - 1) математическое описание объекта управления
 - 2) описание состояния внешней среды
 - 3) предмодельный анализ экономической сущности
 - 4) описание управляющего воздействия

- 5) математическое описание критерия качества управления
- 6) описание изменения (движения) объекта управления
- 1.13 Транспортная задача. Найти объемы перевозок для каждой пары «поставщик» «потребитель» так, чтобы:
 - 1) мощности всех поставщиков были реализованы
 - 2) мощности всех поставщиков были минимальны
 - 3) спросы всех потребителей были минимальны
 - 4) спросы всех потребителей были удовлетворены
 - 5) суммарные затраты на перевозку были минимальны
 - 6) суммарные затраты на перевозку были бы удовлетворены
- 1.14 Методы отсечения:
 - 1) мощности всех поставщиков были реализованы
 - 2) сначала задача решается без условия целочисленности
 - 3) сначала задается в задаче условие целочисленности
 - 4) вводится дополнительное ограничение правильности отсечения
 - 5) дополнительное ограничение правильности отсечения выполняются автоматически
- 1.15 В задаче многокритериальной оптимизации для оценки качества найденных решений используют эталонные точки:
 - 1) идеальная точка
 - 2) утопическая точка
 - 3) оптимальная точка
 - 4) надир
- 1.16 Задачи теории массового обслуживания:
 - 1) определения максимальной длинны очереди
 - 2) определение необходимой скорости обслуживания
 - 3) рациональное построение очереди
 - 4) определение количества приборов обслуживания, которые работают параллельно
- 1.17 Для Марковского процесса в физической системе характерно:
 - 1) для каждого момента времени вероятность любого состояния системы в будущем зависит только от состояния системы в настоящий момент
 - 2) для каждого момента времени вероятность любого состояния системы в будущем зависит от состояния системы в прошлые моменты времени
 - 3) для каждого момента времени вероятность любого состояния системы в будущем не зависит от того, каким образом система пришла в это состояние
 - 4) для каждого момента времени вероятность любого состояния системы в будущем не зависит от того, каким образом система пришла в это состояние
- 1.18 Общая задача целочисленного программирования: Найти такое решение $X=(x_1,...,x_n)$, при котором линейная функция $Z=Sc_jx_j$ принимает минимальное или максимальное значение при ограничениях:
 - 1) Z=Sc_ix_i, c_i и x_i целые
 - 2) $Z=Sa_{ij}x_{i}=b_{i}$, a_{ij} , x_{i} и b_{i} целые
 - 3) Z=Sa_{ii}x_i=b_i, a_{ii} и b_i целые
 - 4) x_i ³ 0, x_i целые
- 1.19 Особенности модели динамического моделирования:
 - 1) задача оптимизации интерпретируется как многошаговый процесс управления
 - 2) целевая функция равна сумме целевых функций каждого шага
 - 3) количество управляющих переменных может быть бесконечно
 - 4) количество управляющих переменных конечно
- 1.20 Если число ресурсов, которые распределяются по работам равно числу работ и один ресурс назначаются только на одну работу, то задача линейного программирования, к которой сводится задача имеет основные ограничения...
 - 1) Все ограничения равенства

- 2) Все ограничения неравенства вида ≤
- 3) Все ограничения неравенства вида ≥
- 4) Ограничения могут быть как равенства, так и неравенства

1.21 Задача о назначениях с минимизацией критерия имеет матрицу затрат вида:

	D	E	F
A	6	3	4
B C	2	8	5
C	1	7	9

Ее решение будет:

- 1) A-E, B-F, C-D
- 2) A-D, B-F, C-E
- 3) A-F, B-D, C-E
- 4) A-F, B-E, C-D

1.22 Суммарные затраты для предыдущей задачи равны...

Выберите один ответ.

- 1) 7
- 2) 6
- 3) 9
- 4) 0

1.23 Какие компьютерные программы предназначены для помощи ЛПР в решении многокритериальных задач о назначении?

- 1) Системы управления базами данных
- 2) Интеллектуальные информационные системы
- 3) Коммуникационные системы
- 4) Системы программирования

1.24 В выборах участвуют 3 кандидата: А, В и С. Предпочтения 30 избирателей распределились следующим образом:

Предпочтения Число голосов Предпочтение Число голосов

$A \rightarrow B \rightarrow C$	6	$B \rightarrow C \rightarrow A$	4
$A \rightarrow C \rightarrow B$	5	$C \rightarrow A \rightarrow B$	4
$B \rightarrow A \rightarrow C$	6	$C \rightarrow B \rightarrow A$	5

Кто победил по методу голосования Кондорсе?

- 1) Победил А
- 2) Победил В
- 3) Победил С
- 4) Однозначно выявить победителя нельзя

1.25 Исходные данные о выборах приведены в задании 1. Кто победил по методу голосования Борда?

- 1) Победил А
- 2) Победил В
- 3) Победил С
- 4) Однозначно выявить победителя нельзя

1.26 Исходные данные о выборах приведены в задании 1. Кто победил по методу большинства первых мест в одном туре?

- 1) Победил А
- 2) Победил В
- 3) Победил С
- 4) Однозначно выявить победителя нельзя

1.27 Как называется принцип голосования «коллективный выбор в системе голосования должен повторять в точности единогласное мнение всех голосующих»?

- 1) Аксиома универсальности
- 2) Аксиома единогласия
- 3) Аксиома полноты
- 4) Аксиома транзитивности

1.28 Из двух кандидатов каждый избиратель выбирает лучшего. Побеждает тот, который будет большее число раз выбран лучшим. Какая аксиома Эрроу не может быть проверена в данной системе голосования?

- 1) Аксиома универсальности
- 2) Аксиома единогласия
- 3) Аксиома полноты
- 4) Аксиома транзитивности

1.29 Несколько конкурентов, выпускающих аналогичный товар, пытаются договориться о объемах выпускаемого товара. Каждый производитель хочет увеличить свой объем выпуска за счет уменьшения выпуска у конкурентов. Какую математическую модель принятия решений целесообразно здесь использовать.

- 1) Организацию работы ГПР с помощью посредника
- 2) Теорию игр
- 3) Принятие решений в условиях определенности
- 4) Метод голосования

1.30 Какой этап организации работы ГПР нужно выполнить в первую очередь?

- 1) Сбор информации
- 2) Разработка шкал оценки по критериям
- 3) Определение списка критериев
- 4) Анализ информации
- 1.31 Оптимизация это...
- а) Получение оптимальных результатов в определенных пределов;
- б) Целенаправленная деятельность, заключающаяся в получении наилучших результатов при соответствующих условиях;
- в) Ответы а и б правильные;
- г) Правильного ответа нет.
- 1.32. На основании выбранного критерия оптимальности составляют...
- а) Оптимальную функцию;
- б) Функцию критерия оптимальности;
- в) Целевую функцию;
- г) Правильного ответа нет.
- 1.33. В САПР основными методами оптимизации являются -...
- а) Программные методы.
- б) Векторные методы.
- в) Поисковые методы.
- г) Правильного ответа нет.
- 1.34. Необходимость оптимизации в проектировании уже появляется на этапе...
- а) Эскизного проектировании;
- б) Структурного синтеза;

- в) Инженерного моделирования; г) Ответы а и в – правильные. 1.35. Для решения задачи оптимизации первым необходимо сделать... а) Выбрать критерий оптимальности; б) Составить математическую модель; в) Выбрать метод оптимизации; г) Правильного ответа нет. 1.36. При записи математических задач оптимизации в общем виде обычно используют символы? a) f(x), U; б) l(x), U; B) j(x), U; г) Правильного ответа нет. 1.37. Область, в пределах которой выполняются все условия реализуемости называется ... а) Областью САПР; б) Областью Парето: в) Областью работоспособности; г) Все ответы правильные. 1.38. Первый этап построения математической модели - ... а) Формализация: б) Исследование объекта; в) Исследование рынка; г) Правильного ответа нет. 1.39. В задачах оптимизации различают критерии оптимизации... а) Простые; б) Сложные: в) Ответы а и б – правильные; г) Правильного ответа нет. 1.40. Анализ полученного решения бывает ... а) Формальным; б) Содержательным; в) Примитивным; г) Ответы а и б – правильные.
 - 1.41. В математическом программировании отделяют виды решения?
 - а) Программное;
 - б) Допустимое;
 - в) Собственное;
 - г) Ответы б и в правильные.
 - 1.42. Синтез проектных решений это ...
 - а) Сущность проектирования;
 - б) Необходимая составная часть проектирования;
 - в) Основа проектирования;
 - г) Правильного ответа нет.

- 1.43. Анализ это... а) Сущность проектирования; б) Необходимая составная часть проектирования; в) Основа проектирования; г) Правильного ответа нет. 1.44. Синтез подразделяется на: а) Анализирующий; б) Параметрический; в) Структурный; г) Ответы б и в – правильные. 1.45. В САПР процедуры процедуры параметрического синтеза выполняются в: а) Интерактивном режиме; б) Автоматический режиме; в) Ручном режиме; г) Ответы а и б – правильные. 1.46. Каким этапом в общем процессе проектирования имеет место инженерное моделирование? a) 1; б) 2; в) 3; г) Правильного ответа нет. 1.47. Множество точек пространства выходных параметров, из которых невозможно перемещения, приводит к улучшению всех выходных параметров называют ... а) Областью САПР; б) Областью работоспособности; в) Областью Парето; г) Другое. 1.48. Сепарабельное программирования... а) Представляет собой Сепарабельное функцию; б) Представляет собой нелинейную функцию; в) Представляет собой сумму функций; г) Правильного ответа нет. 1.49. Задача оптимизации сводится к нахождению? а) Рост целевой функции; б) Экстремума целевой функции; в) Спада целевой функции; г) Правильного ответа нет.
 - 1.50. Любой критерий оптимальности имеет...
 - а) Экономическую природу;
 - б) Природу управления параметров;
 - в) Торговую природу;
 - г) Правильного ответа нет.
 - 1.51. Каково назначение редактора P-CAD Symbol Editor?
 - а) создание схемы Э3;
 - б) создание схемы Э2;

- в) создание УГО элементов схемы ЭЗ;
- г) автотрасировщик.
- 1.52. С помощью которого редактора возможно создание посадочных мест элементов на печатную плату?
- a) P-CAD Symbol Editor;
- б) P-CAD Pattern Editor;
- B) P-CAD Schematic;
- г) P-CAD PCB.
- 1.53. С помощью какой команды, в программе P-CAD Schematic, возможно генерирования списка электрических связей схемы для их дальнейшей обработки в P-CAD PCB?
- a) ERC;
- б) Generate Netlist;
- в) Load Netlist;
- г) Правильного ответа нет.
- 1.54. Создание схем ЭЗ возможно с помощью программы?
- a) P-CAD Symbol Editor;
- б) P-CAD Pattern Editor;
- B) P-CAD Schematic;
- г) P-CAD PCB.
- 1.55. В каком слое вводится контур ПП?
- a) Top;
- б) Bottom;
- в) Board;
- г) Top Silk.
- 1.56. В чем заключается суть ручного проведения трасс?
- а) Прокладка трасс проводиться полностью ручным способом в строгом соответствии с замыслом разработчика;
- б) Разработчик только указывает направление фрагмента трассы, а система формирует ее сама с учетом принятых правил трассировки;
- в) Ответы а и б правильные;
- г) Правильного ответа нет.
- 1.57. При котором алгоритме построения трасс ПП каждое соединение проводится по кратчайшему пути, обходя препятствия,которые встречаются?
- а) Ортогональный;
- б) Волновой;
- в) Эврестический;
- г) Правильного ответа нет.
- 1.58. Который с автотрассировщиков основан на безсеточной технологии и реализует принципы оптимизации нейронных сетей?
- a) Ouick-Route:
- б) Shape—Based Router;
- в) Ответы а и б правильные;
- г) Правильного ответа нет.
- 1.59. В чем заключается суть интерактивного проведения трасс?

- а) Прокладка трасс проводиться полностью ручным способом в строгом соответствии с замыслом разработчика;
- б) Разработчик только указывает направление фрагмента трассы, а система формирует ее сама с учетом принятых правил трассировки;
- в) Ответы а и б правильные;
- г) Правильного ответа нет.
- 1.60. Имеет ли возможность Р-САD проверять схемы Э3 на работоспособность?
- а) Да:
- б) Нет:
- в) Да, но с помощью специальных утилит.

Модель – это аналог (образ) оригинала, но построенный средствами и методами отличными от оригинала

+подобие оригинала

копия оригинала

Экономико-математическая модель — это математическое представление экономической системы (объектов, задачи, явлений, процессов и т. п.)

+ качественный анализ и интуитивное представление объектов, задач, явлений, процессов экономической системы и ее параметров

эвристические описание экономической системы (объектов, задачи, явлений, процессов и т. п.)

Метод – это
подходы, пути и способы постановки и решения той или иной задачи в различных областях
человеческой деятельности +
описание особенностей задачи (проблемы) и условий ее решения
требования к условиям решения той или иной задачи
Выберите неверное утверждение
ЭММ позволяют сделать вывод о поведении объекта в будущем
ЭММ позволяют управлять объектом +
ЭММ позволяют выявить оптимальный способ действия
ЭММ позволяют выявить и формально описать связи между переменными, которые
характеризуют исследования
Экономико-математическая модель межотраслевого баланса – это
макроэкономическая, детерминированная, имитационная, матричная модель
микроэкономическая, детерминированная, балансовая, регрессионная модель
макроэкономическая, детерминированная, балансовая, матричная + модель
макроэкономическая, вероятностная, имитационная, матричная модель
Найти экстремум функции $f(x)$ при выполнении ограничений $Ri(x) = ai$, $\phi(x) \le bj$, наложенных на
параметры функции – это задача
условной оптимизации +
линейного программирования
безусловной оптимизации
нелинейного программирования
динамического программирования
Запана винонающая неперую функцию б и функции Ф вуоляние в огранинения является

Задача, включающая целевую функцию f и функции Ф, входящие в ограничения, является задачей линейного программирования, все Φ И f являются линейными функциями относительно своих аргументов все Ф являются линейными функциями относительно своих аргументов, а функция f – нелинейна функция f является линейной относительно своих аргументов, а функции Ф – нелинейны только часть функций Ф и функция f являются линейными относительно своих аргументов

Множество всех допустимых решений системы задачи линейного программирования является выпуклым вогнутым одновременно выпуклым и вогнутым Если задача линейного программирования имеет оптимальное решение, то целевая функция достигает нужного экстремального значения В одной ИЗ вершин многоугольника (многогранника) допустимых решений +(многогранника) внутренних точек многоугольника допустимых решений точек многоугольника (многогранника) допустимых решений В задачах линейного программирования решаемых симплекс-методом искомые переменные должны + Неотрицательными положительными свободными ограничений ОТ любыми Симплексный метод решения задач линейного программирования включает определение одного из допустимых базисных решений поставленной задачи (опорного плана) определение правила перехода не худшему решению К проверку оптимальности найденного решения определение одного из допустимых базисных решений поставленной задачи (опорного плана), определение правила перехода к не худшему решению, проверка оптимальности найденного решения + Графический решения линейного способ задачи программирования построение прямых, уравнения которых получаются в результате замены в ограничениях знаков неравенств на знаки точных равенств нахождение полуплоскости, определяемой каждым ограничений задачи ИЗ многоугольника нахождение допустимых решений построение прямой F = h = const >= 0, проходящей через многоугольник решений построение вектора C, перпендикулярного прямой передвижение прямой F = h = const в направлении вектора C (в сторону увеличения h), в результате чего находят либо точку (точки), в которой целевая функция принимает максимальное значение, либо устанавливают неограниченность сверху функции на множестве допустимых определение координат точки максимума функции и вычисление значения целевой функции в этой все перечисленные ответы в этом задании + Задача линейного программирования не имеет конечного оптимума, если в точке А области допустимых значений достигается максимум целевой функции F в точке А области допустимых значений достигается минимум целевой функции F ограничений несовместна система задачи целевая функция не ограничена сверху на множестве допустимых решений + При приведении задачи линейного программирования (ЛП) к виду основной задачи ЛП ограничения вида «< или =» преобразуются в ограничения равенства добавлением к его левой части дополнительной неотрицательной переменной. Вводимые дополнительные неизвестные имеют вполне определенный смысл. Так, если в ограничениях исходной задачи ЛП отражается расход и наличие производственных ресурсов, то числовое значение дополнительной переменной решении задачи, записанной В виле основной имеет смысл двойственной оценки pecypca остатка pecypca нехватки pecypca

стоимости ресурса

Если ресурс ресурс	образует «узкое	место	производства»,	то это	означает избыточен
ресурс	использова ка ресурса равна нулн		полност	гью	+
Критерием остан	овки вычислений в	алгоритме п		-	
одномерной отношение ллины	оптимиза текущего интервала		является п ости к ллине п		условие о интервала
меньше	заданной	•	величи	-	3
значение целевой	і функции (ЦФ), вы	ычисленное в	•		ачения ЦФ,
вычисленного	В		последующей		точке
отношение длины больше	текущего интервала заданной	_	юсти к длине п величиі	_	о интервала ε
	заданной исленное в текущей т				
точке +			,		F C C
Если целевая фун	икция и все ограниче	ения выражаю	отся с помощью	линейных ур	авнений, то
рассматриваемая	зада	ача	является		задачей
динамического		W 0 D 0 1 0 1	v n op ovvva	програ	ммирования
линейного целочисленного		программи	ірования	програ	+ ммирования
нелинейного прогр	раммирования			програ	ммирования
	инейного программи	рования, в к	оторой целевая	функция исс.	педуется на
максимум и си	стема ограничений	задачи явля	иется системой	уравнений,	называется
стандартной					
канонической					+
общей основной					
нормальной					
-	инейного программи	рования, в к	оторой целевая	функция исс.	педуется на
•	стема ограничений	задачи явля	ется системой	неравенств,	называется
стандартной					
канонической общей					+
основной					Т
нормальной					
•	имизационных модел	ях, решаемых	с помощью ге	ометрических	построений
число	переменных		должно	_	быть
не	больше		двух		+
равно					двум
не не	больше	меньше числа	OFBAT	ичений	двух +2
сколько угодно	ООЛЬШС	числа	or par	ичспии	1 2
Задача линейно	ого программирова	ния может	достигать м	иаксимального	значения
только	В		одной		точке
В		двух			точках
ВО	множестве		точек		+
В	одной	или	дву	X	точках
в одной или во мно Если в прямой зал	ожестве точек аче, какое либо огран	ичение являет	ся неравенством	то в лвойстве	енной залаче
соответствующая	, in the simoo of pur	IOIIIIO ADJIAOI	- Hepabelle I BOM	, то в двонотво	LILLOIL JUHU IV
Неотрицательна					переменная
положительна свободна					переменная

отрицательная						Па отполня по
Транспортная	задача	является	Зад	цачей .	•••	Программирования
динамического						
нелинейного						
линейного						+
целочисленного						
параметрического			_			
Если в транспортной	і задаче объем	и спроса рав	вен объем	у предложени	ія, то такая	г задача называется
замкнутой						
закрытой						+
сбалансированной						
открытой						
незамкнутой						
Если в транспортно	й задаче объ	вем запасов	превыш	ает объем по	требносте	й, в рассмотрение
ВВОДЯТ						
фиктивный		Π	тункт			производства
фиктивный	1	пункт		потреб	ления	+
изменения структурн	ы не требуются	Я				
Методы теорг	ии игр	пред	дназначен	ны для	per	шения задач
с конфликтны	ми ситу	ациями	В	условиях	неопре	деленности +
С	олностью		детерми	инированным	И	условиями
статистического мод	елирования					
Стратегия игрока	– это совок	упность пр	равил, от	пределяющих	выбор с	его действий при
каждом ходе в	зависимости	от сложи	ившейся	ситуации п	в одном	сеансе игры +
одном			ходе			игры
всех сеансах игры						
Нижняя	цена		игры	I	_	ЭТО
максимин, т.е. ман	ссимальный	выигрыш	по всем	стратегиям	одного 1	из игроков среди
минимальных	значений	выигрыш	тей	каждой	его	стратегии +
гарантированный в	ыигрыш оді	ного из и	гроков	при любой	стратегии	другого игрока
минимакс, т.е. ми	нимальный і	проигрыш	по всем	стратегиям	одного	из игроков среди
максимальных значе	ний проигры	шей каждой	его страт	егии		
Верхняя	цена		игрь	J	_	ЭТО
минимакс, т.е. ми	нимальный і	проигрыш	по всем	стратегиям	одного п	из игроков среди
максимальных	значений	проигры		каждой	его	стратегии +
гарантированный п	роигрыш од	и си олону	игроков	при любой	стратегии	и другого игрока
максимин, т.е. ман			_	_	_	
минимальных	значений		оышей	каждой	его	
Решение игры в чист	гых стратегия	-				•
-	ры,	равной		нижней	цеі	не игры
	ры,	равной		верхней	цеі	-
наличием		1	седловой	-		точки
всем перечисленным	в ответах на	это задание				
	ры в		ешанных	стра	тегиях	определяется
вероятностью выбор	ı			-		-
представляет случа						
·	ры,	равной		нижней	цеі	-
	ры,	равной		верхней	цеі	•
наличием седловой т	-	r		· F		P21
Задача, процесс нах		цения котог	рой являє	теолонм кэтэ	апным. от	носится к залачам
линейного	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					программирования
теории						игр
P						p

динамического нелинейного параметрического программирования

1.61 Вероятностным решениям ...

- 1) соответствует условие неопределенности
- 2) соответствует условие риска
- 3) соответствуют условия риска и неопределенности
- 4) соответствует условие определенности

1.62. Дерево решений – это ...

- 1) философское видение процесса управления
- 2) суть процесса принятия решений
- 3) графическое представление процесса принятия решений

1.63. Для более эффективной реализации управленческого решения ...

- 1) необходимо сформулировать имеющиеся ограничения
- 2) необходима оперативная система управления
- 3) необходима система контроля

1.64. К группе методов исследования операций относится ...

- 1) метод теории игр
- 2) метод Дельфи
- 3) метод линейного программирования
- 4) метод разработки сценария
- 5) метод управления запасами

1.65. Критерий – это ...

- 1) способ выражения различий в оценке альтернативных вариантов с точки зрения участников процесса выбора
- 2) вероятностный показатель оценки альтернатив
- 3) один из возможных способов достижения цели или один из конечных вариантов решений

1.66. Критерий Вальда – это критерий ...

- 1) недостаточного основания
- 2) пессимизма-оптимизма
- 3) наименьших возможных потерь
- 4) средневзвешенного выигрыша
- 5) максимального гарантированного результата

1.67. Критерий Гурвица – это критерий ...

- 1) пессимизма-оптимизма
- 2) наименьших возможных потерь
- 3) максимального гарантированного результата
- 4) средневзвешенного выигрыша
- 5) недостаточного основания

1.68. Критерий Сэвиджа – это критерий ...

- 1) пессимизма-оптимизма
- 2) наименьших возможных потерь
- 3) средневзвешенного выигрыша
- 4) недостаточного основания

- 5) максимального гарантированного результата
- 1.69. ЛПР (лицо, принимающее решения) это ...
 - 1) человек, который лично работает в рассматриваемой области деятельности, является признанным специалистом по решаемой проблеме, может и имеет возможность высказать суждения по ней
 - 2) группа людей, имеющая общие интересы и старающаяся оказать влияние на процесс выбора и его результат
 - 3) субъект, который всерьез намерен устранить стоящую перед ним проблему, выделить на ее разрешение и реально задействовать имеющиеся у него активные ресурсы, суверенно воспользоваться положительными результатами от решения проблемы или взять на себя всю ответственность за неуспех, неудачу, за напрасные расходы +
- 1.70. Максиминные и минимаксные критерии относятся к принятию решений в условиях ...
 - 1) риска
 - 2) неопределенности
 - 3) определенности
- 1.71. Метод «Дельфи» относится к ... методам
 - 1) количественным
 - 2) формализованным
 - 3) эвристическим
- 1.72. Метод анализа иерархий предполагает ...
 - 1) разработку оптимальной структуры управления
 - 2) декомпозицию проблемы на простые составляющие части
 - 3) иерархическое представление задачи
- 1.73. Метод букета проблем относится к ... методам
 - 1) формализованным
 - 2) эвристическим
 - 3) количественным
- 1.74. Метод математического программирования ...
 - 1) не применяется для проведения расчетов управленческих решений
 - 2) применяется для подсчета вариантов принятия управленческих решений
 - 3) применяется для расчета лучшего варианта решения по критерию оптимальности принятия управленческих решений
- 1.75. Метод мозгового штурма относится к ... методам
 - 1) формализованным
 - 2) количественным
 - 3) эвристическим
- 1.76. Метод равномерной оптимизации применяется, если ...
 - 1) глобальное качество альтернативы представляет собой сумму локальных (частных) качеств
 - 2) необходимо провести анализ критериев
 - 3) отсутствуют исходные данные
 - 4) необходимо провести детализированный анализ проблемы
- 1.77. Метод синектики относится к ... методам

- 1) формализованным
- 2) количественным
- 3) эвристическим
- 1.78. Метод справедливого компромисса применяется, потому что ...
 - 1) необходимо провести анализ критериев
 - 2) имеется тесная связь с решением в некооперативных играх +
 - 3) глобальное качество альтернативы представляет собой сумму локальных (частных) качеств
 - 4) необходимо провести детализированный анализ проблемы
- 1.79. Метод фокальных объектов относится к ... методам
 - 1) формализованным
 - 2) количественным
 - 3) эвристическим
- 1.80. Методы психологической активизации и методы подключения новых интеллектуальных источников относятся ...
 - 1) к эвристическим методам
 - 2) к методам сценариев
 - 3) к активизирующим методам
- 1.81. Модель принятия решений Врума Йеттона ...
 - 1) помогает руководителю найти возможные альтернативы решения возникшей проблемы
 - 2) позволяет выбрать метод разработки решения
 - 3) дает возможность определить роль подчиненных в процессе принятия решения
 - 4) помогает руководителю обосновать принятое решение
- 1.82. На какие группы разделяются методы оптимизации в зависимости от существования или отсутствия ограничений?
- А. Полной и безусловной оптимизации.
- В. Полной и неполной оптимизации.
- С. условного и безусловной оптимизации.
- D. условного и частичной оптимизации.
- 1.83. Как называют методы оптимизации первого порядка?
- А. Методами прямого поиска.
- В. градиентных методов.
- С. Методами условного поиска.
- D. Методами быстрого спуска.
- 1.84. Как называется проектировочная процедура, суть которой заключается в разработке [или выборе] структуры объекта?
- А. Структурным синтезом.
- В. Задачей принятия решений.
- С. параметрического синтеза.
- D. объектной синтезом.
- 1.85. Какой принцип лежит в основе методов исключения интервалов?
- А. Постепенное сужение области допустимых значений целевой функции.
- В. Последовательное уменьшение интервала поиска.
- С. Последовательное превращение интервалов неопределенности в зону поиска оптимума

целевой функции.

- Последовательное увеличение интервала поиска.
- 1.86. Какие из ниже перечисленных методов относятся к методам одномерной оптимизации?
- А. Методы Розенброка, Хука-Дживса, Нелдера-Мида, случайного поиска.
- В. Методы быстрого спуска, сопряженных градиентов, переменной метрики.
- С. Методы быстрого спуска, Розенброка, Хука-Дживса, метод золотого сечения.
- D. Метод дихотомического деления, метод золотого сечения, метод чисел Фибоначчи, метод полиномиальной аппроксимации. +
- 1.87. Заданные условия работоспособности на выходные параметры и необходимо найти номинальные значения проектных параметров, к которым относятся все или доли элементов объекта, проектирующих. Это приведены формулировки. . .
- А. базовой задачи структурного синтеза.
- В. задачи прийняттякаркаснийишень. [Каркасный]
- С. базовой задачи оптимизации. +
- D. задачи принятия пт минимального решения.
- 1.88. Что называют параметрическим синтезом?
- А. Задачу оптимизации на базе многовариантного анализа.
- В. проектировочные процедуру, суть которой заключается в разработке [или выборе] структуры объекта.
- С. Задачу оптимизации на базе двовариантного анализа.
- D. проектировочные процедуру, суть которой заключается в расчете [или выборе] значений параметров элементов объекта. +
- 1.89. Что такое градиент функции многих переменных?
- А. Матрица перестановок.
- В. Матрица Якоби
- С. Матрица множества альтернатив.
- D. Матрица Гессе. +
- 1.90. В зависимости от количества управляемых параметров методы оптимизации делятся на методы ...
- А. одномерной и многомерной оптимизации. +
- В. двумерной и многомерной оптимизации.
- С. одномерной и n + к-мерной оптимизации.
- D. одномерной, двумерной и трехмерной.
- 1.91. Какое из перечисленных определений касается понятия «параметрический синтез»?
- А. Определение цели, множества возможных решений и ограничительных условий.
- В. Проектировочная процедура, суть которой заключается в разработке или выборе структуры объекта
- С. Расчет или выбор значений внутренних параметров элементов объекта.
- D. Расчет или выбор значений внешних атрибутов объекта.

1.92 Вероятностным решениям ...

- 1) соответствует условие неопределенности
- 2) соответствует условие риска
- 3) соответствуют условия риска и неопределенности
- 4) соответствует условие определенности

1.93 Дерево решений – это ...

- 1) философское видение процесса управления
- 2) суть процесса принятия решений
- 3) графическое представление процесса принятия решений

1.94Для более эффективной реализации управленческого решения ...

- 1) необходимо сформулировать имеющиеся ограничения
- 2) необходима оперативная система управления
- 3) необходима система контроля

1.95 К группе методов исследования операций относится ...

- 1) метод теории игр
- 2) метод Дельфи
- 3) метод линейного программирования
- 4) метод разработки сценария
- 5) метод управления запасами

1.96 Критерий – это ...

- 1) способ выражения различий в оценке альтернативных вариантов с точки зрения участников процесса выбора
- 2) вероятностный показатель оценки альтернатив
- 3) один из возможных способов достижения цели или один из конечных вариантов решений

1.97 Критерий Вальда – это критерий ...

- 1) недостаточного основания
- 2) пессимизма-оптимизма
- 3) наименьших возможных потерь
- 4) средневзвешенного выигрыша
- 5) максимального гарантированного результата

1.98 Критерий Гурвица – это критерий ...

- 1) пессимизма-оптимизма
- 2) наименьших возможных потерь
- 3) максимального гарантированного результата
- 4) средневзвешенного выигрыша
- 5) недостаточного основания

1.99 Критерий Сэвиджа – это критерий ...

- 1) пессимизма-оптимизма
- 2) наименьших возможных потерь
- 3) средневзвешенного выигрыша
- 4) недостаточного основания
- 5) максимального гарантированного результата

1.100 ЛПР (лицо, принимающее решения) – это ...

- 1) человек, который лично работает в рассматриваемой области деятельности, является признанным специалистом по решаемой проблеме, может и имеет возможность высказать суждения по ней
- 2) группа людей, имеющая общие интересы и старающаяся оказать влияние на процесс выбора и его результат
- 3) субъект, который всерьез намерен устранить стоящую перед ним проблему, выделить на ее разрешение и реально задействовать имеющиеся у него активные ресурсы, суверенно воспользоваться положительными результатами от решения проблемы или взять на себя всю ответственность за неуспех, неудачу, за напрасные расходы

1.101 Максиминные и минимаксные критерии относятся к принятию решений в условиях

...

- 1) риска
- 2) неопределенности

3) определенности

1.102 Метод «Дельфи» относится к ... методам

- 1) количественным
- 2) формализованным
- 3) эвристическим

1.103 Метод анализа иерархий предполагает ...

- 1) разработку оптимальной структуры управления
- 2) декомпозицию проблемы на простые составляющие части
- 3) иерархическое представление задачи

1.104 Метод букета проблем относится к ... методам

- 1) формализованным
- 2) эвристическим
- 3) количественным

1.105 Метод математического программирования ...

- 1) не применяется для проведения расчетов управленческих решений
- 2) применяется для подсчета вариантов принятия управленческих решений
- 3) применяется для расчета лучшего варианта решения по критерию оптимальности принятия управленческих решений

1.106 Метод мозгового штурма относится к ... методам

- 1) формализованным
- 2) количественным
- 3) эвристическим

1.107 Метод равномерной оптимизации применяется, если ...

- 1) глобальное качество альтернативы представляет собой сумму локальных (частных) качеств
- 2) необходимо провести анализ критериев
- 3) отсутствуют исходные данные
- 4) необходимо провести детализированный анализ проблемы

1.108 Метод синектики относится к ... методам

- 1) формализованным
- 2) количественным
- 3) эвристическим

1.109 Метод справедливого компромисса применяется, потому что ...

- 1) необходимо провести анализ критериев
- 2) имеется тесная связь с решением в некооперативных играх
- 3) глобальное качество альтернативы представляет собой сумму локальных (частных) качеств
- 4) необходимо провести детализированный анализ проблемы

1.110 Метод фокальных объектов относится к ... методам

- 1) формализованным
- 2) количественным
- 3) эвристическим

1.112 Методы психологической активизации и методы подключения новых интеллектуальных источников относятся ...

- 1) к эвристическим методам
- 2) к методам сценариев
- 3) к активизирующим методам

1.113 Модель принятия решений Врума – Йеттона ...

- 1) помогает руководителю найти возможные альтернативы решения возникшей проблемы
- 2) позволяет выбрать метод разработки решения
- 3) дает возможность определить роль подчиненных в процессе принятия решения

- 4) помогает руководителю обосновать принятое решение
 - 2 Вопросы в открытой форме.
- 2.1 Как выглядит целевая функция модели линейного программирования в общем виде?
- 2.2 Область допустимых значений задачи линейного программирования это
- 2.3 При расчете симплексных отношений учитываются только _____ коэффициенты в столбце переменной, входящей в базис.
- 2.4 Матрица эффективности задачи о назначениях при максимизации критерия имеет вид
 - 3 Вопросы на установление последовательности.
- 3.1 Составьте алгоритм основного метода решения задач линейного программирования симплекс метода.
 - а. Шаг (). Использование эквивалентных преобразований Жордана-Гаусса для нахождения нового допустимого базисного решения. Переход к шагу 3.
 - б. Шаг (). Избавление от отрицательных правых частей ограничений (если таковые имеются). Приведение задачи линейного программирования к стандартной форме.
 - в. Шаг (). Выделение базисного допустимого решения (если возможно) из стандартной формы.
 - г. Шаг (). Определение, является ли полученное решение оптимальным. Если да, то процесс решения окончен, если нет, то переходят к шагу 4.
 - д. Шаг (). Определение переменной, которая войдет в базис, и переменной, которая выйдет из базиса таким образом, чтобы новое допустимое базисное решение было лучше предыдущего (по значению целевой функции).
 - 4 Вопросы на установление соответствия.

4.1 Установите соответствие

Α	Целевая	1	Линия на графике, описывающая поведение целевой
	функция		функции
Б	Изоцель	2	Функция, которая должна быть максимизирована или
			минимизирована
В	Оптимальная	3	Множество точек, удовлетворяющих всем ограничениям
	точка		задачи и ограничениям на знак переменных
Γ	Область	4	Любая точка, которая не входит в область допустимых
	допустимых		значений задачи линейного программирования
	значений		

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 баллов (установлено положением П 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма

баллов переводится в оценку по 5-балльной шкале следующим образом.

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено – 2 балла, не выполнено – 0 баллов.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № 1

Поста		Потре	бители		Предлож	Дана сбалансированная
вщик	1	2	3	4	ение	транспортная задача. Найти для нее
И						начальный опорный план следующими
1	10	6	15	21	10	методами: северо-западного угла,
2	6	8	9	20	22	минимального тарифа и Фогеля и выбрать
3	4	8	16	18	12	наилучший по критерию минимальной
Спрос	5	12	12	15		стоимости.

Компетентностно-ориентированная задача № 2

	1107/11/01		σ_I		podannan sac	,		
Поста		Потре	бители		Предлож	Дана сбалансированная транспортная		
вщик	1	2	3	4	ение	задача. Найти для нее начальный опорный		
И						план следующими методами: северо-		
1	10	7	12	21	10	западного угла, минимального тарифа и		
2	8	8	9	20	22	Фогеля и выбрать наилучший по критерию		
3	4	9	16	18	12	минимальной стоимости.		
Спрос	5	12	12	15				

Компетентностно-ориентированная задача № 3

Поста		Потреб	бители		Предлож	Дана сбалансированная
вщик	1	2	3	4	ение	транспортная задача. Найти для нее
И						начальный опорный план следующими
1	10	6	15	21	10	методами: северо-западного угла,
2	6	8	9	20	22	минимального тарифа и Фогеля и выбрать
3	4	8	16	18	12	наилучший по критерию минимальной
Спрос	5	12	12	15		стоимости.

Компетентностно-ориентированная задача №4

Поста	I	Іотреб	ителі	И	Предло	Дана сбалансированная транспортная задача.
вщик	1	2	3	4	жение	Найти для нее начальный опорный план
И						следующими методами: северо-западного угла,
1	10	6	15	21	10	минимального тарифа и Фогеля и выбрать
2	6	10	6	20	22	наилучший по критерию минимальной стоимости.
3	4	8	12	18	12	

Спрос	5	12	12	15	
Chpoc	J	14	14	13	

Компетентностно-ориентированная задача №5

Поста	Потребители				Предлож	Дана сбалансированная транспортная		
вщик	1	2	3	4	ение	задача. Найти для нее начальный опорный		
И						план следующими методами: северо-		
1	10	7	12	21	10	западного угла, минимального тарифа и		
2	8	8	9	20	22	Фогеля и выбрать наилучший по критерию		
3	4	9	16	18	12	минимальной стоимости.		
Спрос	5	12	12	15				

Компетентностно-ориентированная задача №6

Пусть даны параметры работы склада; 3 - цена единицы товара, 100 - интенсивность спроса товара в единицах в год, 12 - организационные издержки за одну партию товара, 2 - издержки на хранение одной единицы товара в год. Построить математическую модель минимизации складских издержек.

Компетентностно-ориентированная задача №7

Из труб длиной 35 м требуется нарезать трубы длиной 8, 12 и 15 м в количестве 120, 60 и 30 соответственно. Определить план раскроя с минимальными отходами, изрезав не более 80.

Компетентностно-ориентированная задача №8

Емкость кузова автомобиля равна грузового отсека самолета равна 10 м3. К транспортировке планируется 3 типа неделимых предметов с объемами 0.8, 0.5, 0.2 м3, стоимости которых составляют соответственно 12000, 5000,2000 руб. Построить математическую модель оптимальной загрузки отсека грузового самолета.

Компетентностно-ориентированная задача №9

Решите задачу линейного программирования графическим методом

$$\begin{cases} x_1 + 3x_2 \le 3 \\ 7x_1 + 5x_2 \le 35 \\ 2x_1 + 4x_2 \le -8 \\ -4x_1 + 6x_2 \le 24 \end{cases}$$

$$\max Z = x_1 + 2x_2$$

Компетентностно-ориентированная задача №10

Решите задачу линейного программирования графическим методом

$$\begin{cases} \frac{1}{2}x_1 + 3x_2 \ge \frac{3}{2} \\ -\frac{1}{2}x_1 + 3x_2 \ge -\frac{3}{2} \\ 3x_1 + 10x_2 \le 30 \\ -3x_1 + 9x_2 \le 27 \end{cases}$$

$$\min Z = 3x_1 + x_2$$

Компетентностно-ориентированная задача №11

Решите задачу линейного программирования графическим методом

$$\begin{cases} \frac{1}{2}x_1 + 2x_2 \ge 1\\ 6x_1 + 10x_2 \le 60\\ -2x_1 + x_2 \ge -2\\ -3x_1 + 5x_2 \le 15 \end{cases}$$

$$\max Z = 3x_1 + x_2$$

Компетентностно-ориентированная задача №12

Решите задачу линейного программирования графическим методом

$$\begin{cases} 2x_1 + x_2 \ge 6 \\ 9x_1 + 6x_2 \le 54 \\ -\frac{7}{2}x_1 + \frac{9}{2}x_2 \ge -\frac{63}{4} \\ 3x_1 - 4x_2 \ge -12 \end{cases}$$

$$\min Z = -6x_1 + x_2$$

Компетентностно-ориентированная задача №13

Составьте и решите двойственную задачу

$$z = 2x_1 + 2x_2 - x_3 \rightarrow \max;$$

$$4x_1 + x_2 + 2x_3 \le 10;$$

$$x_1 - x_2 \le 2;$$

$$x_1 \ge 0, x_2 \ge 0, x_3 \ge 0.$$

Компетентностно-ориентированная задача №14

Составьте и решите двойственную задачу

$$\begin{split} z &= 2x_1 + 2x_2 - x_3 \longrightarrow \max; \\ 4x_1 + x_2 + 2x_3 &\leq 10; \\ x_1 - x_2 + x_3 &\leq 2; \\ x_1 &\geq 0, x_2 \geq 0, x_3 \geq 0. \end{split}$$

Компетентностно-ориентированная задача №15

Составьте и решите двойственную задачу

$$\begin{split} z &= 2x_1 + 2x_2 + x_3 \longrightarrow \max; \\ 4x_1 + x_2 + 2x_3 &\leq 8; \\ x_1 - 2x_2 + x_3 &\leq 2; \\ x_1 &\geq 0, x_2 \geq 0, x_3 \geq 0. \end{split}$$

Компетентностно-ориентированная задача №16

Для заданного комплекса работ построить сетевой график, найти общую продолжительность проекта и критический путь.

Работы	Предш. работы	Длительность работ в неделях	Работы	Предш. работы	Длительность работ в неделях
A	- 5		J	G, H	5
В	-	7	K	G	4
C	_	3	L	G	12
D	A	5	M	E, J	9
\boldsymbol{E}	A	15	N	J	2
F	B	4	0	K	4
G	B, C	5	P	L, O, Q	3
H	F	12	Q	L, M, N	4
I	D	4			

Компетентностно-ориентированная задача №17

Для заданного комплекса работ построить сетевой график, найти общую продолжительность проекта и критический путь.

Работы	Предш.	Длительность	Работы	Предш.	Длительность
	работы	работ в		работы	работ в
		неделях			неделях
A	ı	5	J	G, H	5
В	-	7	K	G	4
C	-	3	L	G	6
D	A	5	M	E, J	3
E	A	15	N	J, K	2
F	В	4	0	K	4
G	B, C	5	P	L, O	3
H	F	12	Q	L, M, N	4
I	D	4			

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи – 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом .

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания решения компетентностно-ориентированной задачи:

- 6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.