Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Таныгин Максим Олегович

ФИО: Таныгин Максим Олегович МИНОБРНАУКИ РОССИИ Должность: и.о. декана факультета фундаментальной и прикладной информатики дата подписания: 21.09.2023 13:12:44 Юго-Западный государственный университет

Уникальный программный ключ:

65ab2aa0d384efe8480e6a4c688eddbc475e411a

УТВЕРЖДАЮ:

Заведующий кафедрой

программной инженерии

(наименование кафедры полностью)

А.В. Малышев

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Методы и алгоритмы обработки изображений

(наименование дисциплины)

09.03.04 Программная инженерия

(код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ УСТНОГО ОПРОСА

Тема 2. Методы и алгоритмы представления изображений.

- 1. Какие классы данных (форматы) представления пикселей изображения существуют?
- 2. Какие типы растровых изображений используются в пакете IPT?
- 3. С помощью какой функции можно получить информацию о размере, типе изображения?
- 4. С какими форматами графических файлов можно работать в системе MATLAB?
- 5. С помощью каких функций можно прочитать изображение из файла на диске и записать изображение на диск?
- 6. Какие аргументы функции imshow изменяют контраст полутонового изображения при его выводе на экран?
 - 7. Какие Вы знаете функции преобразования типов изображений?
 - 9. Обоснуйте условия существования в графе гамильтонова контура.
 - 8. Как осуществляется считывание и регистрация изображения?
 - 9. Как выполняется регистрация изображения с помощью одиночного сенсора?
- 10. Сформулируйте отличительные особенности регистрации изображения с помощью линей-ки сенсоров, изображения с помощью матрицы сенсоров.
 - 11. Какие существуют методы для построения модели формирования изображения?
- 12. Использование каких функций дает возможность получить информацию об изображении, хранящемся в файле на диске?
 - 13. Какие основные задачи решаются в компьютерной обработке изображений?
 - 14. От чего зависит эффективность обработки изображений?
 - 15. Система каких функций предназначена для построения модели непрерывного изображения?
 - 16. Как получают спектр изображения?
 - 17. Запишите формулу для нахождения спектра изображения?
 - 18. Как определяется амплитуда и фаза спектра изображения?
 - 19. Какая формула позволяет восстановить изображение по его спектру?
 - 20. Чем характеризуется вероятностный процесс описания изображений?
 - 21. Как определяется спектр двумерной автокорреляционной функции изображения?
- 22. Чем характеризуется эргодический стационарный случайный процесс описания изображений?
 - 23. Чем характеризуется субъективные критерии оценки качества изображений?
 - 24. Назовите какие виды критериев оценки качества изображений используются?
 - 25. Чем характеризуются объективные критерии оценки качества изображений?
- 26. На основании какой формулы рассчитывается среднее квадратическое отклонение для непрерывных изображений?
- 27. Что характеризует и как находится критерий максимальной ошибки оценки качества изображений?
- 28. Какие критерии качества изображений используются для функционирования автоматических компьютерных систем?
- 29. Приведите формулу, описывающую в вероятностной модели изображений математическое ожидание для стационарного процесса в широком смысле,
- 30. Запишите формулу обратного преобразования Фурье, которая позволяет восстановить изображение по его спектру.

Тема 3. Пространственные методы улучшения изображений.

- 1. Каким образом осуществляется дискретизация сигнала?
- 2. Как выбирается величина шага дискретизации?

- 3. Каким образом осуществляется квантование сигнала?
- 4. Что называется пространственным разрешением изображения?
- 5. Дать определение пространственного разрешения изображения.
- 6. Сформулируйте определение яркостного разрешения.
- 7. Назначение функции quantiz системы MATLAB.
- 8. Для чего используется функция blkproc?
- 9. Как изменяется качество изображения при изменении числа уровней квантования?
- 10. Как изменяется качество изображения при изменении числа шагов дискретизации?
- 11. В чем заключается идея уменьшения цифровых изображений на основе метода интерполяции по ближайшему соседу?
- 12. На основании каких требований выполняется метод билинейной интерполяции для увеличения цифровых изображений?
 - 13. Какие существуют подходы к улучшению изображений?
- 14. В чем заключается суть поэлементной обработки изображений, в каких случаях она применяется?
 - 15. Сформулируйте постановку задачи линейного контрастирования изображений?
 - 16. Как реализуется выделение диапазона яркостей?
 - 17. Какие линейные градационные преобразования используются для улучшения изображений?
 - 18. На основании какой формулы осуществляется преобразование изображения в негатив?
 - 19. В чем суть логарифмического преобразования изображения?
 - 20. С какой целью применяют логарифмическое преобразование изображений?
 - 21. В чем заключается суть гамма- коррекции изображений?
 - 22. Что называется гистограммой изображения?
 - 23. Как осуществляется преобразование изображений на основе выравнивания гистограммы?
 - 24. Что называется фильтрацией изображения?
 - 25. Как реализуется пространственная фильтрация?
 - 26. Как реализуется фильтрация в частотной области?
- 27. В чем заключается суть масочной фильтрация, применяемой в цифровой обработке изображений?
 - 28. Какие способы используется для обработки краевых эффектов изображения?
 - 29. Как осуществляется операция свертки?
 - 30. Приведите пример применения равномерной маски, оцените результат.

Тема 4. Частотные методы улучшения изображений.

- 1. Какие типы фильтров создает функция по формированию масок фильтров fspecial?
- 2. В чем заключается алгоритм двумерной свертки?
- 3. В каких функциях присутствует алгоритм двумерной свертки?
- 4. В чем отличие алгоритма медианной фильтрации от алгоритма фильтрации с помощью операции усреднения с порогом?
 - 5. Какие типы шумов формирует функция по зашумлению изображений imnoise?
 - 6. Для каких целей можно использовать функцию freqz2?
 - 7. Каким образом можно сформировать маску линейного фильтра по желаемой АЧХ?
 - 8. Какая функция позволяет сформировать двумерный фильтр из одномерного?
- 9. Какая функция добавляет к изображению Іѕ гауссов белый шум с математическим ожиданием m и дисперсией v.
 - 10. Какая функция добавляет к изображению Іѕ мультипликативный шум?
 - 11. В чем смысл корреляционного анализа сигналов?
 - 12. Как можно повысить контраст изображения с помощью выравнивания гистограммы?
- 13. Что характеризует функция вычисления коэффициента корреляции между двумя матринами?
- 14. Как можно смоделировать бимодальную гистограмму с помощью нормированных мультимодальных гауссовых функций?

- 15. Что характеризует функция вычисления среднеквадратического отклонения элементов матрицы?
- 16. Какие фильтры, применяемые для обработки изображений, называются изотропными фильтрами, в чем их особенность?
- 17. На основе каких операторов выполняется улучшение изображений с использованием вторых производных?
- 18. Запишите вид маски оператора Лапласа, которая позволяет получить изотропный результат для поворотов на углы 90° ?
 - 19. В чем заключается особенность применения оператора Лапласа?
- 20. Сформулируйте этапы обобщенного алгоритма использования лапласиана для улучшения изображения.
- 21. В чем суть процедуры нерезкого маскирования и фильтрации изображений с подъемом высоких частот?
- 22. Сформулируйте суть процедуры улучшения изображений с использованием первых производных.
- 23. Приведите примеры практической реализации алгоритма градиентной обработки изображений, с указанием достоинств метода.
- 24. В чем суть применения процедуры комбинированных методов пространственного улучшения изображений?
 - 25. Как осуществляется частотная фильтрация изображений?
- 26. Запишите формулу, на основании которой определяется частотная характеристика низкочастотного фильтра Баттерворта, в чем особенность?
- 27. Запишите формулу, на основании которой определяется частотная характеристика гауссовского низкочастотного фильтра?
 - 28. В чем суть алгоритма частотной фильтрации, какие этапы выполняются?
- 29. Как по известной передаточной функции низкочастотного фильтра можно получить передаточную характеристику высокочастотного фильтра?
 - 30. Как формируется модель процесса искажения/восстановления изображения?

Тема 5. Методы и алгоритмы восстановления изображений

- 1. 1. Какие процедуры обуславливают искажения изображения при его формировании?
- 2. В чем заключается задача построения восстанавливающей системы?
- 3. Какие функции среды MATLAB используются для моделирования «размытия» изображения, обусловленное турбулентностью атмосферы?
 - 4. Какой фильтр называется инверсным?
 - 5. Сформулировать критерии восстанавливающей системы.
 - 6. Каким образом может быть представлено искаженное изображение?
 - 7. Записать вид модели процесса искажения/восстановления изображения.
 - 8. В чем заключается задача восстановления изображения?
- 9. Какая функция среды MATLAB используются для осуществления винеровской фильтрации изображения?
- 10. Какая функция среды MATLAB осуществляет зашумление изображения типа «соль», «перец»?
 - 11. В чем заключается задача восстановления изображений?
- 12. Запишите формулу по которой искаженное изображение может быть представлено в пространственной области.
 - 13. Какой вид имеет модель искажения изображений в частотной области?
 - 14. Перечислите основные источники возникновения шума на цифровом изображении.
 - 15. Какой шум называется белым шумом, в чем его особенность?
 - 16. Чем характеризуется Гауссов шум?
 - 17. Запишите формулу для функция плотности распределения равномерного шума?

- 18. Запишите формулу для функция плотности распределения импульсного шума?
- 19. Чем характеризуется экспоненциальный шум?
- 20. Запишите формулу для функция плотности распределения вероятностей шума Релея?
- 21. Из каких этапов состоит алгоритм медианной фильтрации изображений?
- 22. В чем заключается особенность применения алгоритма медианной фильтрации изображений?
- 23. Применение каких функций среды MATLAB позволяет восстановить размытое зашумленное изображение?
- 24. С помощью каких функций среды MATLAB можно смоделировать размывание изображений?
 - 25. Какие команды среды MATLAB применяются для повышения резкости изображения?
- 26. Каким образом можно добавить к исходному изображению шум типа «salt & pepper (соль и перец)», какие команды среды MATLAB?
- 27. Каким образом можно применить к исходному изображению усредняющий фильтр, в чем его назначение?
- 28. Как можно смоделировать «размытие» изображения, обусловленное турбулентностью атмосферы?
 - 29. Запишите функцию среды МАТLAB, выполняющую винеровскую фильтрацию.
 - 30. Сформулируйте условия применения фильтра Винера.

Тема 6. Методы и алгоритмы обработки цветных изображений

- 1. В чем состоит назначение цветовой модели?
- 2. От чего зависят методы анализа цветных изображений?
- 3. Сформулируйте основное назначение цветовой модели RGB.
- 4. Перечислите какие аппаратно-ориентированные цветовые модели, которые наиболее часто используют на практике.
 - 5. Чем характеризуется и где применяется цветовая модель СМҮ?
 - 6. Чем характеризуется и где применяется цветовая модель HSI?
 - 7. Приведите геометрическую интерпретацию цветовой модели RGB.
 - 8. Как получают различные цвета модели RGB?
 - 9. Что называется глубиной цвета в пространстве RGB?
 - 10. Сформулируйте основное назначение цветовой модели YCrCb.
- 11. Какие требования предъявляются к формированию компонентного сигнала, задаваемого через сигналы основных цветов R, G, B, рекомендованного стандартом федеральной комиссии связи (FCC)?
 - 12. Сформулируйте основное назначение цветовой модели YIQ?
 - 13. Как осуществляют преобразование данных из RGB в CMY?
- 14. Сформулируйте взаимосвязь основных характеристик цветовых моделей СМҮ и СМҮК?
 - 15. Как определяется насыщенность для каждого пикселя в цветовой модели HSI?
- 16. Приведите формулу, позволяющую определить интенсивность для каждого пикселя в цветовой модели HSI.
- 17. Приведите формулу, позволяющую рассчитать цветовой тон для каждого пикселя в цветовой модели HSI.
- 18. Какие основные величины применяются для количественного описания цветов в цветовой фотометрии?
 - 19. Как определяются хроматические координаты (x;y;z) в цветовом пространстве XYZ?
 - 20. Чем характеризуется и где применяется цветовая модель Lab?
 - 21. Как определяется цветовая амплитуда основных откликов зрительной системы?
 - 22. Как определяется насыщенность цвета в метрическом векторном пространстве?
 - 23. В чем заключается практический смысл значений Lab в цветовом пространстве?

- 24. Сформулируйте основные недостатки использования цветового пространства Lab?
- 25. Сформулируйте основное назначение цветовой модели YCbCr.
- 26. Чем характеризуется и где применяется цветовая модель YCbCr?
- 27. Каким образом реализуют представление цветного любого растрового изображения?
- 28. В чем заключается смысл свойства изображения как разрешение?
- 29. Где применяется основная цветовая модель RGB?
- 30. Какими способами описывается цвет в цветовой модели RGB?

Тема 7. Методы и алгоритмы морфологической обработки изображений

- 1. Как можно получить бинарное изображение?
- 2. Чем отличаются глобальное и локальное пороговое разделение?
- 3. Какие функции используются для бинаризации изображения в системе MATLAB?
- 4. В чем заключается алгоритм автоматического выбора порога?
- 5. Как определяются координаты 4-х соседних пикселей изображения?
- 6. Как определяются 4-х связный объект?
- 7. Какие морфологические операции вы знаете?
- 8. Дайте определение понятия эрозии.
- 9. Дайте определение понятия дилатации.
- 10. В чем заключается действие операции размыкание?
- 11. В чем заключается действие операции замыкание?
- 12. Какие процедуры включает анализ бинарных изображений?
- 13. В чем состоит суть и назначение морфологических операций бинарных изображений?
- 14. Сформулируйте назначение операции селекции связных компонентов.
- 15. В чем состоит суть и назначение оценки признаков объекта?
- 16. Что представляет собой математическая морфология, применительно к анализу изображений?
- 17. Какие основные базовые понятия теории множеств лежат в основе математической морфологии?
 - 18. Приведите геометрическую интерпретацию основных понятий теории множеств.
 - 19. В чем заключаются основные преимущества морфологической обработки?
- 20. Запишите формулу, на основании которой выполняется процедура эрозии множества по примитиву?
 - 21. Какие алгебраические свойства выполняются для операции эрозия?
 - 22. К каким изменениям изображений приводит применение операции эрозия?
 - 23. В чем состоит суть применения операции дилатация?
 - 24. К каким изменениям изображений приводит применение операции дилатация?
 - 25. Какие алгебраические свойства выполняются для операции диалатация?
- 26. Какие способы определения структурообразующего элемента в среде MATLAB существуют??
 - 27. Как определяется процедура размыкание множества по примитиву?
 - 28. Какую геометрическую интерпретацию допускает операция размыкания?
 - 29. В чем суть и назначение операции замыкания множества по примитиву?
 - 30. Какую геометрическую интерпретацию допускает операция замыкания?

Тема 8. Методы и алгоритмы сегментации изображений

- 1. В чем заключается процесс сегментации изображения?
- 2. Какие признаки используются для сегментации изображений?
- 3. В чем заключается алгоритм метода выращивания областей, использующийся для сегментации изображения?
- 4. В чем заключается алгоритм метода разделения, использующийся для сегментации изображения?

- 5. Какие параметры являются входными параметрами функции сегментации методом разделения?
 - 6. В чем заключается преобразование яркостного среза?
 - 7. Какие параметры возвращает функция impixel?
 - 8. В чем заключается особенность задачи динамического программирования?
 - 9. Сформулируйте какую цель реализует задача сегментации изображений?
 - 10. Поясните назначение и особенности интерактивных методов сегментации.
 - 11. Сформулируйте задачи автоматической сегментации изображений.
- 12. Изложите какие свойства изображений наиболее часто используются для проведения сегментации.
- 13. Как реализуется задача сегментации изображений с помощью многоуровневого порогового преобразования?
- 14. Применение какой функции в среде MATLAB позволяет выполнять сегментацию изображений методом выращивания областей?
- 15. Применение какой функции в среде MATLAB используется для преобразования изображения в соответствии с результатами сегментации методом разделения?
- 16. Из каких этапов состоит алгоритм сегментации для автоматического выбора значения порога?
 - 17. В чем заключается алгоритм метода адаптивной пороговой сегментации?
 - 18. В каких случаях применяется мультиспектральная пороговая обработка изображений?
- 19. Из каких этапов состоит алгоритм метода мультиспектральной пороговой обработки изображений?
 - 20. Поясните, в чем состоит суть метода сегментации изображений с помощью гистограмм?
- 21. Перечислите основные недостатки метода сегментации изображений с помощью гистограмм?
- 22. В соответствии с принципом оптимальности, каким образом должны выбрать управление?
 - 23. Перечислите основные достоинством пороговых методов сегментации.
 - 24. В чем заключается рекурсивное применение гистограммного метода?
- 25. Сформулируйте этапы реализации алгоритма на основании метода выращивания областей.
 - 26. В чем состоит особенность реализации метод выращивания областей?
 - 27Какие недостатки характерны для реализации метода выращивания областей?
 - 28. В каком случае можно говорить о том, что предварительная оптимизация закончена?
 - 29. На какой парадигме основываются методы сегментации, основанные на кластеризации?
- 30. Из каких этапов состоит алгоритм сегментации изображений методом сдвига центра масс (метод mean-shift)?

Шкала оценивания: балльная.

Критерии оценивания:

- **3 баллов** (или оценка **«отлично»**) выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументировано и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **2 баллов** (или оценка **«хорошо»)** выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументировано и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.
- 1 баллов (или оценка «удовлетворительно») выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных

понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов (или оценка **«неудовлетворительно»**) выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

1.3 ВОПРОСЫ И ЗАДАНИЯ В ТЕСТОВОЙ ФОРМЕ

Тема 2. Методы и алгоритмы представления изображений

Вариант 1

1. Компьютерная обработка и распознавание изображений заключается:

- 1) в улучшении зрительного восприятия изображений и классификация объектов на изображениях;
 - 2) только в классификация объектов;
 - 3) только улучшение зрительного восприятия изображений;
 - 4) цветовая коррекция.

2. Если при передаче цифрового сигнала цветного телевидения необходимо передавать потоки порядка 216 Мбит/с, то:

- 1) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 1 Гбит/с;
- 2) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 216 Мбит/с;
- 3) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 413 Мбит/с;
- 4) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 150 Мбит/с.

3. Иконика - это:

- 1) создание и обработка изображений с помощью ЭВМ;
- 2) только обработка изображений;
- 3) только создание изображений;
- 4) создание и обработка иконок.

4. Стационарный случайный процесс называется эргодическим, если:

- 1) любая его вероятностная характеристика может быть получена из одной реализации путем усреднения по времени. При этом среднее по времени равно среднему по ансамблю реализаций;
- 2) некоторые вероятностные характеристики может быть получены из нескольких реализаций путем усреднения по времени. При этом среднее по времени равно среднему по ансамблю реализаций;
 - 3) вероятностные характеристики не подчиняются нормальному закону распределения;
 - 4) ординаты случайной функции подчиняются нормальному закону распределения.

5. Критерии визуального воспри	іятия изображения, оце	ениваемые в процессе э	кспертизы не-
которой группой экспертов называют _		(закончите определо	ение).

- 6. Определите **последовательность**, которая определяет преимущества медианной фильтрации перед линейной фильтрацией (классической процедурой сглаживания):
 - 1) сохраняет резкие перепады (границы);
 - 2) эффективно сглаживает импульсный шум;
 - 3) не изменяет яркость фона.

7. Установите соответствие термина и определения

Термин	Определение
1. Цветовая мо-	k) представляет собой пространство, в котором компонента Y
дель YCrCb	включает в себя только информацию о яркости пикселей, а компоненты
	Сb и Cr содержат только информацию о цвете и насыщенности.
2. Цветовая мо-	f) представляет собой пространство как вариант кодирования цве-
дель YIQ	тов RGB, обеспечивающий совместимость с черно – белым.
3. Цветовая мо-	е) представляет собой пространство, определяющее цветовой тон,
дель HSI	насыщенность, интенсивность, используемое как идеальное средство для
	построения алгоритмов обработки изображений, поскольку в основе мо-
	дели лежит естественное и интуитивно близкое человеку описание цвета.

Вариант 2

1. Спектр изображения получают с помощью применения:

- 1) прямого двумерного преобразования Фурье;
- 2) обратного преобразования Фурье;
- 3) прямого двумерного преобразования Фурье автокорреляционной функции;
- 4) аппроксимацией функции автокорреляции.

2. Спектральная интенсивность изображения характеризует:

- 1) распределение энергии по пространственным частотам;
- 2) интеграл энергетического спектра;
- 3) пространственные частоты изображения;
- 4) временный сигнал.

3. Энергия изображения определяется как:

- 1) интеграл энергетического спектра по пространственным частотам;
- 2) восстановление изображения по его спектру;
- 3) пространственные частоты изображения;
- 4) функция распределения энергии по пространственным частотам.

4. Случайный процесс называется стационарным в широком смысле, если:

- 1) имеет постоянные значения математического ожидания и дисперсии, а его автокорреляционная функция зависит не от координат, а от их разностей (сдвига).
- 2) имеет постоянные значения математического ожидания и дисперсии, а его автокорреляционная функция зависит от координат, и разностей (сдвига)
- 3) не имеет постоянных значений математического ожидания и дисперсии, а его автокорреляционная функция принимает постоянные значения;
- 4) имеет постоянные значения математического ожидания, дисперсии и автокорреляционной функции.

5. Назначение цвет	овой модели заключается в том, чтобы произвести описание г	цветов не-
которым	закончите определение).	

- 6. Определите **последовательность**, которая определяет цели применения адаптивной медианной фильтрации изображений:
 - 1) оптимальное удаление импульсного шума;
 - 2) сглаживание других типов шумов;
- 3) уменьшение искажений границ объектов на изображении, таких как утоньшение или утолщение.

7. Установите соответствие между термином и его характеристикой

Термин	Характеристика
1. Векторное	k) описывается как набор графических примитивов, из которых и
изображение	формируется изображение.
2. Цветовой тон точки для RGB точки	t) описывается пвумерным массивом, кажлый элемент которого прелы
3. Бинарные	e) (black and white) пиксели могут принимать только два значения: 0 и
изображения	1 (черный и белый цвет).

Тема 3. Пространственные методы преобразования изображений

Вариант 1

1.Главная цель улучшения изображения заключается в:

- 1) такой обработке изображения, чтобы результат оказался более подходящим для конкретного применения;
- 2) такой обработке изображения, чтобы результат оказался более подходящим для всех случаев применения;
 - 3) переводе изображения в другую цветовую кодировку;
 - 4) применении к изображению специальных методов.

2. На какой парадигме основаны пространственные методы обработки изображений:

- 1) на обработке пикселей изображения, которые находятся в плоскости изображения;
- 2) на изменении сигнала, путем применения к изображению преобразования Фурье;
- 3) на разбиении изображения на отдельные объекты и анализе переходов между этими объектами;
 - 4) на переводе изображения в пространство определенных признаков.

3. На чем основаны частотные методы обработки изображений:

- 1) на изменении сигнала, путем применения к изображению преобразования Фурье.
- 2) на обработке пикселей изображения, которые находятся в плоскости изображения.
- 3) на подсчете количества появления пикселей с определенными параметрами.
- 4) на разбиении изображения на отдельные объекты и анализе переходов между этими объектами.

4. Для контрастирования изображений используется:

- 1) поэлементная обработка;
- 2) обработка всего изображения как единого целого;
- 3) эквализация гистограммы изображения;
- 4) кластеризация изображения.
- 5. В качестве элемента объемного изображения используется _____ (закончите определение).
- 6. Установите **правильный порядок** процесса реализации метода фильтрации в частотной области, позволяющего по ДПФ изображения подобрать:
 - 1) частотную характеристику фильтра;
 - 2) амплитудную характеристику фильтра;
 - 3) фазовую характеристику фильтра;

4) передаточную функцию фильтра.

7. Установите соответствие между термином и определением

Термин	Определение
1. Вывод нескольких изображений в одном окне в сре-	k) subimage(S).
де MATLAB	
2. Функция, применяемая для преобразования преобразования вание палитрового изображения в полноцветное в среде MATLAB	f) RGB = ind2rgb(X,map)
3. Функция, применяемая для преобразования преобразо-	e) [X map] = rgb2ind(RGB)
вание преобразование пол-	
ноцветного изображения в палитровое в среде MATLAB	

Вариант 2

1. Для преобразования изображения в негатив используется:

- 1) линейное преобразование;
- 2) логарифмическое преобразование;
- 3) степенное преобразование;
- 4) геометрическое преобразование.

2. Для чего используют логарифмическое преобразование изображений:

- 1) растяжения диапазона темных пикселей на изображении с одновременным сжатием диапазона значений ярких пикселей;
 - 2) получения эффекта фотографического негатива;
 - 3) равномерного распределения яркостей пикселей изображения;
 - 4) для гамма-коррекции пикселей изображения.

3. Гамма-коррекция изображений представляет собой:

- 1) степенное преобразование;
- 2) логарифмическое преобразование;
- 3) линейное преобразование;
- 4) метод обработки гистограммы изображения.

4. Для преобразования исходного изображения в изображение, имеющее гистограмму заданного вида необходимо:

- 1) каждому уровню яркости исходного изображения поставить в соответствие уровень яркости g входного изображения;
- 2) каждому уровню яркости исходного изображения поставить в соответствие противоположный уровень яркости (негативное преобразование);
- 3) каждому уровню яркости исходного изображения поставить в соответствие максимальный или минимальный уровень яркости изображения;
 - 4) оставить уровни яркости без изменений.

- 5. Размер мельчайших различимых деталей на изображении, называется______(закончите определение).
- 6. Установите правильную **последовательность,** устанавливающую по известной передаточной функции НЧ фильтра получить передаточную характеристику ВЧ фильтра в соответствии с уравнением:
 - 1) HBY(u,v) = 1 HHY(u,v);
 - 2) HBY(u,v) = HHY(u,v) 0.5;
 - 3) HBY(u,v) = 1/(HHY(u,v)) 0.5;
 - 4) HBY(u,v) = 1/(HHY(u,v)-0.5).

7. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применя- емая в среде МАТLАВ для загрузки изображения из се- тевого ресурса	\mathbf{k}) >> A = imread(URL);
2. Функция, применя- емая для записи палитрового изображения X с палитрой тар. в файл, в среде MATLAB	f) imwrite(X, map, <имя файла>)
3. Критерии «похожести» соседних пикселей изображения по расстоянию	e) $aff(x, y) = exp \left\{ -(x - y)^T (x - y) / 2\sigma_d^2 \right\}$

Тема 4. Частотные методы улучшения изображений

Вариант 1

1. Процедуры преобразования гистограмм могут применяться:

- 1) как к изображению в целом, так и к отдельным его фрагментам;
- 2) только к изображению в целом;
- 3) только к фрагментам изображения;
- 4) только к отдельным пикселям изображения.

2. Процедура эквализациии гистограммы изображения заключается в:

- 1) преобразовании, при котором выходное изображение имеет равномерное распределение;
- 2) преобразовании, при котором выходное изображение имеет геометрическое распределение:
- 3) преобразовании, при котором выходное изображение имеет логарифмическое распределение;
 - 4) преобразовании, при котором выходное изображение имеет распределение Бернулли.

3. На какой парадигме основаны частотные методы обработки изображений:

- 1) на изменении сигнала, путем применения к изображению преобразования Фурье;
- 2) на обработке пикселей изображения, которые находятся в плоскости изображения;
- 3) на подсчете количества появления пикселей с определенными параметрами;

4) на разбиении изображения на отдельные объекты и анализе переходов между этими объектами.

4. Объективными критериями, используемыми при оценке качества изображений, являются критерии:

- 1) позволяющие получить среднеквадратическую характеристику изображения разностного сигнала:
- 2) позволяющие получить просто вычисляемую характеристику изображения многомерного сигнала;
- 3) позволяющие получить просто вычисляемую характеристику изображения пространственного сигнала;
- 4) позволяющие получить просто вычисляемую характеристику изображения отношения сигнал/шум.
- 5. Одним из методов предварительной обработки изображений, который приводит к равномерному распределению яркости обрабатываемого изображения, является метод (закончите определение).
- 6. Установите **правильную последовательность** в определении объективной меры, применяемой для оценки качества алгоритма фильтрации, при использовании пикового отношения сигнал/шум (ПОСШ):

1)
$$\Pi OCIII = 20 \cdot \lg \frac{255}{\sqrt{CKO}};$$

$$\Pi OCIII = 255 + \lg \frac{1}{\sqrt{CKO}};$$

$$\Pi OCIII = \lg \frac{1}{\sqrt{CKO}};$$

7. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применяемая в	$k >> f = imfinfo(,,c:\Image\Athena.bmp").$
среде MATLAB для получе-	
ния информации об изобра-	
жении, хранящемся в файле	
на диске с	
2. Полноцветные изображе-	f) хранятся в виде трехмерных массивов, где третье измерение –
ния	значения интенсивности R, G, B. Для доступа к значениям ин-
	тенсивности цветовых составляющих пикселя I надо указать
	строку r, столбец с и номер составляющей I(r, c, 1)
3. Критерии «похожести»	$\inf_{\mathbf{e}} aff(\mathbf{x}, \mathbf{y}) = exp\left\{ -\left(dist\left(c(\mathbf{x}) - c(\mathbf{y})\right)^{2} / 2\sigma_{c}^{2}\right)\right\}$
соседних пикселей изобра-	(e) $(x, y) = exp((uisi(c(x)-c(y))) + 2O_c)$
жения по цвету	

Вариант 2

1. Субъективные критерии оценки качества изображения:

- 1) это критерии визуального восприятия, оцениваемые в процессе экспертизы некоторой группой наблюдателей;
- 2) это критерии визуального восприятия, оцениваемые только координатные искажения группой наблюдателей;
- 3) это критерии визуального восприятия, оцениваемые только яркостные искажения группой наблюдателей;
- 4) это критерии визуального восприятия, оцениваемые реального и идеального изображений.

2. Для преобразования исходного изображения в изображение, имеющее гистограмму заданного вида необходимо:

- 1) каждому уровню яркости исходного изображения поставить в соответствие уровень яркости g входного изображения;
- 2) каждому уровню яркости исходного изображения поставить в соответствие противоположный уровень яркости (негативное преобразование);
- 3) каждому уровню яркости исходного изображения поставить в соответствие максимальный или минимальный уровень яркости изображения;
 - 4) оставить уровни яркости без изменений.

3. Результаты корреляции и свертки получаются друг из друга поворотом на:

- 1) 180°;
- 2) 270°;
- 3) 90°;
- 4) 45°;

4. Спектр изображения получают с помощью применения:

- 1) прямого двумерного преобразования Фурье;
- 2) обратного преобразования Фурье;
- 3) прямого двумерного преобразования Фурье автокорреляционной функции;
- 4) аппроксимацией функции автокорреляции.

5. Изменение числа отсчетов на изображении достигается путем ______ (закончите определение).

- 6. Установите **правильную последовательность** в установлении необходимого и достаточного условий для подавления помехи, при применении медианного фильтра, если она не является точечной:
 - 1) увеличить размер матрицы;
 - 2) уменьшить размер матрицы;
 - 3) применить квадратную матрицу;
 - 4) транспонировать матрицу.

7. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Процедура дилатации множества A по примитиву B	\hat{k}) множество всех таких смещений z , при которых множества \hat{B} и A совпадают, по меньшей мере, в одном элементе;

2. Смешанный граф	f) как правило, граф, имеющий как ориентированные, так и неориентированные ребра
3. Частотные методы обработки изображений	e) основаны на изменении сигнала, путем применения к изображению преобразования Фурье.

Тема 5. Методы и алгоритмы восстановления изображений

Вариант 1

1. Ослабление действия помех на изображении достигается с помощью:

- 1) фильтрации изображения;
- 2) дискретизации изображения;
- 3) квантованием изображения;
- 4) выделением объектом на изображениях.

2. Пространственная фильтрация определяется выражением:

$$g(x,y) = f(x,y) * h(x,y) = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(s,t) h(x-s,y-t) =$$

1)
$$\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x-s, y-t) h(s,t)$$

$$g(x,y) = f(x,y) + h(x,y) = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(s,t) + h(x-s,y-t) =$$

2)
$$\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x-s, y-t) + h(s,t)$$

$$g(x,y) = f(x,y) * h(x,y) = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(s,t) h(x+s,y+t) =$$

3)
$$\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s, y+t) h(s,t)$$

$$g(x,y) = f(x,y) - h(x,y) = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s,y+t) - h(x-s,y-t) =$$

4)
$$\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x-s, y-t) - h(s+x, t+y)$$

3. Заданные маски

$$\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$$

получили имя:

- 1) Джудит Превитт;
- Собеля:
- **3)** Γaycca;
- 4) Лапласса.
- 4. Оператор Лапласа в дискретной форме имеет вид:
- 1) $\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) f(x,y-1)] 4f(x,y);$
- 2) $\nabla^2 f = [f(x, y) + f(x, y) + f(x, y) f(x, y)] 4f(x, y);$
- 3) $\nabla^2 f = [f(x+1,y) + f(x+1,y) + f(x,y-1) f(x,y-1)] 4f(x,y);$
- 4) $\nabla^2 f = [f(x+1, y+1) + f(x-1, y-1) + f(x+1, y+1) f(x-1, y-1)] 8f(x, y).$
- 5. Фильтрация в частотной области требует выполнения следующей последовательности преобразований:
- 1) двумерное дискретное преобразование изображения из пространственной области в частотную (например, посредством дискретного преобразования Фурье);
 - 2) преобразование дискретного спектра сигнала изображения;
- 3) обратное двумерное дискретное преобразование, позволяющее ______ (закончите предложение).
- 6. Установите **правильный порядок** установления преимуществ в реализации медианной фильтрации перед линейной фильтрацией:
- 1) эффективно устраняет мелкие детали и резкие выбросы, практически не изменяя остального изображения;
 - 2) слабо устраняет мелкие детали и практически не изменяет остального изображения;
 - 3) не устраняет мелкие детали, изменяет изображение.

7. Установите соответствие межлу термином и определением

Термин	Определение
1. Вывод нескольких изоб-	k) subimage(S).
ражений в одном окне в сре-	
де MATLAB	
2. Функция, применяемая для	\mathbf{f}) RGB = ind2rgb(X,map)
преобразования преобразо-	
вание палитрового изобра-	
жения в полноцветное	
в среде MATLAB	
3. Функция, применяемая для	e) [X map] = rgb2ind(RGB)
преобразования полноцвет-	
ного изображения в палитро-	
вое в среде MATLAB	

Вариант 2

- 1. Главная цель улучшения изображения заключается в:
- 1) такой обработке изображения, чтобы результат оказался более подходящим для конкретного применения;

- 2) такой обработке изображения, чтобы результат оказался более подходящим для всех случаев применения;
 - 3) переводе изображения в другую цветовую кодировку;
 - 4) применении к изображению специальных методов.

2. Процедуры преобразования гистограмм могут применяться:

- 1) как к изображению в целом, так и к отдельным его фрагментам;
- 2) только к изображению в целом;
- 3) только к фрагментам изображения;
- 4) только к отдельным пикселям изображения.

3. Нормирующий коэффициент определяется из условия равенства единице суммы всех коэффициентов КИХ:

$$k = \sum_{t=-m/2}^{1/2} \sum_{s=-n/2}^{n/2} h(s,t);$$

$$k = \sum_{t=-m/2}^{2/2} \sum_{s=-n/2}^{n/2} h(s-x,t-y);$$

$$k = \sum_{t=-m/2}^{-1} \sum_{s=-n/2}^{n/2} h(s+x,t-y);$$

4.
$$k = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s-y,t+x)$$
.

- 5. Пространственная фильтрация выполняется как операция двумерной свертки импульсной характеристики фильтра h(s,t) с _______ (закончите определение).
- 6. Установите **правильную последовательность** выявления предназначений применения Сигма-фильтра:
 - 1) подавления шумов на изображении с сохранением резких границ областей;
 - 2) подавления всех видов шумов на изображении с изменением яркости изображения;
 - 3) подавления шумов на изображении с изменением контуров объектов;
 - 4) сглаживания шума на однородных участках изображения, изменяя яркости пикселей.

7. Установите соответствие между условием и назначением

Условия	Назначение
1. Формула фильтрации изображения размером $m \times n$ фильтром взвешенного среднего	$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s, y+t) \cdot h(s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s,t)}$ k)

2. Пропускная способ-	f) Может рассматриваться как максимальная скорость, с которой про-
ность ребра	дукция транспортируется вдоль этого ребра.
3. Логарифмическое пре-	е) применяется для растяжения диапазона темных пикселей на изоб-
образование изображений	ражении с одновременным сжатием диапазона значений ярких пиксе-
	лей;

Тема 6. Методы и алгоритмы обработки цветных изображений. Линейная фильтрация изображений

Вариант 1

1. Формула для определения расстояния между двумя векторами в пространстве RGB в общем виде:

1)
$$d_{ij} = \|C_i - C_j\|_{\gamma} = \left(3\sum_{n=1}^{\infty} |C_i^k - C_j^k|^{\gamma}\right)^{1/\gamma};$$

2) $d_{ij} = \|C_i - C_j\|_{\gamma} = 3\left(\sum_{n=1}^{\infty} |C_i^k - C_j^k|^{\gamma}\right)^{1/\gamma};$
3) $d_{ij} = \|C_i - C_j\|_{\gamma} = \left(3\sum_{n=1}^{\infty} |C_i^k + C_j^k|^{\gamma}\right)^{1/\gamma};$
4) $d_{ij} = \|C_i - C_j\|_{\gamma} = 3\left(\sum_{n=1}^{\infty} |C_i^k + C_j^k|^{\gamma}\right)^{1/\gamma}.$

2. Нерезким маскированием называется:

- 1) процедура применяется для повышения резкости изображений и заключается в вычитании из изображения его расфокусированной копии;
- 2) процедура применяется для понижения резкости изображений и заключается в вычитании из изображения его расфокусированной копии;
- 3) процедура применяется для повышения резкости изображений и заключается в сложении изображения с его расфокусированной копией;
- 4) процедура применяется для понижения резкости изображений и заключается в сложении изображения с его расфокусированной копией.

3. Прямоугольная область размером $n \times m$, на которой задана импульсная характеристика, называется:

- 1) маской;
- 2) шумом;
- 3) искажением;
- 4) изображением.

4. Компьютерная обработка и распознавание изображений заключается:

- 1) в улучшении зрительного восприятия изображений и классификация объектов на изображениях;
 - 2) только в классификации объектов;
 - 3) только в улучшении зрительного восприятия изображений;
 - 4) в цветовой коррекции.

- 5. Метод билинейной интерполяции предполагает использование ______ (закончите определение) соседей данного пикселя.
- 6. Установите **правильную последовательность** выявления предназначений применения Сигма-фильтра:
 - 1) подавления шумов на изображении с сохранением резких границ областей;
 - 2) подавления всех видов шумов на изображении с изменением яркости изображения;
 - 3) подавления шумов на изображении с изменением контуров объектов;
 - 4) сглаживания шума на однородных участках изображения, изменяя яркости пикселей.

7. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Сильная компонента связности	k) это минимально сильно связный подграф графа $G(X, \Gamma)$.
1. Цветовая модель YCrCb	k) представляет пространство, в котором компонента Y включает в себя только информацию о яркости пикселей, а компоненты Cb и Cr содержат только информацию о цвете и насыщенности.
3. Условия соответствия центрального элемента окна при применении адаптивной медианной фильтрации	g) 1) A1= fmed - fmin ; A2= fmed - fmax ; A1>0 и A2<0, B1= f (x, y)- fmin ; A2= f (x, y) - fmax ; B1>0 и B2<0;

Вариант 2

- 1. Как в цветовом координатном пространстве RGB представляется любой цвет:
- 1) пространство в виде куба: черный цвет находится в (0,0,0), красный (1,0,0), зеленый (0,1,0), синий (0,0,1), белый (1,1,1), желтый (1,1,0), голубой (0,1,1), пурпурный (1,0,1);
- 2) пространство в виде куба: черный цвет находится в начале координат (1,1,1), красный (1,0,1), зеленый (1,1,0), синий (0,1,1), белый (0,0,0), желтый (1,1,0), голубой (0,1,1), пурпурный (1,0,0);
- 3) пространство в виде куба: черный цвет находится (1,0,0), красный (1,1,0), зеленый (0,1,0), синий (0,0,1), белый (0,0,1), желтый (1,1,0), голубой (0,1,1), пурпурный (0,0,1);
 - 2. Любое цветное растровое изображение можно представить в виде:
 - 1) в виде двумерной матрицы;
 - 2) в виде трехмерной матрицы, содержащей информацию о плоскостях;
 - 3) в виде одномерного массива пикселей.
- 3. Если при передаче цифрового сигнала цветного телевидения необходимо передавать потоки порядка 216 Мбит/с, то:
- 1) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 1 Гбит/с;
- 2) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 216 Мбит/с;
- 3) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 413 Мбит/с;

4) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 150 Мбит/с.

4. Спектральная интенсивность изображения характеризует:

- 1) распределение энергии по пространственным частотам;
- 2) интеграл энергетического спектра;
- 3) пространственные частоты изображения;
- 4) временный сигнал.
- 5. Число битов, используемых для представления каждого пикселя в RGB пространстве, называется ______ (закончите предложение.)
- 6. Установите **правильный порядок** выявления методов, учитывающих связность областей на этапе сегментации:
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей.

7. Установите соответствие между термином и его характеристикой

	у
Термин	Характеристика
1. Геометрическая интерпретация цветового тона H для RGB точки	ном кубе солержащая ось интенсивности при этом все точки этой плоско-
2. Цветовой тон точ- ки для RGB точки	f) определяется углом между направлением из центра шестиугольника, представляющего форму сечения единичного куба, на данную точку и некоторую опорную точку
3. Насыщенность	е) задается длиной вектора, проведенного из центра в данную точку (т.е. расстоянием от вертикальной оси). Центр представляет точку пересечения цветовой плоскости и вертикальной оси интенсивности.

Тема 7. Методы и алгоритмы морфологической обработки изображений

Вариант 1

- 1. Какие из перечисленных методов следует применять для быстрой обработки изображений на этапе сегментации:
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей;
 - 4) все перечисленные.
 - 2. Оператор Лапласа в дискретной форме имеет вид:

1)
$$\nabla^2 f = [f(x+1,y) + f(x-1,y) + f(x,y+1) - f(x,y-1)] - 4f(x,y);$$

2)
$$\nabla^2 f = [f(x, y) + f(x, y) + f(x, y) - f(x, y)] - 4f(x, y);$$

3)
$$\nabla^2 f = [f(x+1,y) + f(x+1,y) + f(x,y-1) - f(x,y-1)] - 4f(x,y);$$

4)
$$\nabla^2 f = [f(x+1, y+1) + f(x-1, y-1) + f(x+1, y+1) - f(x-1, y-1)] - 8f(x, y).$$

- 3. Алгебраические свойства морфологической операции дилатации:
- 1) дистрибутивность, итеративность, инвариантность к изменению масштаба;
- 2) ассоциативность, итеративность, инвариантность к сдвигу;
- 3) дистрибутивность, ортогональность, симметричность;
- 4) асимметричность, независимость, инвариантность к изменению масштаба.

4. Ослабление действия помех на изображении достигается с помощью:

- 1) фильтрации изображения;
- 2) дискретизации изображения;
- 3) квантованием изображения;
- 4) выделением объектом на изображениях.
- 5. Математическая морфология предлагает единый мощный поход для решения многочисленных задач обработки и анализа изображений, в которой изображения представляются множествами, элементами которых являются ______ (закончите определение).
- 6. Установите **правильный порядок** выполнения процедуры размыкания множества A по примитиву B:
- 1) эрозия множества A по примитиву B, результат которой затем подвергается дилатации по тому же примитиву B;
- 2) эрозия множества В по примитиву А, результат которой затем подвергается эрозии по тому же примитиву В;
- 3) дилатация множества A по примитиву B, результат которой затем подвергается дилатации по тому же примитиву B.

7. Установите соответствие между термином и его характеристикой

Термин	Характеристика
1. Основные величи-	
ны, используемые в	
цветовой фотомет-	k) амплитуда цвета, цветовая яркость, насыщенность и цветовой тон.
рии для количе-	к) амплитуда цвета, цветовал лркоств, насвищенноств и цветовой топ.
ственного описания	
цветов:	
2. Цветовая ампли-	f) равна векторной сумме амплитуд основных откликов зрительной систе-
туда	мы:
	$\mathbf{A_c} = \mathbf{A_r} + \mathbf{A_g} + \mathbf{A_b}$
3. Насыщенность	е) в метрическом векторном пространстве количественно определяется ко-
цвета	синусом угла между вектором данного цвета и вектором равно энергетиче-
	ского белого цвета:
	$S = \cos \theta$.

Вариант 2

- 1. Морфологическая операция эрозия A по B для множеств A и B из пространства Z^2 определяется как:
- 1) $A\Theta B = \{z \mid (B)_z \subseteq A\};$
- 2) $A \oplus B = \{z | (\hat{B})_z \cap A \neq \emptyset\};$
- 3) $A \circ B = (A \Theta B) \oplus B$;
- 4) $A \bullet B = (A \oplus B) \odot B$.
- 2. Морфологическая операция замыкания используется для:
- 1) устранения небольших (по сравнению с размерами примитива) светлых деталей, при сохранении практически неизменными общей яркости и крупных ярких деталей;
- 2) устранения небольших (по сравнению с размерами примитива) темных объектов на изображении, при сохранении практически неизменными общей яркости и крупных ярких объектов:
- 3) появления небольших (по сравнению с размерами примитива) светлых объектов, при сохранении практически неизменными общей яркости.
 - 3. Модуль градиента определяется как:

1)
$$|\nabla f| = (G_x^2 + G_y^2)^{1/2} = \sqrt{(\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2}$$
;

2)
$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 - \left(\frac{\partial f}{\partial y}\right)^2}$$
;

3)
$$|\nabla f| = (G_x^2 + G_y^2)^2 = ((\frac{\partial f}{\partial x})^2 + (\frac{\partial f}{\partial y})^2)^2$$
;

4)
$$|\nabla f| = (G_x^2 - G_y^2)^2 = ((\frac{\partial f}{\partial x})^2 - (\frac{\partial f}{\partial y})^2)^2$$
.

- 4. Процедура нерезкого маскирования изображения применяется с целью:
- 1) повышения резкости изображений и заключается в вычитании из изображения его расфокусированной копии;
- 2) понижения резкости изображений и заключается в вычитании из изображения его расфокусированной копии;
- 3) повышения резкости изображений и заключается в сложении изображения с его расфокусированной копией;
- 4) понижения резкости изображений и заключается в сложении изображения с его расфокусированной копией
- 5. Применение морфологической операции дилатации к полутоновому изображению в случае, если все значения примитива положительные, то результирующее изображение становится ______ (закончите предложение).

- 6. Установите **правильную последовательность** применение морфологической операции эрозии к полутоновому изображению приводит в целом к двоякому эффекту:
- 1) если все значения примитива положительные, то результирующее изображение становится темнее исходного;
- 2) яркие детали исходного изображения, площадь которых меньше площади примитива, ослабляются, причем степень этого ослабления зависит от значений яркости элементов изображения вокруг этих деталей, а также от формы и амплитудных значений самого примитива.
- 3) темные объекты исходного изображения, площадь которых больше площади примитива, усиливаются, причем степень этого усиления зависит от значений яркости элементов изображения, а также от формы и амплитудных значений самого примитива.

7. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Процедура дилатации множества A по примитиву В	$\hat{\bf k}$) множество всех таких смещений z , при которых множества \hat{B} и A совпадают, по меньшей мере, в одном элементе;
2. Смешанный граф	f) как правило, граф, имеющий как ориентированные, так и неориентированные ребра
3. Частотные методы обработки изображений	е) основаны на изменении сигнала, путем применения к изображению преобразования Фурье.

Тема 8. Методы и алгоритмы сегментации изображений

Вариант 1

1. Какие из перечисленных методов следует применять для быстрой обработки изображений на этапе сегментации:

- 1) пороговые методы;
- 2) гистограммные методы;
- 3) методы выращивания областей;
- 4) все перечисленные.

2. Какие из перечисленных методов учитывают связность областей в процессе сегментании:

- 1) пороговые методы;
- 2) гистограммные методы;
- 3) методы выращивания областей;
- 4) все перечисленные.

3. К каким из перечисленных методов относится алгоритм K-средних (обобщенный метод Ллойда):

- 1) методам сегментации, основанным на кластеризации пикселей изображения;
- 2) методам выращивания областей;
- 3) гистограммным методам;
- 4) методам пороговой сегментации.

4. При проведении сегментации изображений методом сдвига центра масс рассчитываются:

$$M_x = \frac{\sum_i x_i \cdot w_i}{\sum_i w_i}; \quad M_y = \frac{\sum_i y_i \cdot w_i}{\sum_i w_i};$$

$$\begin{split} M_{x} &= \frac{\sum_{i} x_{i}}{\sum_{i} w_{i}}; \quad M_{y} = \frac{\sum_{i} y_{i}}{\sum_{i} w_{i}}; \\ M_{x} &= -\frac{\sum_{i} x_{i}}{\sum_{i} w_{i}}; \quad M_{y} = -\frac{\sum_{i} y_{i}}{\sum_{i} w_{i}}; \\ M_{x} &= \frac{\sum_{i} - x_{i}}{\sum_{i} w_{i}}; \quad M_{y} = \frac{\sum_{i} - y_{i}}{\sum_{i} w_{i}}; \end{split}$$

- 5. Сегментация изображений заключается в разделении изображения на несколько сегментов,т.е. формируется множество пикселей, которые также называют ______ (закончите определение).
- 6. Установите **правильную последовательность** в установлении оценки качества метода которым должна обладать хорошая сегментация:
 - 1) однородность регионов (однородность цвета или текстуры);
 - 2) непохожесть соседних регионов;
 - 3) гладкость границы региона;
 - 4) маленькое количество мелких «дырок» внутри региона и т.д.

7. Установите соответствие между термином и его характеристикой

Термин	Характеристика
1. Векторное изоб-	к) описывается как набор графических примитивов, из которых и формиру-
ражение	ется изображение.
2. Цветовой тон точки для RGB точки	f) описывается двумерным массивом, каждый элемент которого представляет собой некоторое описание цвета.
3. Бинарные изоб-	e) (black and white) пиксели могут принимать только два значения: 0 и 1 (чер-
ражения	ный и белый цвет).

Вариант 2

- 1. Достоинства сегментации изображений методом сдвига центра масс:
- 1) необходимости в изначальных знаниях о количестве кластеров или о каких-либо их признаках;
- 2) процедура вычисления вектора среднего сдвига не требует больших вычислительных ресурсов;
 - 3) метод не является чувствительным к размером окна;
 - 4) метод применяется для малых размеров окна.
- 2. Во сколько этапов осуществляется выделение контуров на изображениях с помощью оператора Канни:
 - 1. в 4 этапа

- 2. в 3 этапа
- 3. в 2 этапа
- 4. в 5 этапов
- 3. Как представляются изображения при сегментации методом, основанным на теории графов:
 - 1) в виде взвешенного неориентированного графа;
 - 2) в виде взвешенного ориентированного графа;
 - 3) в виде ориентированного графа;
 - 4) в виде неориентированного графа.
 - 4. Какой фильтр применяется при сегментации изображения методом Канни?
 - 1) фильтр Гаусса;
 - 2) фильтр соль и перец;
 - 3) белый шум;
 - 4) шум Релея.
- 5. Для выявления крупных объектов, устранения помех, расфокусировки изображения применяются фильтры ______ (закончите предложение).
 - 6. Установите **правильный** порядок для автоматического выбора значения порога ${\it T}$
 - 1. Выбирается некоторая начальная оценка порога T .
- 2. Производится сегментация изображения с помощью порога T . В результате образуются две группы пикселей: G_1 , состоящая из пикселей с яркостью больше T , и G_2 , состоящая из пикселей с яркостью меньше или равной T .
- 3. Вычисляются значения μ_1 и μ_2 средних яркостей пикселей по областям G_1 и G_2 соответственно.
 - 4. Вычисляется новое значение порога:

$$T = \frac{1}{2}(\mu_1 + \mu_2).$$

7. Установите соответствие между термином и определением

Термин	Определение
1. Полноцветные изображе-	k) (truecolor, rgb) – изображения, пиксели которого непосред-
кин	ственно хранят информацию об интенсивностях цветовых со-
	ставляющих.
2. Функция, применяемая для	$\mathbf{f}) \ \mathbf{I} = \mathbf{rgb2gray}(\mathbf{RGB})$
преобразования полноцвет-	
ного изображения в полуто-	
новое в среде MATLAB	
3. Функция, применяемая для	$\mathbf{e)} \ \mathbf{I} = \text{ind2gray}(\mathbf{X}, \text{map})$
преобразования преобразо-	
вание палитрового изобра-	
жения в полутоновое в среде	
MATLAB	

Шкала оценивания: балльная.

Критерии оценивания:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -1 балл, не выполнено -0 баллов.

Применяется следующая шкала перевода баллов в оценку по 5-балльной шкале:

- 7-6 баллов соответствуют оценке «отлично»;
- 5-4 баллов оценке «хорошо»;
- 3 баллов оценке «удовлетворительно»;
- 2 баллов и менее оценке «неудовлетворительно».

1.4 ТЕМЫ РЕФЕРАТОВ

- 1. Сегментация изображений, основанная на применении морфологических операций эрозии и наращивания.
- 2. Сегментация изображений, основанная на применении статистических характеристик текстуры.
 - 3. Гранулометрия. Обнаружение и различение на изображении объектов известной формы.
 - 4. Сегментация изображений, основанная на применении метода связных областей.
- 5. Сегментация изображений в цветовых пространствах HSI и RGB. Выделение контуров на цветных изображениях.
 - 6. Сегментация изображений, основанная на применении адаптивных порогов.
 - 7. Сегментация изображений при помощи нейронных сетей.
 - 8. Текстурная сегментация изображений.
- 9. Модели сжатия изображений. Сжатие изображений без потерь. Проблема накопления ошибок преобразования при сжатии изображений.
 - 10. Сжатие изображений с потерями. Сжатие изображений в формате JPEG.
 - 11. Сжатие изображений на основе вейвлет-преобразования.
 - 12. Применение нейронных сетей для распознавания и обработки изображений отпечатков.
 - 13. "Проклятие размерности". Избыточность входных данных. Генетические алгоритмы
 - 14. Применение генетических алгоритмов в обучении нейронных сетей.
- 15. Сегментация изображений, основанная на применении морфологических операций размыкание и замыкание.
- 16. Сегментация изображений, основанная на применении статистических характеристик текстуры.
 - 17. Гранулометрия. Обнаружение и различение на изображении объектов известной формы.
 - 18. Сегментация изображений, основанная на применении метода связывания пирамиды.
- 19. Сегментация изображений в цветовых пространствах HSI и RGB. Выделение контуров на цветных изображениях.
 - 20. Сжатие изображений с потерями. Кодирование с предсказанием. Вейвлет-кодирование.
 - 21. Дескрипторы границ. Фурье-дескрипторы. Статистические характеристики.
 - 22. Дескрипторы областей. Топологические дескрипторы. Текстурные дескрипторы.
 - 23. Вейвлет-преобразования. Субполосное кодирование.
 - 24. Сегментация изображений при помощи нейронных сетей.
 - 25. Применение гибридных нейронных сетей для обработки изображений.
 - 26. Сегментация изображений, основанная на применении теории графов.
 - 27. Сегментация изображений с помощью вейвлет-преобразования.
 - 28. Распознавание изображений с помощью нечетких нейронных сетей.
- 29.. Отбор входных информационных характеристик для обучения нейронной сети с помощью генетических алгоритмов.
 - 30. Сравнительнай анализ методов сегментации изображений. Критерии качества.

Шкала оценивания: балльная.

Критерии оценивания (нижеследующие критерии оценки являются примерными и могут корректироваться):

- **5 баллов** (или оценка **«отлично»**) выставляется обучающемуся, если тема реферата раскрыта полно и глубоко, при этом убедительно и аргументированно изложена собственная позиция автора по рассматриваемому вопросу; структура реферата логична; изучено большое количество актуальных источников, грамотно сделаны ссылки на источники; самостоятельно подобран яркий иллюстративный материал; сделан обоснованный убедительный вывод; отсутствуют замечания по оформлению реферата.
- 4 баллов (или оценка «хорошо») выставляется обучающемуся, если тема реферата раскрыта полно и глубоко, сделана попытка самостоятельного осмысления темы; структура реферата логична; изучено достаточное количество источников, имеются ссылки на источники; приведены уместные примеры; сделан обоснованный вывод; имеют место незначительные недочеты в содержании и (или) оформлении реферата.
- **3 баллов** (или оценка **«удовлетворительно»**) выставляется обучающемуся, если тема реферата раскрыта неполно и (или) в изложении темы имеются недочеты и ошибки; структура реферата логична; количество изученных источников менее рекомендуемого, сделаны ссылки на источники; приведены общие примеры; вывод сделан, но имеет признаки неполноты и неточности; имеются замечания к содержанию и (или) оформлению реферата.
- **2 баллов** (или оценка **«неудовлетворительно»**) выставляется обучающемуся, если содержание реферата имеет явные признаки плагиата и (или) тема реферата не раскрыта и (или) в изложении темы имеются грубые ошибки; материал не структурирован, излагается непоследовательно и сбивчиво; количество изученных источников значительно менее рекомендуемого, неправильно сделаны ссылки на источники или они отсутствуют; не приведены примеры или приведены неверные примеры; отсутствует вывод или вывод расплывчат и неконкретен; оформление реферата не соответствует требованиям.

1.5 ТЕМЫ КУРСОВЫХ РАБОТ

- 1. Сегментация изображений, основанная на применении морфологических операций эрозии и наращивания
 - 2. Системы распознавания изображений номеров вагонов
- 3. Программа для составления графиков производства работ и оптимизации сетевых графиков
 - 4. Системы распознавания на основе изображений лиц и карты пропуска
 - 5. Сегментация изображений, основанная на применении методы связывания пирамиды
 - 6. Сегментация сравнительного анализа изображений в цветовых пространствах HIS, RGB
 - 7. Программа сегментации изображений на основании применения адаптивных порогов
 - 8. Сегментация изображений при помощи нейронных сетей
 - 9. Программа обработки изображений на основе текстурной сегментации
 - 10. Модели сжатия изображений. Сжатие изображений без потерь
 - 11. Сжатие изображений с потерями в формате JPEG.
 - 12. Программа сжатия изображений на основе вейвлет-преобразования
 - 13. Применение генетических алгоритмов к обработке изображений
- 14. Программа восстановления границ объектов на изображениях на основе Фурье-дескрипторов
 - 15. Программа сегментации изображений на основании теории графов
 - 16. Программа обработки изображений с использованием вейвлет преобразования Хаара
 - 17. Программа сегментации изображений методом Виолы-Джонса
- 18. Сравнительный анализ градиентных методов сегментации изображений. Критерии качества

- 19. Программа кодирования изображений с помощью вейвлетов
- 20. Программа сжатия изображений на основании неравномерного кодирования
- 21. Программа сегментации изображений на основании слияния и разделения областей
- 22. Программа преобразования изображений на основе нахождения центра тяжести гистограммы цветного изображения
- 23. Программа обработки цветных изображений на основе нечеткой информации об объектах
 - 24. Программа распознавания образов на изображения на основе потенциальных функций
- 25. Программа идентификации пользователя на основе распознавания радужной оболочки глаза
 - 26. Программа стегоанализа изображений на основе нейронных сетей
 - 27. Программа идентификации пользователя на основе распознавания отпечатков пальцев
- 28. Программа формирования звуков по цветовым характеристикам изображения на основе нейронных сетей рекуррентного типа
- 29. Программа адаптивной обработки изображений неоднородного потока элементов зерновой смеси
- 30. Программа удаления шумов кардиосигнала при помощи вейвлетов. Вывод отношений сигнал/шум
- 31. Программа многоуровнего анализа кардиосигнала с помощью вейвлета Добеши. Статистичесие харатеристики
 - 32. Программа реализации вейвлет-анализа цен акций ЛУКОЙЛ
 - 33. Программа вейвлет преобразования двумерных сигналов
- 34. Программа преобразования изображений на основе нахождения моды гистограммы цветного изображения
- 35. Программа слияния(наложения) двух нечетких изображений. Восстановление изображений с помощью вейвлетов
- 36. Обнаружение линий и кругов на изображениях на основе преобразования Хафа. [Lines and circles detection on images using Hough transform].
- 37. Обнаружение углов на изображениях на основе детектора Харриса и Shi-Tomasi. [Corner detection on images using Harris detector and ShiTomasi detector].
- 38. Отслеживание объектов на видеопоследовательности на основе алгоритма KTL (Kanade-Lucas-Tomasi tracker). [Object tracking on video sequence using algorithm KTL]
- 39. Отслеживание объектов на видеопоследовательности на основе алгоритма CAMShift (Continuosly adaptive Mean Shift). [Object tracking on video sequence using CAMShift].
 - 40. Распознавание текста с использованием функций библиотеки OpenCV
- 41. Программа распознавания объектов на изображениях с использованием вейвлет-дескрипторов
 - 42. Программа формирования многоканальных изображений
- 43. Программа сравнительного анализа обработки изображений методом Уолеса и статистическим
- 44. Программа реализации методов сегментации текстовой информации на изображениях денежных купюр
- 45. Разработка приложения для загрузки изображения нот с последующим их распознаванием и проигрыванием
 - 46. On-line распознавание рукописных символов

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

- 1 Вопросы в закрытой форме.
- 1.1. Компьютерная обработка и распознавание изображений заключается:
- 1) в улучшении зрительного восприятия изображений и классификация объектов на изображениях;
 - 2) только в классификация объектов;
 - 3) только улучшение зрительного восприятия изображений
 - 4) цветовая коррекция
 - 1.2. Иконика это:
 - 1) создание и обработка изображений с помощью ЭВМ;
 - 2) только обработка изображений;
 - 3) только создание изображений;
 - 4) создание и обработка иконок.
- 1.3. Если при передаче цифрового сигнала цветного телевидения необходимо передавать потоки порядка 216 Мбит/с, то:
- 1) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 1 Гбит/с;
- 2) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 216 Мбит/с;
- 3) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 413 Мбит/с;
- 4) для передачи телевидения высокой четкости скорость передачи должна составлять порядка 150 Мбит/с;
 - 1.4. Стационарный случайный процесс называется эргодическим, если:
- 1) любая его вероятностная характеристика может быть получена из одной реализации путем усреднения по времени. При этом среднее по времени равно среднему по ансамблю реализаций;
- 2) некоторые вероятностные характеристики может быть получены из нескольких реализаций путем усреднения по времени. При этом среднее по времени равно среднему по ансамблю реализаций;
 - 3) вероятностные характеристики не подчиняются нормальному закону распределения;
 - 4) ординаты случайной функции подчиняются нормальному закону распределения.
 - 1.5. Спектр изображения получают с помощью применения:
 - 1) прямого двумерного преобразования Фурье;
 - 2) обратного преобразования Фурье;
 - 3) прямого двумерного преобразования Фурье автокорреляционной функции;
 - 4) аппроксимацией функции автокорреляции.
 - 1.6. Спектральная интенсивность изображения характеризует:
 - 1) распределение энергии по пространственным частотам;
 - 2) интеграл энергетического спектра;
 - 3) пространственные частоты изображения;
 - 4) временный сигнал.

- 1.7. Энергия изображения определяется как:
- 1) интеграл энергетического спектра по пространственным частотам;
- 2) восстановление изображения по его спектру;
- 3) пространственные частоты изображения;
- 4) функция распределения энергии по пространственным частотам.
- 1.8. Случайный процесс называется стационарным в широком смысле, если:
- 1) имеет постоянные значения математического ожидания и дисперсии, а его автокорреляционная функция зависит не от координат, а от их разностей (сдвига).
- 2) имеет постоянные значения математического ожидания и дисперсии, а его автокорреляционная функция зависит от координат, и разностей (сдвига)
- 3) не имеет постоянных значений математического ожидания и дисперсии, а его автокорреляционная функция принимает постоянные значения;
- 4) имеет постоянные значения математического ожидания, дисперсии и автокорреляционной функции.
 - 1.9. Случайный процесс называется стационарным в узком смысле, если:
 - 1) п-мерная плотность распределения вероятностей инвариантна к сдвигу;
 - 2) п-мерная плотность распределения вероятностей не инвариантна к сдвигу;
 - 3) п-мерная плотность распределения не зависит от моментов времени;
 - 4) не имеет постоянных значений математического ожидания и дисперсии.
 - 1.10. Стационарный случайный процесс называется эргодическим, если:
- 1) любая вероятностная характеристика может быть получена из одной реализации путем усреднения по времени;
- 2) любая его вероятностная характеристика не может быть получена из нескольких реализаций путем усреднения по времени;
 - 3) может быть получена дисперсия из одной реализации путем усреднения по времени
 - 4) дисперсия, математическое ожидание и плотность распределения постоянны.
 - 1.11. Субъективные критерии оценки качества изображения:
- 1) это критерии визуального восприятия, оцениваемые в процессе экспертизы некоторой группой наблюдателей;
- 2) это критерии визуального восприятия, оцениваемые только координатные искажения группой наблюдателей;
- 3) это критерии визуального восприятия, оцениваемые только яркостные искажения группой наблюдателей;
- 4) это критерии визуального восприятия, оцениваемые реального и идеального изображений.
- 1.12. Объективными критериями, используемыми при оценке качества изображений, являются критерии:
- 1) позволяющие получить среднеквадратическую характеристику изображения разностного сигнала:
- 2) позволяющие получить просто вычисляемую характеристику изображения многомерного сигнала:

- 3) позволяющие получить просто вычисляемую характеристику изображения пространственного сигнала:
- 4) позволяющие получить просто вычисляемую характеристику изображения отношения сигнал/шум.
 - 1.13. Главная цель улучшения изображения заключается в:
- 1) такой обработке изображения, чтобы результат оказался более подходящим для конкретного применения;
- 2) такой обработке изображения, чтобы результат оказался более подходящим для всех случаев применения;
 - 3) переводе изображения в другую цветовую кодировку;
 - 4) применении к изображению специальных методов.
 - 1.4. На какой парадигме основаны пространственные методы обработки изображений?
 - 1) На обработке пикселей изображения, которые находятся в плоскости изображения.
 - 2) На изменении сигнала, путем применения к изображению преобразования Фурье.
- 3) На разбиении изображения на отдельные объекты и анализе переходов между этими объектами.
 - 4) На переводе изображения в пространство определенных признаков.
 - 1.15. На чем основаны частотные методы обработки изображений?
 - 1) На изменении сигнала, путем применения к изображению преобразования Фурье.
 - 2) На обработке пикселей изображения, которые находятся в плоскости изображения.
 - 3) На подсчете количества появления пикселей с определенными параметрами.
- 4) На разбиении изображения на отдельные объекты и анализе переходов между этими объектами.
 - 1.16. Поэлементная обработка характеризуется тем, что:
- 1) каждый элемент входного изображения математически преобразуется в новое значение элемента выходного изображения, независимо от значений других элементов входного изображения;
- 2) каждый элемент входного изображения рассматривается и обрабатывается только вместе с другими элементами изображения, находящимся в определенном радиусе в выбранном пространстве признаков;
- 3) для каждого элемента входного изображения принимается решение, обрабатывать его или нет:
- 4) входное изображение делится на элементы, которые, в свою очередь, делятся на еще более мелкие элементы, до достижения необходимого уровня детализации.
 - 1.17. Для контрастирования изображений используется:
 - 1) поэлементная обработка;
 - 2) обработка всего изображения как единого целого;
 - 3) эквализация гистограммы изображения;
 - 4) кластеризация изображения.
 - 1.18. Для преобразования изображения в негатив используется:
 - 1) линейное преобразование;
 - 2) логарифмическое преобразование;
 - 3) степенное преобразование;
 - 4) геометрическое преобразование.

- 1.19. Для чего используют логарифмическое преобразование изображений:
- 1) растяжения диапазона темных пикселей на изображении с одновременным сжатием диапазона значений ярких пикселей;
 - 2) получения эффекта фотографического негатива;
 - 3) равномерного распределения яркостей пикселей изображения;
 - 4) Для гамма-коррекции пикселей изображения.
 - 1.20. Гамма-коррекция изображений представляет собой:
 - 1) степенное преобразование;
 - 2) логарифмическое преобразование;
 - 3) линейное преобразование;
 - 4) метод обработки гистограммы изображения.
- 1.21. Для преобразования исходного изображения в изображение, имеющее гистограмму заданного вида необходимо:
- 1) каждому уровню яркости исходного изображения поставить в соответствие уровень яркости д входного изображения;
- 2) каждому уровню яркости исходного изображения поставить в соответствие противоположный уровень яркости (негативное преобразование);
- 3) каждому уровню яркости исходного изображения поставить в соответствие максимальный или минимальный уровень яркости изображения;
 - 4) оставить уровни яркости без изменений.
 - 1.22. Процедуры преобразования гистограмм могут применяться:
 - 1) как к изображению в целом, так и к отдельным его фрагментам;
 - 2) только к изображению в целом;
 - 3) только к фрагментам изображения;
 - 4) только к отдельным пикселям изображения.
 - 1.23. К чему приводит операция эквализация гистограммы:
- 1) выравниванию интегральных площадей равномерно распределенных диапазонов яркостей;
- 2) присвоению пикселям одного из двух значений яркости, максимального и минимального, в зависимости от заданного порогового значения;
 - 3) увеличению разрыва между значением максимальной и минимальной яркости;
- 4) дроблению диапазонов яркостей с большой интегральной площадью на более мелкие диапазоны.
 - 1.24. Эквализацией гистограммы называется:
 - 1) преобразование, при котором выходное изображение имеет равномерное распределение.
- 2) преобразование, при котором выходное изображение имеет геометрическое распределение.
- 3) преобразование, при котором выходное изображение имеет логарифмическое распределение.
 - 4) преобразование, при котором выходное изображение имеет распределение Бернулли.
 - 1.25. Ослабление действия помех на изображении достигается с помощью:
 - 1) фильтрации изображения;
 - 2) дискретизации изображения;
 - 3) квантованием изображения;
 - 4) выделением объектом на изображениях.

- 1.26. Прямоугольная область размером n \times m, на которой задана импульсная характеристика, называется:
 - 1) маской;
 - 2) шумом;
 - 3) искажением;
 - 4) изображением.
- 1.27. Общая формула фильтрации изображения размером $m \times n$ фильтром взвешенного среднего задается выражением:

1)
$$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s,y+t) \cdot h(s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s,t)}$$
2)
$$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x-s,y+t) \cdot h(x-s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(x+s,t)}$$
3)
$$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s,y+t) \cdot h(s,t)}$$
4)
$$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x,y) \cdot h(s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(y+s,x+t)}$$

- 1.28. Результаты корреляции и свертки получаются друг из друга поворотом на:
- 1) 180°;
- 2) 270°;
- 3) 90°;
- 4) 45°:
- 1.29. Нормирующий коэффициент определяется из условия равенства единице суммы всех коэффициентов КИХ:

1)
$$k = \sum_{t=-m/2}^{1/2} \sum_{s=-n/2}^{n/2} h(s,t);$$

2)
$$k = \sum_{t=-m/2}^{2/2} \sum_{s=-n/2}^{n/2} h(s-x,t-y);$$

3)
$$k = \sum_{t=-m/2}^{-1} \sum_{s=-n/2}^{n/2} h(s+x,t-y);$$

4)
$$k = \sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s-y,t+x).$$

- 1.30. Маски вида $\begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix}$ получили название:
- 1) Джудит Превитт;
- 2) Собеля;
- 3) Γaycca;

СЯ

- 4) Лапласса.
- 2 Вопросы в открытой форме.

2.1. Критерии визуального восприятия изображения, оцениваемые в процессе экспертизы некоторой группой экспертов называют (закончите определение).
2.2. Назначение цветовой модели заключается в том, чтобы произвести описание цветов некоторым (закончите определение).
2.3. В цветовом координатном пространстве RGB любой цвет формируется как (закончите предложение) 2.4. Число битов, используемых для представления каждого пикселя в RGB пространстве, называется (закончите определение).
2.5. Суммарное число возможных цветов в 24-битовом RGB изображении составляет (закончите определение).
2.6. Ввод изображений в память компьютера осуществляется с помощью (закончите определение).
2.7. Для осуществления цифровой обработки изображений необходимо выполнить преобразование непрерывного (аналогового) сигнала изображений в (закончите определение).
2.8. Преобразование непрерывного изображения заменой реальным набором отсчетов в дискретные моменты времени, называется (закончите определение).
2.9. Преобразование непрерывного множества значений сигнала изображения в множество квантованных значений называется (закончите определение).
2.10. Числовое изображение представляется в виде (закончите предложение).
2.11. В качестве элемента объемного изображения используется (закончите определение).
2.12. Размер мельчайших различимых деталей на изображении, называется(закончите определение).

2.13. Мельчайшее различимое изменение яркости на изображении, называет-

____ (закончите определение).

2.14. Изменение числа отсчетов на изооражении достигается путем (закончите определение).
2.15. Минимальное пространственное и яркостное разрешение, при котором цифровое изображение будет относительно свободным от дефектов типа ложных контуров и ступенчатости, составляет (закончите определение).
2.16. Метод билинейной интерполяции присвоения яркостей предполагает использование
(закончите определение) соседей данного пикселя.
2.17. Пространственные методы обработки изображений включают в себя методы, основанные на обработке пикселей изображения, которые находятся в (закончите предложение).
2.18. Одним из методов предварительной обработки изображений, который приводит к равномерному распределению яркости обрабатываемого изображения, является метод (закончите определение).
2.19. Преобразование, при котором выходное изображение имеет равномерное распределение, называется (закончите определение).
2.20. Ослабление действия помех на изображении достигается с помощью (закончите определение)
2.21. Фильтрация изображений производится в пространственной и (закончите предложение) областях.
 2.22. Фильтрация в частотной области требует выполнения следующей последовательности преобразований: 1) двумерное дискретное преобразование изображения из пространственной области в частотную (например, посредством дискретного преобразования Фурье); 2) преобразование дискретного спектра сигнала изображения; 3) обратное двумерное дискретное преобразование, позволяющее
кончите предложение).
2.24 . Прямоугольная область размером $n \times m$, на которой задана импульсная характеристика, называется (закончите определение).
2.25. Если импульсная характеристика фильтра симметрична, то есть $h(s,t) = h(-s,-t)$, то вместо свертки можно выполнять (закончите определение).
2.26. Операция, представляющая вычисление в скользящей по изображению маске фильтра произведений отсчетов изображения на соответствующие коэффициенты фильтра и их суммирование, называется (закончите определение). 2.27. Для подчеркивания контуров и мелких деталей на изображении применяются фильтры (закончите предложение).
2.28. Для выявления крупных объектов, устранения помех, расфокусировки изображения применяются фильтры (закончите предложение).
2.29. Фильтры, отклик которых не зависит от направления неоднородностей на обрабатываемом изображении, называются (закончите предложение).
2.30. Нерезкое маскирование и фильтрация с подъемом высоких частот представляет процедуру, которая применяется для повышения резкости изображений и заключается в вычитании из изображения (закончите предложение).

- 3 Вопросы на установление последовательности.
- 3.1. Определите **последовательность**, которая определяет преимущества медианной фильтрации перед линейной фильтрацией (классической процедурой сглаживания):
 - 1) сохраняет резкие перепады (границы);
 - 2) эффективно сглаживает импульсный шум;
 - 3) не изменяет яркость фона.
- 3.2. Определите **последовательность**, которая определяет цели применения адаптивной медианной фильтрации изображений:
 - 1) оптимальное удаление импульсного шума;
 - 2) сглаживание других типов шумов;
- 3) уменьшение искажений границ объектов на изображении, таких как утоньшение или утолщение.
- 3.3. Какая последовательность определяет достоинства сегментации изображений методом сдвига центра масс:
- 1) отсутствие необходимости в изначальных знаниях о количестве кластеров или о какихлибо их признаках;
- 2) процедура вычисления вектора среднего сдвига не требует больших вычислительных ресурсов;
 - 3) метод не является чувствительным к размером окна;
- 3.4. Установите правильную **последовательность** методов, которые следует применять для быстрой обработки изображений на этапе сегментации?
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей;
- 3.5. Установите правильную **последовательность**, которая определяет методы, учитывающие связность областей на фазе сегментации:
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей;
 - 4) все перечисленные.
- 3.6. Выберите верную **последовательность**, которая определяет достоинства сегментации изображений методом сдвига центра масс:
- 1) отсутствие необходимости в изначальных знаниях о количестве кластеров или о какихлибо их признаках;
- 2) процедура вычисления вектора среднего сдвига не требует больших вычислительных ресурсов;
 - 3) метод не является чувствительным к размером окна.
- 3.7. Установите правильную **последовательность** условий приставления изображения при сегментации методами, основанными на теории графов?
 - 1) в виде взвешенного неориентированного графа;
 - 2) в виде взвешенного ориентированного графа;
 - 3) в виде ориентированного графа.
- 3.8. Установите **правильную последовательность** процесса, устанавливающего результат решения задачи частичной сегментации:

- 1) изображение с подчеркнутыми объектами и границами;
- 2) сглаженное изображение;
- 3) структурное описание изображения;
- 4) размытое изображение.
- 3.9. Установите правильную **последовательность реализации** основных отличий интерактивных методов сегментации от автоматических?
 - 1) используют пользовательский ввод в процессе работы;
 - 2) быстрая обработка изображений;
 - 3) грубая обработка изображения;
- 3.10. Установите **правильный** порядок процесса реализации метода фильтрации в частотной области, позволяющего по ДПФ изображения подобрать:
 - 1) частотную характеристику фильтра;
 - 2) амплитудную характеристику фильтра;
 - 3) фазовую характеристику фильтра;
 - 4) передаточную функцию фильтра.
- 3.11. Установите правильную **последовательность**, устанавливающую по известной передаточной функции НЧ фильтра получить передаточную характеристику ВЧ фильтра в соответствии с уравнением:
 - 1) HBY(u,v) = 1 HHY(u,v);
 - 2) HBY(u,v) = HHY(u,v) 0.5;
 - 3) HBY(u,v) = 1/(HHY(u,v)) 0.5;
 - 4) HBY(u,v) = 1/(HHY(u,v)-0.5).
- 3.12. Установите **правильный** порядок представления искаженного изображения в пространственной области в виде:
 - 1) $g(x, y) = h(x, y) * f(x, y) + \eta(x, y)$,

где g(x,y) - искаженное изображение; h(x,y) - функция, представляющая искажающий оператор в пространственной области; f(x,y) - исходное изображение; $\eta(x,y)$ - аддитивный шум;

2)
$$g(x, y) = h(x, y) + f(x, y) + \eta(x, y)$$
,

где g(x,y) - искаженное изображение; h(x,y) - функция, представляющая искажающий оператор в пространственной области; f(x,y) - исходное изображение; $\eta(x,y)$ - аддитивный шум;

3)
$$g(x, y) = h(x, y) + f(x, y) \bullet \eta(x, y)$$
,

где g(x,y) - искаженное изображение; h(x,y) - функция, представляющая искажающий оператор в пространственной области; f(x,y) - исходное изображение; $\eta(x,y)$ - аддитивный шум.

- 3.13. Установите правильную последовательность установления частотной характеристики НЧ фильтра Баттерворта (Butterworth) порядка k, подавляющего частоты, отстоящие на расстояние более r (по окружности) от начала координат:
 - 1) $H(u,v) = 1/(1+(r(u,v)/r_{cn})^{2k})$;
 - 2) $H(u,v) = 2/(2-(r(u,v)/r_{cp})^{2k})$;
 - 3) $H(u,v) = 1/(1+(r(u,v)/r_{cp})^{-2k})$.
- 3.14. Установите **правильный порядок** выполнения процедуры размыкания множества A по примитиву B:
- 1) эрозия множества A по примитиву B, результат которой затем подвергается дилатации по тому же примитиву B;
- 2) эрозия множества В по примитиву А, результат которой затем подвергается эрозии по тому же примитиву В;

- 3) дилатация множества A по примитиву B, результат которой затем подвергается дилатации по тому же примитиву B.
- 3.15. Укажите **правильную последовательность** этапов выполнения процедуры замыкания множества A по примитиву B:
- 1) дилатация множества А по примитиву В, результат которой затем подвергается эрозии по тому же примитиву В;
- 2) эрозия множества A по примитиву B, результат которой затем подвергается дилатации по тому же примитиву B;
- 3) эрозия множества В по примитиву А, результат которой затем подвергается дилатации по тому же примитиву В.
- 3.16. Укажите **правильную последовательность** процесса выполнения свойств для операций дилатация и эрозия:
 - 1) дистрибутивность, итеративность, инвариантность;
 - 2) итеративность, инвариантность, линейная зависимость;
 - 3) дистрибутивность, итеративность, смежность.
- 3.17. Установите **правильный порядок** выполнения процедуры операции дилатация применительно к обработке изображений:
 - 1) расширение изображения изображений;
 - 2) сглаживание контуров изображений;
 - 3) перевод изображения из палитрового в полутоновое.
 - 4) сжатие изображений.
- 3.18. Установите **правильную последовательность** в реализации морфологической операции эрозии множества A по примитиву B:
- 1) множество всех таких точек z, при сдвиге в которые множество B целиком содержится в A;
- 2) множество всех таких точек z, при сдвиге в которые множество A целиком содержится в B;
- 3) множество всех таких точек z, при сдвиге в которые множество B целиком не содержится в A;
- 3.19. Установите **правильную** последовательность этапов выполнения процедуры дилатации множества A по примитиву B:
- а) установить множество всех таких смещений z , при которых множества $\hat{B}_{}$ и A совпадают, по меньшей мере, в одном элементе;
 - б) выявить любое решение, минимизирующее целевую функцию;
 - в) определить положительное решение, минимизирующее целевую функцию.
- 3.20. Установите **правильную последовательность** этапов реализации процесса выделения контуров с помощью оператора Канни:
 - 1. в 4 этапа;
 - 2. в 3 этапа;
 - 3. в 2 этапа;
- 3.21. Установите **правильную последовательность** этапов сегментации на основе алгоритм K-средних (обобщенный метод Ллойда)?
 - 1) методам сегментации, основанным на кластеризации пикселей изображения;
 - 2) методам выращивания областей;
 - 3) гистограммным методам.

3.22. Укажите **правильный порядок** оценки **результатов** процесса **с**егментации изображений методом сдвига центра масс:

$$\begin{split} M_{x} &= \frac{\sum_{i} X_{i} \cdot W_{i}}{\sum_{i} W_{i}}; \quad M_{y} &= \frac{\sum_{i} y_{i} \cdot W_{i}}{\sum_{i} W_{i}}; \\ M_{x} &= \frac{\sum_{i} X_{i}}{\sum_{i} W_{i}}; \quad M_{y} &= \frac{\sum_{i} y_{i}}{\sum_{i} W_{i}}; \\ M_{x} &= -\frac{\sum_{i} X_{i}}{\sum_{i} W_{i}}; \quad M_{y} &= -\frac{\sum_{i} y_{i}}{\sum_{i} W_{i}}; \end{split}$$

- 3.23. Установите **правильную последовательность** реализации основной идеи симплексметода:
 - а) перебор всех вершин многогранника планов;
- б) переход от одной вершины к другой так, что значение целевой функции не меньше в задаче максимизации и не больше в задаче минимизации;
 - в) перебор всех опорных планов;
 - г) кратчайший переход от одной угловой точки к другой;
- 3.24. Установите **правильный порядок** выявления методов, учитывающих связность областей на этапе сегментации:
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей.
- 3.25. Установите **правильный порядок** выявления последовательности методов, применяемой для быстрой обработки изображений при сегментации?
 - 1) пороговые методы;
 - 2) гистограммные методы;
 - 3) методы выращивания областей;
- 3.26. Установите **правильную последовательность** в определении объективной меры, применяемой для оценки качества алгоритма фильтрации, при использовании пикового отношения сигнал/шум (ПОСШ):

1)
$$\Pi OCIII = 20 \cdot \lg \frac{255}{\sqrt{CKO}}$$
;

2)
$$\Pi OCIII = 255 + \lg \frac{1}{\sqrt{CKO}};$$

3)
$$\Pi OCIII = \lg \frac{1}{\sqrt{CKO}}$$
;

- 3.27. Установите **правильную последовательность** выявления предназначений применения Сигма-фильтра:
 - 1) подавления шумов на изображении с сохранением резких границ областей;
 - 2) подавления всех видов шумов на изображении с изменением яркости изображения;
 - 3) подавления шумов на изображении с изменением контуров объектов;
 - 4) сглаживания шума на однородных участках изображения, изменяя яркости пикселей.

- 3.28. Установите **правильный порядок** установления преимуществ в реализации медианной фильтрации перед линейной фильтрацией:
- 1) эффективно устраняет мелкие детали и резкие выбросы, практически не изменяя остального изображения;
 - 2) слабо устраняет мелкие детали и практически не изменяет остального изображения;
 - 3) не устраняет мелкие детали, изменяет изображение.
- 3.29. Установите **правильную последовательность** в определении условий соответствия центрального элемента окна при применении адаптивной медианной фильтрации:
 - 1) A1= fmed fmin ; A2= fmed fmax ; A1>0 и A2<0, B1= f (x, y)- fmin ; A2= f (x, y) fmax ; B1>0 и B2<0;
 - 2) A1= fmed fmax ; A2= fmed fmin ; A1>0 и A2<0, B1= f (x, y)- fmin ; B2= f (x, y) fmax ; B1>0 и B2<0;
 - 3) A1=fmed fmin ; A2=fmed fmax ; A2>0 и A1<0, B1=f(x, y)- fmin ; A2=f(x, y) fmax ; B2>0 и B1<0;
- 3.30. Установите **правильную последовательность** в установлении необходимого и достаточного условий для подавления помехи, при применении медианного фильтра, если она не является точечной:
 - 1) увеличить размер матрицы;
 - 2) уменьшить размер матрицы;
 - 3) применить квадратную матрицу;
 - 4) применить сигма-фильтр.
 - 4 Вопросы на установление соответствия.

4.1. Установите соответствие термина и определения

Термин	Определение	
1. Цветовая модель	к) представляет собой пространство, в котором компонента Y включает	
YCrCb	в себя только информацию о яркости пикселей, а компоненты Cb и Cr	
	содержат только информацию о цвете и насыщенности.	
2. Цветовая модель YIQ	f) представляет собой пространство как вариант кодирования цветов	
	RGB, обеспечивающий совместимость с черно – белым.	
3. Цветовая модель HSI	е) представляет собой пространство, определяющее цветовой тон, насы-	
	щенность, интенсивность, используемое как идеальное средство для по-	
	строения алгоритмов обработки изображений, поскольку в основе моде-	
	ли лежит естественное и интуитивно близкое человеку описание цвета.	

4.2. Установите соответствие термина и определения

Термин	Определение
1. Цветовой тон Н для	$(G-B)/(3(R+G-2B)),$ если $B=\min(R,G,B)$
каждого пикселя, за-	k) $H = \left\{ (B-R)/(3(G+B-2R)) + 1/3, ecnu \ R = \min(R, G, B) \right\}$
данного в формате	
RGB	$(R-G)/(3(R+B-2G))+2/3$, если $G=\min(R,G,B)$
2. Насыщенность S	\mathbf{p} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q} \mathbf{q}
для каждого пикселя,	f) $S = 1 - \frac{3}{R + G + B} (\min(R, G, B))$
заданного в формате	
RGB	

3. Интенсивность I для	(R+G+B)
каждого пикселя, за-	$I = \frac{1}{3}$
данного в формате	
RGB	

4.3. Установите соответствие между термином и его характеристикой

me. I transmit decide the mental representation		
Термин	Характеристика	
торого тона Н ппп	\mathbf{k}) плоскость, проходящую через три точки $(0,0,0)$, $(1,1,1)$ и $(0,1,1)$ единичном кубе, содержащая ось интенсивности, при этом все точки этой плоскости имеют одинаковый цветовой тон(в нашем случае - голубой).	
2. Цветовой тон точ- ки для RGB точки	f) определяется углом между направлением из центра шестиугольника, представляющего форму сечения единичного куба, на данную точку и некоторую опорную точку	
3. Насыщенность	е) задается длиной вектора, проведенного из центра в данную точку (т.е. расстоянием от вертикальной оси). Центр представляет точку пересечения цветовой плоскости и вертикальной оси интенсивности.	

4.4. Установите соответствие между термином и его характеристикой

Термин	Характеристика
1. Основные величи-	
ны, используемые в	
цветовой фотомет-	k) амплитуда цвета, цветовая яркость, насыщенность и цветовой тон.
рии для количе-	к) импытитуди цветовал пркость, насыщенность и цветовой топ.
ственного описания	
цветов:	
2. Цветовая ампли-	f) равна векторной сумме амплитуд основных откликов зрительной систе-
туда	мы:
	$\mathbf{A_c} = \mathbf{A_r} + \mathbf{A_g} + \mathbf{A_b}$
3. Насыщенность	е) в метрическом векторном пространстве количественно определяется ко-
цвета	синусом угла между вектором данного цвета и вектором равноэнергетиче-
	ского белого цвета:
	$S = \cos\theta$.

4.5. Установите соответствие между термином и его характеристикой

1.5. I Grandbird Goothererbird Mendy replanification in ero napaktephorinkon		
Термин	Характеристика	
1. Векторное изоб-	k) описывается как набор графических примитивов, из которых и формиру-	
ражение	ется изображение.	
2. Цветовой тон точки для RGB точки	f) описывается двумерным массивом, каждый элемент которого представляет собой некоторое описание цвета.	
3. Бинарные изоб-	e) (black and white) пиксели могут принимать только два значения: 0 и 1 (чер-	
ражения	ный и белый цвет).	

4.6. Установите соответствие между термином и определением

Термин	Определение
1. Объем памяти в байтах,	k)можно вычислить по формуле:
необходимый для хранения	$V = (c \cdot r \cdot d) / 8,$
растрового изображения	где с – количество столбцов; r – количество строк; d – глубина
	цвета (бит/ пиксель).
2. Полутоновые изображения	f) (серые или изображениями в градациях серого intensity,
	grayscale) – пиксели могут принимать одно из значений интен-
	сивности какого-либо одного цвета в диапазоне от минимальной
	до максимальной интенсивности;
3. Палитровые изображения	e) (indexed) – значения пикселей являются ссылками на ячейки
	карты цветов (colormap), которые и содержат описания цвета
	пикселя в некоторой цветовой системе (палитре)

4.7. Установите соответствие между термином и определением

Термин	Определение
1. Полноцветные изображе-	k) (truecolor, rgb) – изображения, пиксели которого непосред-
ния	ственно хранят информацию об интенсивностях цветовых со-
	ставляющих.
2. Функция, применяемая для	$\mathbf{f}) \ \mathbf{I} = \mathbf{rgb2gray}(\mathbf{RGB})$
преобразования полноцвет-	
ного изображения в полуто-	
новое в среде MATLAB	
3. Функция, применяемая для	\mathbf{e}) I = ind2gray(X,map)
преобразования преобразо-	
вание палитрового изобра-	
жения в полутоновое в среде	
MATLAB	

4.8. Установите соответствие между термином и определением

Термин	Определение
1. Вывод нескольких изображений в одном окне в сре-	k) subimage(S).
де MATLAB	
2. Функция, применяемая для преобразования преобразования преобразование палитрового изображения в полноцветное в среде MATLAB	f) RGB = ind2rgb(X,map)
3. Функция, применяемая для преобразования преобразо-	e) [X map] = rgb2ind(RGB)
вание преобразование пол-	
ноцветного изображения в	
палитровое в среде MATLAB	

4.9. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применяемая в	\mathbf{k}) >> imshow(X,map).
среде MATLAB для вывода	
на экран прочитанного па-	
литрового изображения	
2. Функция, применяемая для	f) imwrite(S, <имя файла>)
записи изображения в файл в	
среде MATLAB	
3. Воксели	е) представляет средний уровень яркости прямоугольного па-
	раллелепипеда. Положение вокселя задается тремя параметрами
	(k,m,n), где k- глубина, m- строка, n- столбец.

4.10. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применяемая в	\mathbf{k}) >> A = imread(URL);
среде MATLAB для загрузки	
изображения из сетевого ре-	
cypca	
2. Функция, применяемая для	f) imwrite(X, map, <имя файла>)
записи палитрового изобра-	
жения X с палитрой map. в	
файл, в среде MATLAB	
3. Критерии «похожести»	$\int_{\mathbf{e}} aff(\mathbf{x}, \mathbf{y}) = exp \left\{ -(\mathbf{x} - \mathbf{y})^T (\mathbf{x} - \mathbf{y}) / 2\sigma_d^2 \right\}$
соседних пикселей изобра-	$\left(e\right) \stackrel{agj}{\sim} \left(\begin{array}{ccc} (x,y) & ($
жения по расстоянию	

4.11. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применяемая в среде MATLAB для загрузки	k) >> A = imread(filename, fmt);
изображения из файла	
2. Палитровые изображения	f) хранятся в виде двумерных массивов индексов. Массив палит-
	ры всегда имеет тип double, и в трех его столбцах расположены интенсивности R, G, B.
3. Критерии «похожести» соседних пикселей изображения по яркости	e) $aff(x,y) = exp\left\{-(I(x) - I(y))^2 / 2\sigma_I^2\right\}$

4.12. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Команда, применяемая в	$k \gg f = imfinfo(,,c:\Image\Athena.bmp").$
среде MATLAB для получе-	
ния информации об изобра-	
жении, хранящемся в файле	
на диске с	
2. Полноцветные изображе-	f) хранятся в виде трехмерных массивов, где третье измерение –
ния	значения интенсивности R, G, B. Для доступа к значениям ин-
	тенсивности цветовых составляющих пикселя І надо указать
	строку r, столбец с и номер составляющей I(r, c, 1)
3. Критерии «похожести»	$\int_{\mathbf{e}} aff(\mathbf{x}, \mathbf{y}) = exp\left\{ -\left(dist\left(c(\mathbf{x}) - c(\mathbf{y})\right)^{2} / 2\sigma_{c}^{2}\right)\right\}$
соседних пикселей изобра-	$\left(\begin{array}{c} \mathbf{e} \end{array} \right) \stackrel{\text{dist}}{=} \left(\begin{array}{c} \mathbf{e} \\ \mathbf{e} \end{array} \right$
жения по цвету	

4.13. Установите соответствие между термином и определением

Термин	Определение
1. Функция среды MATLAB,	k) imshow(I,[low high])
применяемая для вывода на	
экран полутоновое изобра-	
жение I, дополнительно кон-	
трастируя выводимое изоб-	
ражение.	
2. Полутоновые и бинарные	f) хранятся в виде двумерных массивов. Для доступа к значению
изображения	(в данном случае яркости) пикселя изображения I надо указать
	строку r и столбец с: I(r, c).
3. Критерии «похожести»	$\int_{\mathbf{e}} aff(\mathbf{x}, \mathbf{y}) = exp\left\{-\left(dist\left(f(\mathbf{x}) - f(\mathbf{y})\right)^{2} / 2\sigma_{I}^{2}\right)\right\}$
соседних пикселей изобра-	$e^{-ijj}(x,y) = exp(-insi(j(x)-j(y))-i20j)$
жения по текстуре	

4.14. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Функция среды MATLAB,	k) imshow(S)
применяемая для вывода на	
экран вывод непалитрового	
изображения	
2. Размер импульсные поме-	f) $\varepsilon \le mn/2$, (где ε – площадь помехи, m, n - ширина и
хи, которые подавляются ме-	высота маски)
дианным фильтром	
3. Расстояние между двумя	(
векторами в пространстве	$\ \mathbf{e} \ d_{ii} = \ C_i - C_i \ = \ 3 \sum_{i} C_i^k - C_i^k ^{\gamma} \ $;
RGB в общем виде	e) $d_{ij} = \ C_i - C_j\ _{\gamma} = \left(3\sum_{n=1}^{\infty} C_i^k - C_j^k ^{\gamma}\right)^{1/\gamma};$

4.15. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Функция среды MATLAB,	k) imcrop(S)
применяемая для вырезания	
фрагмента из изображения,	
результат вырезания фраг-	
мента из изображения S	
отображается в новом гра-	
фическом окне	
2. Преимущества медианной	f) эффективно устраняет мелкие детали и резкие выбросы, прак-
фильтрации перед линейной	тически не изменяя остального изображения;
фильтрацией	
3. Функция среды MATLAB,	e) Xd = imcrop (Xs,map, rect)
применяемая для вырезания	
фрагмента из изображения в	
виде вектора	

4.16. Установите соответствие между термином и характеристикой

то. Установите соответствие между термином и характеристикой		
Термин	Характеристика	
1. Объективная мера, применяемая для оценки качества алгоритма фильтрации, при использовании пикового отношения сигнал/шум (ПОСШ)	k) $\Pi OCIII = 20 \lg \frac{255}{\sqrt{CKO}};$	
2. Эквализация гистограммы изображе-	f) содержит все вершины, имеющие нулевые ло-	
ния	кальные полустепепи захода	
3.Хроматическое число каждого п-	g) может быть произвольным	
вершинного дерева		

4.17. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Морфологическая операция эрозии	k) множество всех таких точек z, при сдвиге в кото-
множества А по примитиву В	рые множество В целиком содержится в А;
2. Контур	f) объединение любых двух различных путей, со-
	единяющих две вершины
3. Гамма-коррекция изображений	g) выполняется на основе степенного преобразова-
	Р В В В В В В В В В В В В В В В В В В В

4.18. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Передаточная характеристику ВЧ	k) $HBY(u,v) = 1 - HHY(u,v);$
фильтра	
2. Эргодический стационарный случай-	f) содержит гамильтонов цикл
ный процесс	
3. Хроматическое число каждого п-	g) может принимать произвольные значения
вершинного дерева	

4.19. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Цикломатическое число	k) может принимать отрицательные значения
2. Цветовая модель HSI	е) представляет пространство, определяющее цве-
	товой тон, насыщенность, интенсивность, исполь-
	зуемое как идеальное средство для построения ал-
	горитмов обработки изображений, поскольку в ос-
	нове модели лежит естественное и интуитивно
	близкое человеку описание цвета.
3. Частотная характеристика НЧ фильтра	g) подавляет частоты, отстоящие на расстояние бо-
Баттерворта (Butterworth) порядка k,	лее r (по окружности) от начала координат:
	1) $H(u,v) = 1/(1+(r(u,v)/r_{cp})^{2k})$.

4.20. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Сильная компонента связности	k) это минимально сильно связный подграф графа $G(X, \Gamma)$.
1. Цветовая модель YCrCb	k) представляет пространство, в котором компонента Y включает в себя только информацию о яркости пикселей, а компоненты Cb и Cr содержат только информацию о цвете и насыщенности.
3. Условия соответствия центрального элемента окна при применении адаптивной медианной фильтрации	g) 1) A1= fmed - fmin; A2= fmed - fmax; A1>0 и A2<0, B1= f (x, y)- fmin; A2= f (x, y) - fmax; B1>0 и B2<0;

4.26. Установите соответствие между термином и характеристикой

Термин	Характеристика
2. Цветовая модель YIQ	f) представляет пространство как вариант кодирования цветов RGB, обеспечивающий совместимость с черно –
	белым.
2. Ориентированное дерево	f) Ориентированный ацикличный граф, имеющий одну
	вершину, у которой локальная степень захода равна 0
1. Цветовой тон Н для каждого пик-	k)
селя, заданного в формате RGB	$(G-B)/(3(R+G-2B)), \qquad ecnu B=\min(R,G,B)$
	$H = \{(B-R)/(3(G+B-2R))+1/3, ecnu \ R = \min(R,G,B)\}$
	$(R-G)/(3(R+B-2G))+2/3$, ecnu $G = \min(R,G,B)$

4.28. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Основные величины, используемые в цветовой фотометрии для количественного описания цветов:	k) амплитуда цвета, цветовая яркость, насыщенность и цветовой тон.
2. Неориентированный граф	f) число вершин такого графа с нечетной степенью
	четно.
3. Энергия изображения	g) определяется как интеграл энергетического спектра по пространственным частотам.

4.29. Установите соответствие между термином и характеристикой

Термин	Характеристика
1. Процедура дилатации множества A по примитиву В	$\hat{\bf k}$) множество всех таких смещений z , при которых множества $\hat{B}_{}$ и A совпадают, по меньшей мере, в одном элементе;
2. Смешанный граф	f) как правило, граф, имеющий как ориентированные, так и неориентированные ребра
3. Частотные методы обработки изображений	е) основаны на изменении сигнала, путем применения к изображению преобразования Фурье.

4.30. Установите соответствие между условием и назначением

Условия	Назначение	
1. Формула фильтрации изображения размером $m \times n$ фильтром взвешенного среднего	$g(x,y) = \frac{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} f(x+s, y+t) \cdot h(s,t)}{\sum_{t=-m/2}^{m/2} \sum_{s=-n/2}^{n/2} h(s,t)}$ k)	
2. Пропускная способ-	f) Может рассматриваться как максимальная скорость, с которой про-	
ность ребра	дукция транспортируется вдоль этого ребра.	
3. Логарифмическое преобразование изображений	е) применяется для растяжения диапазона темных пикселей на изображении с одновременным сжатием диапазона значений ярких пикселей;	

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения -60 баллов (установлено положением Π 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом.

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания результатов тестирования: каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено -2 балла, не выполнено -0 баллов.

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № 1

Используя функции среды MATLAB, выполнить преобразование пикселей полноцветного и полутонового изображений в формат double. Результат преобразованных изображений вывести на экран

Компетентностно-ориентированная задача № 2

Используя функции среды MATLAB, выполнить преобразование пикселей палитрового изображения, прочитанное из файла 'Handshak.bmp' каталога Image, в полутоновое. Результат преобразованного изображения вывести в одно окно по горизонтали на экран.

Компетентностно-ориентированная задача № 3

Используя функции среды MATLAB, выполнить уменьшить изображение в (N) раз, используя метод: 'bilinear'; c) 'bicubic'. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 4

Используя функции среды MATLAB, выполнить перенос изображения по горизонтали и по вертикали на (Sx, Sy). Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 5

Используя функции среды MATLAB, выполнить поворот изображения на заданный угол по часовой стрелке (угол), используя функцию поворота изображения imrotate. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 6

Повернуть изображение на заданный угол против часовой стрелки (угол), используя методы: 'nearest'; Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 7

Используя функции среды MATLAB, выполнить комбинированный сдвиг изображения по горизонтали и по вертикали на (a,b). Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 8

Используя функции среды MATLAB , выполнить контрастирование изображения с коэффициентами гамма-коррекции γ =0,5; γ =1,2. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 9

Изменить палитру полутонового изображения: а) на более светлую; б) на более темную, Результат преобразованных изображений исходного и полученных вывести на экран в одно окно.

Компетентностно-ориентированная задача № 10

Используя функции среды MATLAB, уменьшить количество цветов палитрового изображения до $\mathbf{n} = \mathbf{5}$. Результат преобразованного и исходного изображений вывести на экран в одно окно.

Компетентностно-ориентированная задача № 11

Используя функции среды MATLAB, выполнить уменьшение количества цветов палитрового изображения с использованием диффузионного псевдосмешения цветов и без него. Результат преобразованных изображений: исходного и измененного вывести на экран в одно окно.

Компетентностно-ориентированная задача № 12

Используя функции среды MATLAB, выполнить бинаризацию изображения. Результат преобразованных изображений: исходного и измененного вывести на экран в одно окно.

Компетентностно-ориентированная задача № 13

Используя функции среды MATLAB, выполнить контрастирование изображения, задав исходный [low high] и выходной [bottom top] интервал и коэффициент gamma. Результат преобразованных изображений: исходного и измененного вывести на экран в одно окно.

Компетентностно-ориентированная задача № 14

Используя функции среды MATLAB, выполнить преобразовать изображения в полутоновое. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 15

15. Используя функции среды MATLAB, выполнить преобразование заданного изображения в негатив. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 16

Используя функции среды MATLAB, выполнить уменьшение количества цветов палитрового изображения, задав значение (tol): а) с диффузионным псевдо смешением цветов. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 17

Используя функции среды MATLAB, произвести наложение шума в цикле полутоновое изображение (исходное выбрать из файла 'butterfly.bmp') гауссовым шумом с разными дисперсиями: а) σ =0.01; б) σ = 0.4 для математического ожидания, равного m = 0.2. Результат преобразованных изображений: исходного и измененного вывести на экран в одно окно.

Компетентностно-ориентированная задача № 18

Используя функции среды MATLAB, выполнить повышение контраста изображения с помощью выравнивания гистограммы. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 19

Используя функции среды MATLAB, выполнить построение гистограммы изображения, используя различные цвета столбчатой диаграммы. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 20

Используя функции среды MATLAB, вывести палитровое и эквализированное изображения и их стеблевые диаграммы гистограмм в одно окно. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 21

Используя функции среды MATLAB, найти двумерную взаимную корреляционную функцию между исходным и повернутым на 180 градусов изображением файла bigbird.bmp. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 22

Используя функции среды MATLAB, выполнить подписи осей координат и снабдить заголовком с помощью функции **title** стеблевую гистограмму изображения. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 23

Используя функции среды MATLAB, выполнить улучшение изображения, используя фильтр высоких частот Лапласа. Результат преобразованного изображения вывести на экран.

Компетентностно-ориентированная задача № 24

Прочитать изображение из файла Technlgy.bmp, вывести на экран, а затем преобразовать его в полутоновое. Отфильтровать изображение фильтром Собела. Результат преобразованного изображения вывести на печать.

Компетентностно-ориентированная задача № 25

25. Повысить резкость изображения с помощью линейного фильтра, сформированного по желаемой АЧХ.

Компетентностно-ориентированная задача № 26

Используя функции среды MATLAB, выполнить линейное контрастирование изображения с желаемыми значениями минимальной (**ymin**) и максимальной (**ymax**) выходной яркости изображения. Осуществить вывод результатов обработки изображения на экран.

Компетентностно-ориентированная задача № 27

Прочитать изображение из файла Technlgy.bmp, вывести на экран, преобразовать в полутоновое. Получить маску фильтра Превитт. Выполнить фильтрацию исходного полутонового фрагмента маской фильтра Превитт отдельно по горизонтали и по вертикали и вместе на одном изображении.

Компетентностно-ориентированная задача № 28

Прочитать палитровое изображение из файла Earth.bmp, а затем преобразовать в полутоновое и вывести на экран. Преобразовать изображение, наложив на него гауссов шум. Вывести на экран зашумленное изображение. Отфильтровать зашумленное изображение медианной фильтрацией. Зашумленное и отфильтрованные изображения вывести в одном окне для сравнения.

Компетентностно-ориентированная задача № 29

Прочитать палитровое изображение из файла Earth.bmp, вывести на экран, а затем преобразовать его в полутоновое. Преобразовать изображение, наложив на него импульсный шум. Вывести на экран зашумленное изображение. Отфильтровать зашумленное изображение медианной фильтрацией. Зашумленное и отфильтрованные изображения вывести в одном окне для сравнения.

Компетентностно-ориентированная задача № 30

Прочитать палитровое изображение из файла Earth.bmp, вывести на экран, преобразовать в полутоновое. Преобразовать изображение, наложив на него мультипликативный шум. Вывести на экран зашумленное изображения. Отфильтровать зашумленное изображение обобщенным нелинейным фильтром. Зашумленное и отфильтрованное изображения вывести в одном окне для сравнения.

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи – 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом.

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

Критерии оценивания решения компетентностно-ориентированной задачи (нижеследующие критерии оценки являются примерными и могут корректироваться):

- **6-5 баллов** выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.