Документ подписан простой электронной подписью Информация о владельце:

ФИО: Кореневский Николай Алексеевич

Должность: Заведующий кафедрой

Дата подписания: 03.10.2023 00:11:15 Юго-Западный государственный университет

Уникальный программный ключ:

fa96fcb250c863d5c30a0336097d4c6e99ca25a5

УТВЕРЖДАЮ: Заведующий кафедрой

МИНОБРНАУКИ РОССИИ

биомедицинской инженерии (наименование кафедры полностью)

Н.А. Кореневский (подпись)

«23» июня 2023г.

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

МЕДИЦИНСКАЯ ЭЛЕКТРОНИКА

(НАИМЕНОВАНИЕ ДИСЦИПЛИНЫ)

30.05.03 Медицинская кибернетика

(код и наименование ОПОП ВО)

Профиль «Медицинская кибернетика»

наименование направленности (профиля, специализации)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ К КОЛЛОКВИУМУ

Вопросы для коллоквиума по разделу (теме) 1. «Введение. Полупроводниковые элементы»

- 1. Значение электроники для научно-технического прогресса и ее развитие как науки.
 - 2. Полупроводниковые элементы электроники.
- 3. Диоды, эквивалентная схема, в/а характеристики, типы диодов, их параметры; стабилитроны, электрические схемы подключения, достоинства и недостатки.
 - 4. Общие сведения из теории полупроводников.
 - 5. Основные положения теории электропроводности.
- 6. Электронно-дырочный переход (процессы при прямом и обратном включении р-п перехода).
 - 7. Фотодиоды, приборы с зарядовой связью (ПЗС)
 - 8. В/а характеристики вентильных диодов.
- 9. Выпрямители с использованием полупроводниковых диодов, основные схемы построения.

Вопросы для коллоквиума по разделу (теме) 4. «Полевые транзисторы и их применение»

- 1. Эквивалентная схема транзистора, вольтамперные характеристики, аналитические и графические представления.
 - 2. Устройство и принцип действия биполярного транзистора.
- 3. Эквивалентная схема реального транзистора, эффект запаздывания, инерционные свойства транзисторов.
- 4. Схемы включения транзисторов, основные математические соотношения для входных и выходных характеристик
 - 5. Полевой транзистор. Устройство, принцип действия, разновидности.
- 6. Принцип действия полевого транзистора с управляющим р-п переходом, характеристики.
 - 7. Тиристоры. Устройство, принцип действия.
 - 8. Стабилизаторы. Общие сведения. Основные сведения.
 - 9. Параметрический стабилизатор напряжения.
 - 10. Компенсационный стабилизатор напряжения.
- 11. Принцип работы, конструктивные особенности, эквивалентная схема, использование в качестве усилителя, его эквивалентная схема и принцип работы, схема включения.
- 12. МДП транзисторы: устройство, конструкция, принципы работы, основное применение в электронных устройствах, обозначение в принципиальных схемах.

Вопросы для коллоквиума по разделу (теме) 7. «Устройства специального применения с использованием ОУ»

- 1. Дифференцирующие устройства, идеальное и практическое решения;
- 2. Интегратор, принцип работы, основные математические выражения;
- 3. Принципиальные схемы: с заземленным конденсатором,
- 4. Принципиальные схемы с большой постоянной времени;

- 5. Мостовые усилители с линейной и нелинейной характеристиками;
- 6. Усилители переменного напряжения;
- 7. Фазовращатели, избирательные усилители НЧ и ВЧ; практические схемы, перспективные решения

Шкала оценивания:.

- 4 балла (или оценка «отлично») выставляется обучающемуся, если он принимает активное участие в беседе по большинству обсуждаемых вопросов (в том числе самых сложных); демонстрирует сформированную способность к диалогическому мышлению, проявляет уважение и интерес к иным мнениям; владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, ораторскими способностями и правилами ведения полемики; строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; легко и заинтересованно откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **3 балла** (или оценка **«хорошо»**) выставляется обучающемуся, если он принимает участие в обсуждении не менее 50% дискуссионных вопросов; проявляет уважение и интерес к иным мнениям, доказательно и корректно защищает свое мнение; владеет хорошими знаниями вопросов, в обсуждении которых принимает участие; умеет не столько вести полемику, сколько участвовать в ней; строит логичные, аргументированные высказывания, сопровождаемые подходящими примерами; не всегда откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 2 балла (или оценка «удовлетворительно») выставляется обучающемуся, если он принимает участие в беседе по одному-двум наиболее простым обсуждаемым вопросам; корректно выслушивает иные мнения; неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике предпочитает занимать позицию заинтересованного слушателя; строит краткие, но в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; теряется при возникновении неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **0 баллов** (или оценка **«неудовлетворительно»)** выставляется обучающемуся, если он не владеет содержанием обсуждаемых вопросов или допускает грубые ошибки; пассивен в обмене мнениями или вообще не участвует в дискуссии; затрудняется в построении монологического высказывания и (или) допускает ошибочные высказывания; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя

1.2. ВОПРОСЫ СОБЕСЕДОВАНИЯ ПО ПРАКТИЧЕСКИМ РАБОТАМ

Вопросы собеседования по практической работе №1. Использование методов расчета электрических цепей в электронных узлах и устройствах.

- 1. Что такое ВАХ?
- 2. Как выглядит ВАХ для полупроводникового диода? Где ее можно найти и в чем она измеряется?
- 3. Что такое динамическое сопротивление? В чем его отличие от классического определения сопротивления?
 - 4. Что такое крутизна ВАХ? На что влияет данная величина?
 - 5. Что такое напряжение пробоя?
 - 6. Что такое лавинообразный переход?.

Вопросы собеседования по практической работе №2. Методы узловых напряжений и эквивалентного генератора, элементы типовых задач.

- 1. Законы Кирхгоффа. О чем гласят первый и второй законы?
- 2. Что такое ЭДС? Чем отличается ЭДС от напряжения?
- 3. Как зависит сопротивление резистора от температуры?
- 4. Существует ли корреляция между выделяемым теплом (рассеиваемой мощностью) и изменением номинального сопротивления резистора?
 - 5. Что такое паразитные характеристики?
- 6. Нарисуйте эквивалентные схемы резистора, конденсатора и катушки индуктивности с учетом их паразитных величин. Объясните природу и влияние каждой из них.
- 7. Как подключаются амперметр и вольтметр в цепь? Каковы основные характеристики амперметра и вольтметра, благодаря которым они не вносят искажений в измеряемую цепь?

Вопросы собеседования по практической работе №3 Метод контурных токов и типовые задачи

- 1. Опишите метод контурных токов? В чем его принцип?
- 2. Параллельные и последовательные соединения резисторов, конденсаторов: как изменяются основные величины этих компонентов при разных схемах включения (сопротивление, емкость, мощность, напряжение).
 - 3. Резистивный делитель напряжения. Суть работы, расчет и выбор номиналов.
- 4. Почему при уменьшении номиналов резистивного делителя при сохранении пропорции возрастает сила тока и мощность?
 - 5. Что такое разность потенциалов? В чем ее отличие от ЭДС и напряжения?
 - 6. Соединение звездой и треугольником. Основные отличия схем при расчетах.

Шкала оценивания:

Критерии оценивания:

- 4 **балла** (или оценка **«отлично»**) выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 3 балла (или оценка «хорошо») выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.
- 2 балл (или оценка «удовлетворительно») выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 0 **баллов** (или оценка **«неудовлетворительно»**) выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

1.3. ВОПРОСЫ СОБЕСЕДОВАНИЯ ПО ЛАБОРАТОРНЫМ РАБОТАМ

Вопросы собеседования по лабораторной работе №1. Исследование пассивных 2-полюсников и 4-полюсников на базе полупроводниковых диодов.

- 1. Чем объяснить малое изменение величины для всех вариантов?
- 2. Во всех ли вариантах выполняется равенство E = + ?
- 3. Чем объясняется форма и величина напряжения: на диоде () и на нагрузке ();
- 4. Как изменятся величины и , если поменять в схеме на рис.3 поменять полярность диода Д?
- 5. Чем объясняется разница показаний величины Е на измерительной сетке осциллографа и на дисплее мультиметра?
- 6. Почему изменяется форма и величина напряжения на нагрузке при изменении величины;
- 7. Как изменяется результат тех же измерений, если в источнике изменить полярность?
- 8. Как изменятся результаты измерений в п. 3.5 и 3.6, если изменить в схеме полярность диодов?
 - 9. Чем определяется полярность напряжения и его форма?
 - 10. Как изменится при изменении полярности диодов и ?
- 11. Как изменится величина и форма , если параллельно учитывая полярность, подсоединить конденсатор (электролитический), емкостью 5...15 мк Φ ?

Вопросы собеседования по лабораторной работе №2. Экспериментальные исследования функционирования транзисторных усилительных каскадов постоянного, переменного и импульсного тока.

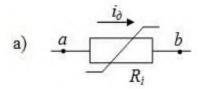
- 1. Что такое транзистор?
- 2. Какие виды транзисторов существуют?
- 3. Чем полевой транзистор отличается от биполярного? В чем разница между n-p-n и p-n-p транзисторами?
 - 4. Каковы основные материалы, применяемые при производстве транзисторов?
 - 5. Что такое лавинообразный переход?
 - 6. В чем заключен механизм электронно-дырочной проводимости?
 - 7. Что такое донорно-акцепторные связи?

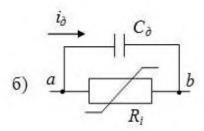
Вопросы собеседования по лабораторной работе №3. Операционные усилители (ОУ) экспериментальные исследования характеристик, компонентов и работы ОУ в инвертированном и неинвертированном режимах.

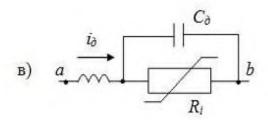
- 1. Что такое операционный усилитель? Нарисуйте внутреннюю схему (упрощенно) операционного усилителя.
- 2. Что такое коэффициент усиления ОУ? Как регулируется коэффициент усиления ОУ? Нарисуйте типовую схему включения.
 - 3. Что такое повторитель? Нарисуйте типовую схему повторителя на ОУ.
- 4. Что такое дифференциальный усилитель? Нарисуйте типовую схему дифференциального усилителя на ОУ.
 - 5. Что такое компаратор? Нарисуйте типовую схему компаратора на ОУ.
- 6. Что такое отрицательная обратная связь? Для чего она служит? Чем положительная обратная связь отличается от отрицательной?

Шкала оценивания:

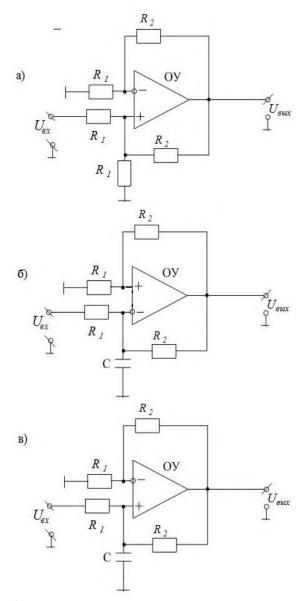
Критерии оценивания:

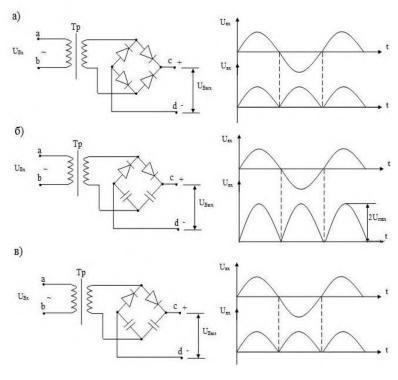

- 4 **балла** (или оценка **«отлично»**) выставляется обучающемуся, если он демонстрирует глубокое знание содержания вопроса; дает точные определения основных понятий; аргументированно и логически стройно излагает учебный материал; иллюстрирует свой ответ актуальными примерами (типовыми и нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 3 балла (или оценка «хорошо») выставляется обучающемуся, если он владеет содержанием вопроса, но допускает некоторые недочеты при ответе; допускает незначительные неточности при определении основных понятий; недостаточно аргументированно и (или) логически стройно излагает учебный материал; иллюстрирует свой ответ типовыми примерами.
- 2 балл (или оценка «удовлетворительно») выставляется обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- 0 баллов (или оценка «неудовлетворительно») выставляется обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.


2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

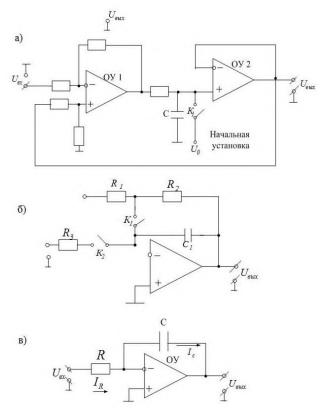

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

1 Вопросы в закрытой форме.


1 Эквивалентная схема полупроводникового диода для постоянного тока, для:



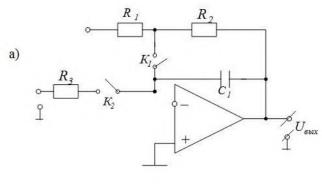
- а) картинка а) для постоянного тока, картинка б) для переменного тока;
- б) картинка в) для постоянного тока, картинка б) для переменного тока;
- в) картинка б) для постоянного тока, картинка в) для переменного тока;
- 2 Три этапа работы интегратора на операционном усилителе;
- а) интегрирование, выход, подготовка;
- б) сброс, интегрирование, хранение;
- в) подготовка, сброс, интегрирование;
- г) сброс, интегрирование, отключение.
- 3 Принципиальная схема идеального интегратора на ОУ:

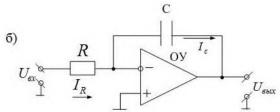


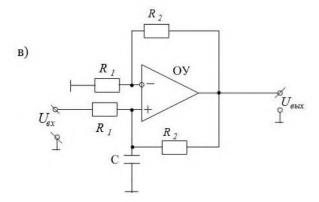
- а) а; б) б;
- в) в;
- 4 Принципиальная электрическая схема ОУ как дифференциального усилителя:
- a) B;
- $\vec{6}$) $\vec{6}$;
- $\mathbf{B}) \mathbf{a}$.
- 5 Принцип удвоения напряжения с использованием емкостного накопителя. Принципиальная схема, эпюры напряжений:

- а)- а; б)- б;
- в)- в.

6 Принципиальная схема идеального интегратора на ОУ:

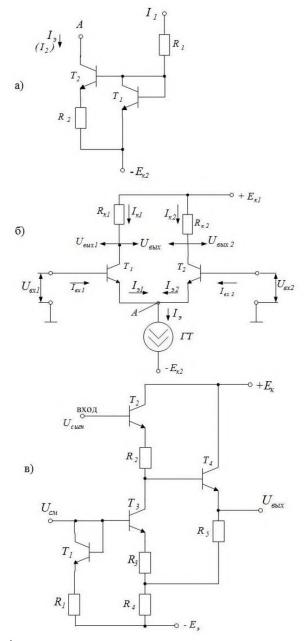

- а)- а; б)- б;

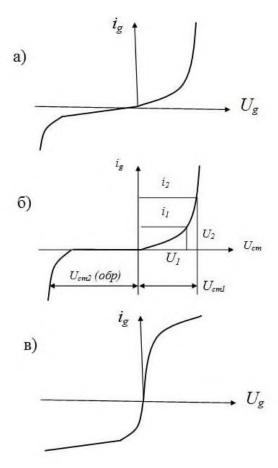

7 Уравнение математической модели ОУ как дифференциального устройства (дифференциатора):


a)
$$\begin{split} &J_C = J_0 + J_R \\ &D_{\text{GBUX}} = -RC \frac{dU_{\text{ex}}}{dt} = -\tau_a \frac{dU_{\text{ex}}}{dt} \\ &\text{B) } i_C = C \frac{dU_{\text{ex}}}{dt} \end{split}$$

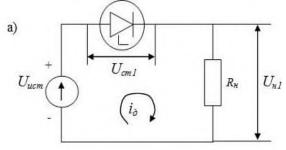
- a)- a;
- б)- б;
- в)- в.

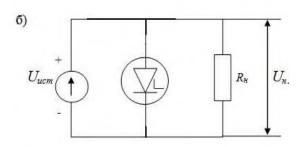
8 Интегрирующее устройство на ОУ. Идеальный интегратор:



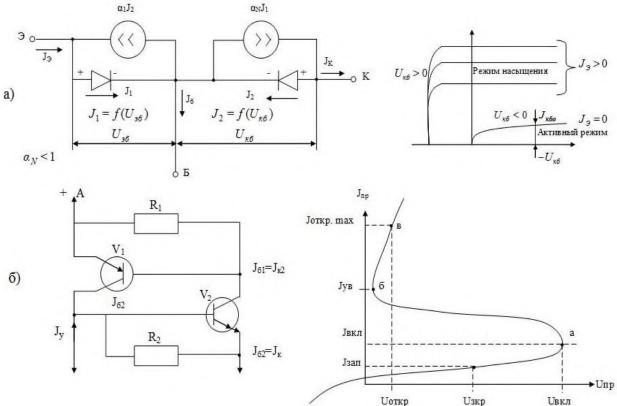


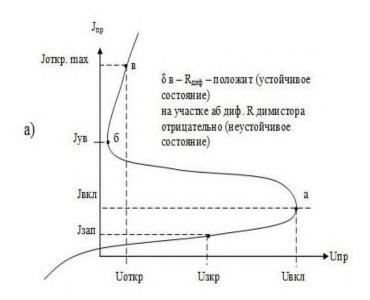
- a)- a;
- б)- б;
- в)- в.

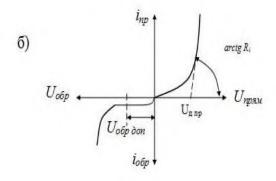

9 Операционный усилитель как дифференциальный каскад:



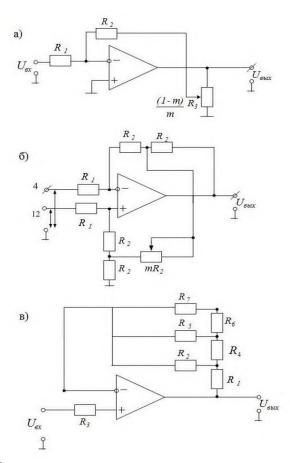
- a)- a;
- б)- б;
- в)- в.
- 10 Основные типы диодов (полупроводниковых) по току, напряжению и частоте:
- a) по току: сильные и слабые; по напряжению: высокие и низкие; по частоте: частотные и нечастотные;
- б) по току: слаботочные, низковольтные со средним током, мощние; по напряжению: низковольтные и высоковольтные;
- в) по току: токовые и нетоковые; по напряжению: прибовные и непробивные; по частоте: с высокой частотой и с низкой.
- 11 Вольтамперная характеристика полупроводникового диода и стабилитрона (типовые):

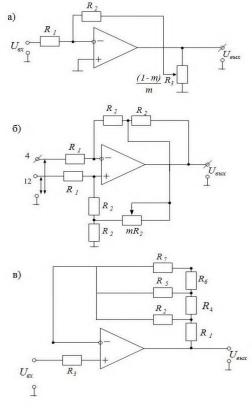

- a) a) для обычного диода, B) для стабилитрона;
- 6) a) для стабилитрона; 6) для обычного диода;
- в) а) для обычного диода, б) для стабилитрона;
- 12. Принципиальная схема стабилизатора постоянного напряжения на стабилитроне:


- a)- a;
- б)- б;


- 13 Основные математические соотношения для токов и напряжений в схемах стабилизаторов на полупроводниковых приборах:
 - a) $J_{np} = J_{cm_1} J_{n_1}$; $U_{R_{H1}} = (J_{np} + J_{o\delta p})R_{H1}$
 - 6) $J_{np} = J_{cm1} + J_{H1}$ $J_{o\delta p} = J_{cm2} + J_{H2}$ $U_{R_{H1}} = J_{np}R_{H1}$ $U_{R_{H2}} = J_{o\delta p}R_{H2}$
 - в) $J_{obp} = J_{H1} J_{cm2}; \ U_{Run} = J_{np} R_{H1}$
 - a)- a;
 - б)- б;
 - в)- в.
 - 14 Принцип работы тиристора, эквивалентная схема, эпюры пускового тока:

- a)- a;
- б)- б;
- 15 Идеальный операционный усилитель (ОУ), его параметры:
- a) $R_{\sigma x} = 1$, $\Delta F = 0$, $U_{\sigma b i x =} = 0$.
- 6) $Ky = \infty$; $R_{\sigma x} = \infty$, $\Delta F = \infty$, $U_{\sigma b x} = 0$ $npu U_{\sigma x} = 0$.
- B) $R_{\text{ex}} = \infty$, $\Delta F = 1$, $U_{\text{shix}} = 1$, $U_{\text{shix}} = 1$ $npu U_{\text{ex}} = 1$.
- r) $R_{\sigma x}=0$, $\Delta F=\infty$, $U_{\sigma \omega x}=0$, $U_{\sigma \omega x}=\infty$ $npu~U_{\sigma x}=0$.


- a)- a;
- б)- б;
- в)- в.
- г) г
- 16. Принципы регулирования усиления в устройствах, использующих ОУ: (3 балла)
- А если один из резисторов в цепи обратной связи (R1 или R2) ОУ сделать переменным, то можно изменять коэффициент усиления. Регулировка усиления дискретная и плавная;
- Б регулировку усиления можно организовать, поставив на входе неинвертирующего входа переменный;
- В регулировку усиления ОУ можно осуществлять подключением регулятора в цепи положительной обратной связи.
- 17 Вольтамперная характеристика тиристора, устойчивые и неустойчивые состояния:


- a)- a;
- б)- б;

18 Схемы принципиальные дискретной регулировки усиления в ОУ:

- а)- а; б)- б;
- в)- в.

19 Схема принципиальная электрическая плавной регулировки усиления в ОУ:

a)- a;

- б)- б;
- в)- в.
- 20. Что такое каскад в электронике?
- а) Последовательное соединение нескольких резисторов
- б) Устройство для изменения амплитуды сигнала
- в) Логическая вентильная схема
- г) Последовательное соединение нескольких диодов
- 21. Какие элементы электроники используются для создания схем памяти, таких как D-триггеры?
 - а) Транзисторы
 - б) Резисторы и конденсаторы
 - в) Диоды
 - г) Операционные усилители
 - 22. Какая функция выполняется конденсатором в электронных схемах?
 - а) Усиление сигнала
 - б) Хранение энергии и фильтрация сигналов
 - в) Инверсия сигнала
 - г) Генерация сигналов
 - 23. Какой эффект лежит в основе работы датчиков Hall?
 - а) Эффект Фарадея
 - б) Эффект Холла
 - в) Эффект Комптона
 - г) Эффект Пельтье
- 24. Какое устройство используется для создания многократного усиления сигнала в электронных схемах?
 - а) Конденсатор
 - б) Операционный усилитель
 - в) Транзистор
 - г) Резистор
 - 25. Что такое логический элемент "Исключающее ИЛИ" (XOR)?
- а) Возвращает истинное значение только если оба входа истинны или оба ложны
 - б) Возвращает истинное значение, если один из входов истинен, но не оба
 - в) Возвращает истинное значение только если оба входа ложны
 - г) Возвращает истинное значение, если один из входов ложен, но не оба
 - 26. Какой вид транзисторов обычно используется в высокочастотных усилителях?
 - а) Биполярные транзисторы (ВЈТ)
 - б) Металлоксидные полевые транзисторы (MOSFET)
 - в) Шумоподавляющие транзисторы
 - г) Тиратроны
 - 27. Что представляет собой усилитель мощности?

- а) Устройство для усиления сигналов с низкой мощностью до высокой мошности
- б) Устройство для усиления сигналов с высокой мощностью до низкой мошности
 - в) Устройство для уменьшения мощности сигнала
 - г) Устройство для измерения мощности сигнала
 - 28. Что такое транзисторный каскад?
 - а) Схема с одним транзистором
- б) Схема с двумя транзисторами, в которой выход первого транзистора является входом второго
 - в) Схема с двумя транзисторами, работающими независимо
 - г) Схема с тремя транзисторами
- 29. Какой тип схемы связи используется для передачи данных в компьютерных сетях?
 - а) Аналоговая
 - б) Цифровая
 - в) Амплитудно-модулированная
 - г) Плотно упакованная
 - 30. Какая функция выполняется резистором в электронных схемах?
 - а) Усиление сигнала
 - б) Хранение энергии
 - в) Ограничение тока и создание заданного сопротивления
 - г) Фильтрация сигналов
 - 31. Какая единица измерения используется для измерения сопротивления?
 - а) Вольт
 - б) Ампер
 - в) Ом
 - г) Фарад
 - 32. Что проводит полупроводниковый материал?
 - а) электричество
 - б) магнитизм
 - в) свет
 - г) тепло
 - д) звук
 - е) воду
 - 33. Что такое диод?
 - а) Элемент, который позволяет току протекать только в одном направлении.
 - б) Элемент, который усиливает электрический сигнал.
 - в) Элемент, который создает электрическое поле.
 - г) Элемент, который преобразует электрическую энергию в механическую энергию.
 - 34. Осциллоскоп используется для визуализации чего?
 - а) временных изменений
 - б) частот
 - в) мощности

- г) аудиосигналов
- д) видеосигналов
- 35. Что такое микроконтроллер?
- а) Маленький компьютер, встроенный в электронное устройство для управления его работой.
- б) Элемент, который преобразует электрическую энергию в механическую энергию.
- в) Элемент, который создает электрическое поле.
- г) Элемент, который усиливает электрический сигнал.
- 36. Что представляет собой интегральный сдвиг фазы в электронике?
- а) Усилитель с отрицательной обратной связью
- б) Схема, в которой напряжение опережает ток
- в) Схема, в которой ток опережает напряжение
- г) Усилитель с положительной обратной связью
- 37. Что такое операционный усилитель?
- а) Устройство, которое усиливает разность напряжений между входами.
- б) Устройство, которое усиливает электрический сигнал.
- в) Устройство, которое создает электрическое поле.
- г) Устройство, которое преобразует электрическую энергию в механическую энергию.
- 38. Что такое индуктивность?
- а) Элемент, который накапливает и хранит электрический заряд.
- б) Элемент, который ограничивает ток в электрической цепи.
- в) Элемент, который усиливает электрический сигнал.
- г) Элемент, который создает электрическое поле.
- 39. Что такое транзистор?
- а) Элемент, который позволяет току протекать только в одном направлении.
- б) Элемент, который усиливает электрический сигнал.
- в) Элемент, который создает электрическое поле.
- г) Элемент, который преобразует электрическую энергию в механическую энергию.
- 40. Какая единица измерения используется для измерения электрической мошности?
- а) Вольт
- б) Ампер
- в) Ватт
- г) Фарад
- 41 Какой закон описывает соотношение между напряжением, силой тока и сопротивлением в электрической цепи?
- а) Закон Ома
- б) Закон Кирхгофа
- в) Закон Фарадея
- г) Закон Кулона
- 42. Какой компонент электронной схемы используется для усиления электрического сигнала?
- а) Транзистор

- б) Конденсатор
- в) Резистор
- г) Индуктивность
- 43. Что такое диод?
- а) Элемент, который позволяет току протекать только в одном направлении.
- б) Элемент, который используется для хранения электрического заряда.
- в) Элемент, который усиливает электрический сигнал.
- г) Элемент, который изменяет напряжение в электрической цепи.
- 44. Что такое микроконтроллер?
- а) Устройство, которое используется для измерения электрического сопротивления.
- б) Устройство, которое преобразует электрическую энергию в механическую энергию.
- в) Устройство, которое управляет работой других электронных компонентов.
- г) Устройство, которое используется для хранения данных.
- 45. Какая единица измерения используется для измерения частоты сигнала?
- а) Вольт
- б) Ампер
- в) Герц
- г) Фарад
- 46. Что такое резонанс?
- а) Состояние, при котором электрическая цепь имеет наибольшую эффективность передачи энергии.
- б) Состояние, при котором электрическая цепь имеет наименьшее сопротивление.
- в) Состояние, при котором электрическая цепь имеет наибольшее сопротивление.
- г) Состояние, при котором электрическая цепь имеет наименьшую эффективность передачи энергии.
- 47. Какой компонент электронной схемы используется для хранения и чтения данных в компьютере?
- а) Транзистор
- б) Резистор
- в) Конденсатор
- г) Индуктивность
- 48. Что такое полупроводник?
- а) Материал, который хорошо проводит электрический ток.
- б) Материал, который плохо проводит электрический ток.
- в) Материал, который не проводит электрический ток.
- г) Материал, который проводит электрический ток только в определенных
- 49. Что такое цифровой сигнал?
- а) Сигнал, который может принимать любые значения в определенном диапазоне.
- б) Сигнал, который может принимать только два значения 0 и 1.
- в) Сигнал, который передается в виде электрических импульсов.
- г) Сигнал, который передается в виде световых волн.
- 50. Что такое частота сигнала?
- а) Количество колебаний или циклов, которые происходят в единицу времени.

- б) Сила электрического сигнала.
- в) Разность напряжений между входами усилителя.
- г) Величина сопротивления в электрической цепи.

2 Вопросы в открытой форме.

- 1. Элемент электроники, отвечающий за усиление электрических сигналов, называется...
- 2. Элемент электроники, предназначенный для хранения информации, называется...
- 3. Элемент электроники, использующийся для создания усилителей звуковых сигналов, называется...
 - 4. Компаратор в электронике это...
 - 5. Полупроводник в электронике это...
- 6. Элемент электроники, выполняющий функцию усиления электрических сигналов, называется...
 - 7. Диод в электронике это...
 - 8. Для полупроводников характерны два вида проводимости, а именно...
 - 9. Операционный усилитель представляет собой...
- 10. Основные материалы, использующиеся для изготовления полупроводниковых приборов это...
 - 11. Интегральная микросхема это...
 - 12. Пассивные элементы в электронике это...
- 13. процесс управления электрическим сигналом с помощью другого сигнала называется...
 - 14. Для фильтрации электрических сигналов используется элемент...
 - 15. Рп-переход в электронике это...
 - 16. рп-переход выполняет функцию...
 - 17. Пассивные элементы в электронике это...
- 18. Элемент электроники, который используется для создания логических функций в цифровых устройствах называется...
- 19. Многокаскадный усилитель с дифференциальным входом, предназначенный для выполнения математических операций с аналоговыми сигналами, называется...
 - 20. Полупроводниковый материал это...
 - 21. Типы транзисторов бывают...
 - 22. Эмиттер транзистора это...
 - 23. Коллектор транзистора это...
 - 24. База транзистора это...
- 25. Электрод любого прибора, который присоединен к плюсу источника питания называется...
 - 26. Диод это...
 - 27. Полупроводниковый материал это...
 - 28. Единицей измерения сопротивления является...
 - 29. Конденсатор это...
- 30. Свойство проводника препятствовать изменениям проходящего через него тока называется...
 - 31. Трансформатор это...
 - 32. Прибор, используемый для измерения сопротивления в цепи, называется...
- 33. Устройство, способное преобразовывать электрический сигнал в звуковой, называется...
- 34. Элемент, хранящий электрический заряд и способный выдавать его по команде, называется...

- 35. Элемент электроники предназначен для фильтрации сигнала, пропуская только определенные частоты называется...
 - 36. Транзистор с обратной полярностью используется для...
 - 37. Светодиод представляет собой...
- 38. Прибор, измеряющий текущее значение напряжения в электрической цепи, называется...
- 39. Элемент, который обладает двумя входами и выдает на выходе произведение сигналов с этих входов, называется...
 - 40. Элемент, который уменьшает амплитуду сигнала называется...
- 41. Элемент электроники, использующийся для хранения большого количества информации в компьютере, называется...
- 42. Устройство, способное выполнять операции с двоичными числами, называется...
- 43. Прибор, использующийся для измерения силы электрического поля вокруг заряженных объектов, называется...
 - 44. Дроссель в электрической цепи применяется для...
- 45. Элемент, который преобразует электрический сигнал в механическое движение, называется...
- 46. Элемент электроники, использующийся для хранения информации в виде последовательности нулей и единиц, называется...
- 47. Устройство, которое предназначено для увеличения амплитуды сигнала, называется...
- 48. Элемент электроники, использующийся для преобразования переменного напряжения в постоянное, называется...
- 49. Элемент, который выполняет функцию управления током в цепи, называется...
 - 50. Операционный усилитель в электронике применяется для...

3 Вопросы на установление последовательности.

- 1. Установите правильную последовательность действий проверки переменного резистора:
 - а. Этапы измерений:
 - б. Вращают ручку переменного резистора в одном из направлений.
 - в. Мультиметр включают в режим измерения.
- г. Сопротивление либо плавно возрастает до ранее установленного общего значения, либо снижается до нулевого значения
 - д. Щупальца подсоединяют к крайним ножкам.
 - 2. Установите правильную последовательность действий замены транзисторов
 - а. Проводят оценку действующих в узлах устройства токов и напряжений.
- б. Выбирается транзистор с аналогичной структурой (p-n-p или n-p-n проводимости).
- в. Проверяют, подходит ли заменяющий транзистор по частотным характеристикам.
- г. Проверяют, подходит ли транзистор по максимальному току коллектора и по мощности, рассеиваемой на коллекторе.
 - 3. Установите правильный порядок расчета цепи методом наложения
- а. Рассчитываются частичные токи во всех ветвях каждой подсхемы любым метолом
- б. Заданная схема, в которой предварительно расставляются положительные направления искомых токов, разбивается на подсхемы.

- в. Определяются действительные токи в ветвях исходной схемы путем алгебраического суммирования соответствующих частичных токов.
- г. Производится проверка расчета подсчетом баланса мощностей для исходной схемы.
 - 4. Установите правильный порядок составления уравнений но законам Кирхгофа
- а. Выбираем направления обхода контуров и записываем уравнения по законам Кирхгофа.
- б. Необходимо сначала выбрать положительные направления токов и напряжений ветвей.
 - в. Решаем полученную систему уравнений и определяем токи и напряжения цепи.
 - г. Записываем уравнения по первому закону Кирхгофа для n-1 узлов.
 - д. После определения токов и напряжений необходимо выполнить проверку.
- 5. Установите правильный порядок расчета электрической цепи методом контурных токов
- а. По второму закону Кирхгофа, относительно контурных токов, составляем уравнения для всех независимых контуров.
- б. Вычерчиваем принципиальную схему цепи и обозначаем все элементы, задаем направления токов ветвей.
 - в. Определяем все независимые контуры.
- г. Произвольно задаемся направлением протекания контурных токов в каждом из независимых контуров (по часовой стрелке или против).
- д. Переходим от контурных токов к реальным, считая, что реальный ток ветви равен алгебраической сумме контурных токов, протекающих по данной ветви. Решаем любым методом полученную систему относительно контурных токов и определяем их.
 - е. Произвольно задаем направление реальных токов всех ветвей и обозначаем их.
 - 6. Укажите порядок определения номинального значения цветного резистора:
 - а. Определяют множитель.
 - б. Определяют номинал.
 - в. Определяют допуск и температурный коэффициент.
- 7. Укажите правильный порядок установления маркировки со следующими пятью кольцами: красный, фиолетовый, черный, коричневый, зеленый, номиналы резисторов указаны в Ом.
 - а. вторая цифра (2 элемент) 7;
 - б. третья цифра (3 элемент) 0;
 - в. множитель 10;
 - г. первая цифра (1 3лемент) 2;
 - д. допуск, $\% \pm 0.5$.
 - 8. Укажите правильный порядок маркировки SMD конденсаторов
 - а. обозначение производителя компонента;
 - б. код значащей части (мантиссы) номинальной емкости;
- в. степень, в которую необходимо возвести закодированное число, чтобы получить номинал емкости в пикофарадах.
- 9. Укажите правильный порядок алгоритма расчета цепи методом эквивалентного генератора.
- а. Источники ЭДС закорачиваются (заменяются на отрезок провода, причем их внутреннее сопротивление остается в схеме), а ветви с источниками тока обрываются.

- б. Ветвь, выбранная для расчета, удаляется из схемы. Узлы, к которым она присоединялась, обозначают буквами m и n.
 - в. Определяем эквивалентное сопротивление генератора.
 - г. Рассчитывается эквивалентная ЭДС генератора.
- д. Производится расчет входного сопротивления оставшейся схемы относительно зажимов m и n.
- 10. Укажите правильный порядок операторного метода расчета переходных процессов.
 - а. Новую функцию обозначают через F(p) и называют изображением функции f(t).
- б. Зная сопротивление генератора и его эквивалентную ЭДС, определяют неизвестный ток.

От искомой функции f(t), называемой оригиналом, переходят с помощью преобразования Лапласа к функции комплексного переменного р.

- в. Систему уравнений Кирхгофа для оригиналов преобразуют в операторные алгебраические уравнения для изображений.
 - г. Полученные операторные уравнения решают относительно F(p).
- д. От найденного изображения F(p) переходят к оригиналу f(t), который и является искомой функцией.

4. Вопросы на установление соответствия

1. Разместите следующие компоненты электронной схемы в порядке, соответствующем их функциям:

А. Транзистор	1)Управление током
В. Резистор	2) Ограничение тока
С. Конденсатор	3) Хранение и выдача энергии
D. Индуктивность	4) Создание магнитного поля

2. Установите соответствие между электронными компонентами и их символами в схемах.

А. Резистор	1. R
В. Конденсатор	2. C
С. Индуктивность	3. L
D. Транзистор	4. Q
Е. Диод	5. D

3.Установите соответствие между типами полевых транзисторов и их символами в схемах.

А. N-канальный MOSFET	1. NMOS
В. Р-канальный MOSFET	2. PMOS
С. Изолированный затвор	3. IGBT
D. Биполярный транзистор	4. BJT
Е. Униполярный транзистор	5. JFET

4. Установите соответствие между типами полевых транзисторов и их характеристиками.

А. N-канальный MOSFET	1. Имеет отрицательное пороговое напряжение.
В. Р-канальный MOSFET	2. Имеет положительное пороговое напряжение.
С. Изолированный затвор	3. Используется в коммутационных схемах.
D. Биполярный транзистор	4. Обладает высоким входным сопротивлением.
Е.Униполярный транзистор	5. Основан на двух типах носителей заряда.

5. Установите соответствие между характеристиками ОУ и их описанием.

А. Усилительное усиление (А)	1. Определяет разницу между входным и	
	выходным напряжением усилителя.	
В. Входное сопротивление (Rin)	2. Показывает, насколько сильно ОУ	
	усиливает входной сигнал.	
С. Выходное сопротивление (Rout)	3. Определяет, как ОУ реагирует на	
	изменения входного сигнала.	
D. Полоса пропускания (BW)	4. Показывает, насколько сильно ОУ	
	искажает форму входного сигнала.	
Е. Коэффициент усиления по напряжению	5. Частотный диапазон, в пределах	
(V/mV)	которого ОУ может работать стабильно.	

6. Установите соответствие между видами обратной связи и их описаниями:

А)Положительная обратная связь	1. Увеличивает амплитуду сигнала
В)Отрицательная обратная связь	2. Снижает коэффициент усиления
С)Двусторонняя обратная связь	3.Изменяет фазу сигнала на 180 градусов
D)Односторонняя обратная связь	4.Поддерживает стабильность и
	линейность

7. Установите соответствие между типами транзисторов и их действием:

	1. Управляет током между эмиттером и
А. NPN транзистор	коллектором
	2. Управляет током между коллектором и
В. РNР транзистор	эмиттером
	3. Использует полевой эффект для
C. MOSFET	управления током
D. JFET	4. Основан на переходе р-п

8. Установите соответствие между характеристиками операционных усилителей (ОУ) и их функциями:

А. Усиление сигнала	1. Усиливает сигнал
В. Инверсия сигнала	2. Позволяет изменять фазу
С. Суммирование сигналов	3. Позволяет складывать сигналы
	4. Поддерживает стабильность и
D. Обратная связь	линейность
Е. Установка уровня сигнала	5. Позволяет управлять амплитудой

9.Установите соответствие между типами электронных компонентов и их функциями в электрических схемах:

<u> </u>	
А. Катушка индуктивности	1. Хранит энергию в магнитном поле
В. Транзистор	2. Усиливает сигнал
С. Резистор	3. Ограничивает ток
D. Конденсатор	4. Переключает ток в одном направлении
Е. Диод	5. Хранит энергию в электрическом поле

10. Установите соответствие между видами обратной связи и их описаниями:

10.3 становите соответствие между видами	обратной связи и их описаниями.	
А. Положительная обратная связь	1. Увеличивает амплитуду сигнала	
В. Отрицательная обратная связь	2. Снижает коэффициент усиления	
С. Двусторонняя обратная связь	3. Изменяет фазу сигнала на 180 градусов	
	4. Поддерживает стабильность и	
D. Односторонняя обратная связь	линейность	

11.Установите соответствие между электронными компонентами и их функциями в электрических схемах:

	1. Передает электромагнитную энергию от
А. Трансформатор	одной катушки к другой
В. Источник тока	2. Создает электромагнитное поле
С. Катушка индуктивности	3. Предоставляет стабильное напряжение
	4. Преобразует электрическую энергию в
D. Генератор	механическую

12.Сопоставьте следующие типы электрических сигналов с их описанием:

12 construent on the second of	
А. Аналоговый сигнал	1.Передает информацию в виде
	непрерывного изменения напряжения
В. Цифровой сигнал	2. Представляет информацию в дискретной
	форме (0 и 1)
С. Пульсирующий сигнал	3.Периодически меняется между двумя
	уровнями напряжения

13. Сопоставьте следующие виды схемных соединений с их названиями:

	7.3
А. Параллельное соединение	1. Ток имеет только один путь
В. Серийное соединение	2. Ток разделяется на несколько путей
С. Смешанное соединение	3. Сочетание параллельного и серийного
	соединения
D. Мостовое соединение	4. Используется для измерения
	сопротивления

14.Сопоставьте следующие типы электронных схем с их описаниями:

The one of abbit one Ajiemire Timbi strekt permish one in ordinamish.	
А. Усилитель	1. Преобразует поступающий сигнал в
	усиленный выходной сигнал
В. Инвертор	2. Изменяет напряжение из постоянного в
	переменное
С. Выпрямитель	3. Преобразует переменное напряжение в
	постоянное
D. Фильтр	4.Удаляет шум и искажения из сигнала

15.Сопоставьте следующие элементы электроники с их применением:

А. Трансформатор	1.Используется для управления
	временными задержками в схемах
В. Операционный усилитель (ОУ)	2.Применяется для усиления сигналов
С. Индикатор LED	3.Преобразует электрический сигнал в
	световой
D. Таймер 555	4.Изменяет напряжение в сети
	переменного тока

16.Сопоставьте следующие типы электрических схем с их описаниями:

то сопоставьте следующие типы электрических схем с их описаниями.	
А. Импульсное устройство	1. Преобразует поступающий сигнал в
	усиленный выходной сигнал.
В. Инвертор	2. Изменяет напряжение из постоянного в
	переменное.
С. Усилитель	3. Преобразует бинарный код в десятичное
	представление.
D. Дешифратор	4. Генерирует короткие импульсы в ответ

на входной сигнал.
на входной сигнал.

17. Сопоставьте следующие типы диодов с их характеристиками:

А. Светодиод (LED)	1. Используется как стабилизатор
	напряжения.
В. Шоттки-диод	2. Предназначен для высокочастотных применений.
С. Zener-диод	3. Излучает свет при прохождении тока.
D. Варикап	4. Имеет низкий порог пробоя.

18.Сопоставьте следующие виды связи с их описаниями:

·	
А. Параллельная связь	1. Передача данных посредством световых
	волокон.
В. Серийная связь	2. Передача данных через провода с общей линией.
	липиси.
С. Беспроводная связь	3. Передача данных по радиоволнам.
D. Оптоволоконная связь	4. Передача данных по одному биту за раз.

19. Сопоставьте следующие виды электрических схем с их описаниями:

А. Интегральная схема (ИС)	1. Выполняет функцию усиления и
	обратной связи в электронных схемах.
В. Трансформатор	2. Преобразует кодированный входной
	сигнал в дешифрированный выходной
	сигнал.
С. Дешифратор	3. Используется для изоляции и изменения
	напряжения в сети переменного тока.
D. Операционный усилитель (ОУ)	4. Имеет множество встроенных
	логических функций на одном чипе.

20 Сопоставьте спелующие типы микросхем с их назначением:

20. Сопоставьте следующие типы микроскем с их назначением.	
А. Микроконтроллер	1. Хранит данные, которые можно
	переписать многократно.
В. Микросхема памяти (ЕЕРКОМ)	2. Управляет таймингом и временными
	задержками в схемах.
С. Микросхема таймера	3. Осуществляет управление
	периферийными устройствами и
	выполнение программ.
D. Микросхема компаратора	4. Сравнивает два аналоговых сигнала и
	генерирует выходной сигнал.

21.Сопоставьте следующие типы схем с их особенностями:

21. concertable oned from the first of the concert	200001111001111111111111111111111111111
А. Одноступенчатый усилитель	1.состоит из нескольких усилительных
	блоков, соединенных последовательно.
В. Каскадный усилитель	2. Генерирует высокочастотные колебания.
С. Колебательный контур	3. Преобразует поступающий сигнал в
	импульсный выходной сигнал.
D. Импульсный преобразователь	4. Содержит только один усилитель для
(инвертор)	увеличения амплитуды сигнала.

22. Сопоставьте следующие элементы цифровых схем с их функциями:

А. ИС "ИСТИНА" (AND)	1. Выдаёт	логическую 1.	, если один из

	входов логической "1".
В. ИС "ЛИБО" (OR)	2. Преобразует логическую 0 в логическую
	1 и наоборот.
С. ИС "ИНВЕРТОР" (NOT)	3. Выдаёт логическую 1, если оба входа
	равны логической 1.
D. ИС "ИСКЛЮЧАЮЩЕЕ ИЛИ" (XOR)	4. Выдаёт логическую 1, если только один
	из входов равен логической 1.

23. Сопоставьте следующие виды источников питания с их характеристиками:

23. Сопоставые следующие виды исто шике	в питания с их характеристиками.
А. Батарейка	1. Поставляет энергию в форме
	синусоидального напряжения.
В. Источник постоянного тока (DC)	2. Источник энергии, преобразующий
	солнечный свет в электричество.
С. Источник переменного тока (АС)	3. Обеспечивает стабильное напряжение
	постоянного тока.
D. Солнечная панель	4. Предоставляет энергию в виде
	химической реакции.

24. Сопоставьте следующие типы выходных устройств с их назначением:

24. Сопоставьте следующие типы выходных	устронеть с их назна тепнем:
А. Динамик	1. Преобразует электрический сигнал в
	звуковые волны.
В. Дисплей	2. Выводит текст или изображение для
	визуального отображения.
С. Реле	3. Используется для управления высокими
	токами или переключения других
	устройств.
D. Мотор	4. Преобразует электрическую энергию в
-	механическое движение.

25. Сопоставьте следующие виды электронных соединений с их характеристиками:

А. Параллельное соединение	1. Увеличивает общее напряжение в цепи.
В. Серийное соединение	2. Увеличивает общее сопротивление в
	цепи.
С. Смешанное соединение	3.

26.Сопоставьте следующие типы сигналов с их описаниями:

zereenretruzzie und jiedie ininzi enimez e	
А. Аналоговый сигнал	1. Представлен в виде непрерывных
	значений во времени.
В. Цифровой сигнал	2. Передает информацию в виде двоичных
	кодов (0 и 1).
С. Постоянный сигнал (DC)	3. Не меняет своего знака и направления
	во времени.
D. Переменный сигнал (AC)	4. Изменяет свое напряжение и/или
	направление периодически.

27. Сопоставьте следующие виды датчиков с их применением:

=, ve emeetussie eneggie ziigsi gut innes	
А. Термистор	1. Используется для измерения яркости
	или уровня света.
В. Фоторезистор	2. Реагирует на изменение температуры и
	используется в терморегулировании.
С. Датчик движения	3. Обнаруживает движение в окружающей

	среде.
D. Датчик давления	4. Измеряет давление в жидкостях или
	газах.

28.Сопоставьте следующие виды интегральных микросхем с их назначением:

20. Concertabble estegylomine bright infler paster	ibin minipoonom o ini masila loimom.
А. Микросхема счетчика	1. Используется для выбора одного из
	нескольких входных сигналов и
	переключения
В. Микросхема оперативной памяти	2. Хранит данные, доступные для чтения и
(RAM)	записи во время работы компьютера.
С. Микросхема мультиплексора	3. Подсчитывает количество импульсов
	или событий.
D. Микросхема дешифратора	4. Преобразует бинарный код в
	дешифрированный выходной сигнал.

29. Сопоставьте следующие виды кабелей и проводов с их применением:

29. Сопоставые следующие виды каослен и	проводов е их применением.
A. HDMI кабель	1. Используется для подключения
	компьютеров к сети и передачи данных.
В. Коаксиальный кабель	2. Обеспечивает высококачественную
	передачу аудио и видео сигнала.
С. Витая пара (Ethernet кабель)	3. Подключает устройства к компьютеру
	для передачи данных и питания.
D. USB кабель	4. Широко используется для передачи
	кабельного телевизионного сигнала.

30.Сопоставьте следующие виды электронных компонентов с их функциями:

$\frac{1}{2}$	19 1
А. Диод	1. Изолирует электрические сигналы
	между входом и выходом.
В. Транзистор	2. Преобразует переменное напряжение в
	постоянное.
С. Оптрон	3. Ограничивает направление тока в одном
	направлении.
D. Интегральная микросхема (ИС)	4. Содержит множество логических
	элементов на одном чипе.

31.Сопоставьте следующие типы схем с их назначением:

А. Инвертор	1. Умножает два входных сигнала и
	выдаёт их произведение.
В. Умножитель	2. Изменяет частоту входного сигнала.
С. Сумматор	3. Генерирует сигнал, равный
	инвертированному входному сигналу.
D. Делитель частоты	4. Складывает несколько входных
	сигналов и выдаёт их сумму.

32.Сопоставьте следующие виды фильтров с их функциями:

ezveeneetussie enegjiezure singsi pinnsipes e	17 1
А. Полосовой фильтр	1. Пропускает только сигналы в
	определенном диапазоне частот.
В. Низкочастотный фильтр	2. Пропускает низкочастотные сигналы и
	блокирует высокочастотные сигналы.
С. Высокочастотный фильтр	3. Пропускает высокочастотные сигналы и
	блокирует низкочастотные сигналы.

D. Полосозаграждающий фильтр	4. Подавляет сигналы в определенном
	диапазоне частот.

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения - 60 баллов (установлено положением П 02.016).

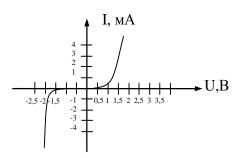
Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи.

Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по *по 5-балльной шкале* следующим образом:

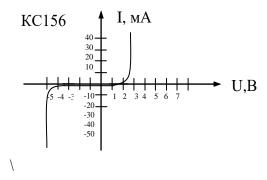
Соответствие 100-балльной и 5-балльной шкал

Сумма	баллов	no	100-балльной	Оценка по 5-балльной шкале
100-85				отлично
84-70				хорошо
69-50				удовлетворительно
49 и мен	іее			неудовлетворительно


Критерии оценивания результатов тестирования:

Каждый вопрос (задание) в тестовой форме оценивается по дихотомической шкале: выполнено - **2 балла**, не выполнено - **0 баллов**.

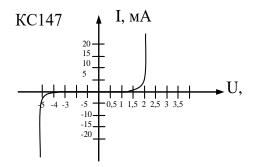
2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ


Компетентностно-ориентированная задача № 1

Дан график и в/а характеристика полупроводникового диода

Найти динамическое сопротивление диода на прямолинейных участках прямой и обратной ветви в/а характеристики. Найти крутизну характеристики прямой ветви.

Компетентностно-ориентированная задача № 2


Даны:

- 1) Графическая в/а характеристика стабилитрона КС156А;
- 2) Напряжение источника 9В;
- 3) Ток нагрузки $I_{\text{max}} = 20 \text{ мA};$
- 4) Напряжение стабилизации Uc = 5B.

Найти:

- 1) Построить схему стабилизации Uct = 5B, $U_{CT} = 2.5B$;
- 2) Исходя из допустимости тока через стабилизаторы КС156A 40 мA, рассчитать величину гасящего сопротивления Rr, учитывая, что ток нагрузки имеет тенденцию к уменьшению.

Компетентностно-ориентированная задача № 3

Даны:

- 1) Графическое представление в/а характеристики стабилитрона КС147Б;
- 2) Напряжение источника E = 5B;

Найти:

- 1) Построить схему стабилизации Ucт = 2B;
- 2) Определить величину гасящего резистора без нагрузки, если ток через стабилитрона составляет 20 мА.

Компетентностно-ориентированная задача № 4

Дано:

- 1) Источник E = 12,6B;
- 2) Стабилитроны Д814А;
- 3) Напряжение стабилизации: в прямом направлении 1,5В, в обратном направлении 7,5В;
- 4) Ток через стабилизирующую цепь 40 мА.

Найти:

- 1) Представить схему стабилизации с использованием стабилитронов Д814A, общее стабилизированное напряжение на выходе схемы 9B;
- 2) Определить величину гасящего сопротивления Rr без учета нагрузки, определить его мощность рассеивания.

Составить и рассчитать схему стабилизатора постоянного напряжения с изменяющимся током нагрузки в пределах 0,1 ÷ 0,5 A. Величина выходного стабилизированного напряжения – 15B, ЭДС источника 25B, $Ict = 2*10^{-2}A.$

Компетентностно-ориентированная задача № 6

Задание: спроектировать схему одностороннего ограничителя, на выходе которого выделяется часть синусоиды отрицательной полярности с амплитудой 0,5В, входное синусоидальное напряжение с амплитудой 2В.

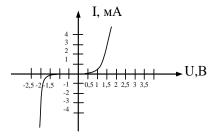
Компетентностно-ориентированная задача № 7

Задание: спроектировать схему двустороннего ограничителя, на выходе которого выделяется часть синусоиды обеих полярностей с амплитудой до 1В, входное синусоидальное напряжение составляет 2,5В (амплитуда).

Компетентностно-ориентированная задача № 8

1. Построить схему с контурными токами, содержащую три ветки, первая ветвь содержит ЭДС, E=15B; общее с ней сопротивление $R_1=12$ Ом, смежный контур – Π -образный, где $R_2=24$ Ом, $R_3=12$ Ом, $R_4 = 24$ 2. <u>Найти токи I₁, I₂, I₃, I₄.</u>

Компетентностно-ориентированная задача № 9


Дано: операционный не инвертируемый усилитель с двумя источниками питания $\pm E_{\text{uct}}$. Задание: 1) представить схему ОУ с отрицательной обратной связью экономного характера; 2) $R_1 = 150$ кОм, найти R_2 , обеспечивающее коэффициент усиления $K_y = 25$

Компетентностно-ориентированная задача № 10

Дано: операционный инвертируемый усилитель (ОУ) с одним источником питания Задание: 1) составить схему электрическую принципиальную ОУ с отрицательной обратной связью 2) определить коэффициент усиления, если R_1 =56 кОм; R_2 =3 R_1

Компетентностно-ориентированная задача № 11

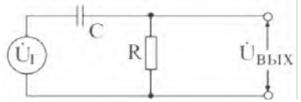
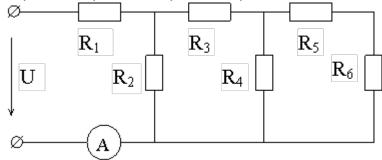
Дан график и в/а характеристика полупроводникового диода

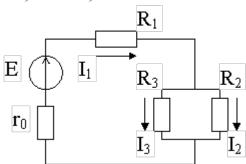
Найти динамическое сопротивление диода на прямолинейных участках прямой и обратной ветви в/а характеристики.

1. Найти крутизну характеристики прямой ветви.

Компетентностно-ориентированная задача № 12

Рассчитать и нарисовать амплитудно-частотную и фазочастотную характеристики дифференцирующей RC - цепи, приведенной на рис.


Схема дифференцирующей RC – цепи.

Определите показания амперметра, если напряжение на зажимах цепи U=100~B, R1=15~Om, R2=10~Om, R3=5~Om, R4=10~Om, R5=8~Om, R6=2~Om.

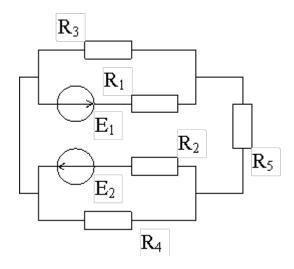
Компетентностно-ориентированная задача № 14

Определите ЭДС источника цепи представленной на рис., если R1=7 Ом, R2=3 Ом, R3=6 Ом, r0=1 Ом, I2=2 А.

Компетентностно-ориентированная задача № 15

Номинальное напряжение и мощность декоративных ламп 12 В и 1,8 Вт. Какое количество ламп потребуется для елочной гирлянды и какой ток будет в цепи гирлянды, если ее присоединяют к сети напряжением 220 В?

Компетентностно-ориентированная задача № 16

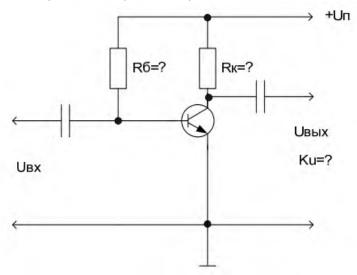

К сети напряжением 220 В присоединены двигатель, номинальной мощностью 3,8 кВт, работающий с КПД=85%, печь мощностью 1,1 кВт и 20 ламп мощностью 60 Вт каждая. Найдите ток, потребляемый из сети.

Компетентностно-ориентированная задача № 17

Какое сопротивление должен иметь реостат, чтобы при его включении последовательно с приемником в сеть с напряжением 220 В ток приемника уменьшится с 5 А до 1 А?

Компетентностно-ориентированная задача № 18

Для цепи, представленной на рис., методом контурных токов найдите токи во всех ветвях цепи, если E1=E2=30 B, R1=R2=1 OM, R3=4 OM, R4=2 OM, R5=3 OM.

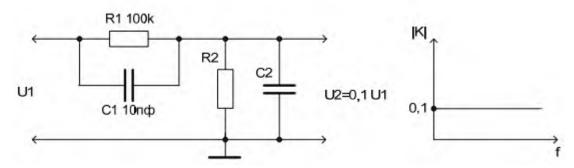


Для регулирования напряжения приемника с сопротивлением Rn=10 Ом включен секционированный реостат. Найдите токи в цепи и напряжения приемника для различных положений ручки реостата, если сопротивление каждой его секции RO=5 Ом, а напряжение сети U=120 В.

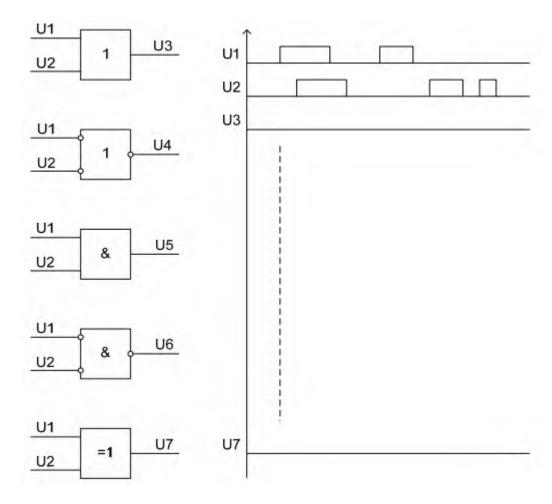
Компетентностно-ориентированная задача № 20

Определить величину сопротивления резистора нагрузки в коллекторной цепи и резистора, задающего ток базы, а также коэффициенты усиления по напряжению, току и мощности для схемы включения транзистора, показанной на рис., для следующих вариантов:

$$I_K = 3$$
 mA, $U_\Pi = 24$ B, $H21 = 30$, $H11 = 2$ kOm; $I_K = 10$ mA, $U_\Pi = 16$ B, $H21 = 50$, $H11 = 800$ Om



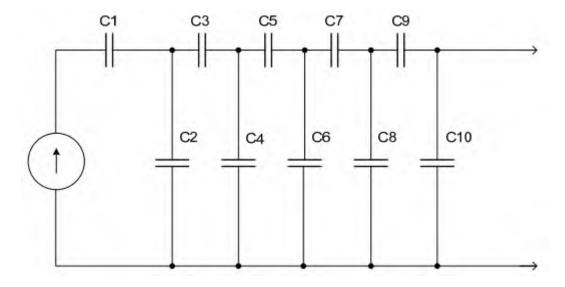
В усилителях напряжения, показанных на рис. 1 — 4, определить входное сопротивление схемы Rвх, номиналы резисторов и значения других параметров с индексами «?». Обозначено: Ки — коэффициент усиления по напряжению, Ки(вч), Ки(нч) — коэффициенты усиления по напряжению соответственно на высоких и низких частотах.



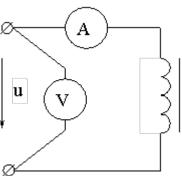
Имеется аттенюатор, принципиальная электрическая схема которого показана на рис.. Какие величины должны иметь сопротивление резистора R2 и ёмкость конденсатора C2, чтобы коэффициент передачи аттенюатора не зависел от частоты сигнала и был равен 0,1? При полученных значениях элементов R2 и C2 изменить номиналы элементов R1 и C1 так, чтобы коэффициент передачи стал равен 0,01.

Компетентностно-ориентированная задача № 23

Нарисовать эпюры сигналов для напряжений U3 - U7, если на входы логических элементов, показанных на рис., подаются сигналы U1 и U2.

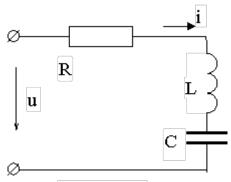

Привести примеры микросхем, реализующих функции аналоговых коммутаторов. На основе микросхем К561КП2 выполнить электрически управляемый распределитель, позволяющий подключать один из восьми аналоговых сигналов на любой из четырёх входов усилителя.

Компетентностно-ориентированная задача № 25

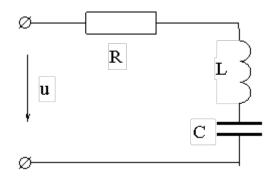

Где находятся рабочие точки на выходных и входных характеристиках транзисторов, используемых в усилителях мощности синусоидального сигнала с разными режимами работы и разными 9 схемными реализациями? Определить максимальную выходную мощность усилителя Рвых и требования к используемым транзисторам: • однотактного, класса А. Напряжение питания Uпит = $200~\rm B$, сопротивление нагрузки RH = $10~\rm Om$; • двухтактного, класса В с выходным трансформатором, имеющим коэффициент трансформации 1:2, Uпит = $200~\rm B$, RH = $100~\rm Om$; • двухтактного, класса В, полумостового, бестрансформаторного, Uпит = $20~\rm B$, RH = $10~\rm Om$; • двухтактного, класса В, мостового, бестрансформаторного, Uпит = $20~\rm B$, RH = $10~\rm Om$.

Компетентностно-ориентированная задача № 26

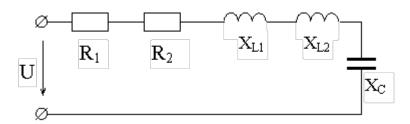
На вход цепочки конденсаторов C1, C3, C5, C7, C9, C10 = 2C; C2, C4, C6, C8 = C (рис.) подаётся переменное напряжение U, равное 128 B. Определить напряжение на выходе цепочки.



При подключении цепи, представленной на рис., к источнику постоянного тока напряжением 100~B амперметр показывает 5~A, а при подключении к источнику синусоидального тока напряжением 100~B и частотой $50~\Gamma$ ц -4~A. Найдите параметры катушки.


Компетентностно-ориентированная задача № 28

В последовательной цепи, представленной на рис., напряжение на резисторе изменяется по закону uR= $100\sin 314t$, на катушке uL= $200\sin (314t+90)$, на конденсаторе uC= $50\sin (314t-90)$. Найдите мгновенное значение напряжения на зажимах цепи для момента времени t=T/12.



Компетентностно-ориентированная задача № 29

2.19. В последовательной цепи, представленной на рис., напряжение на участке R-6 В, на участке L-12 В, на участке C-4 В. Найдите напряжение приложенное к зажимам цепи.

Найдите полное сопротивление цепи, представленной на рис., если R1=1 OM, R2=2 OM, XL1=6 OM, XL2=2 OM, XC=4 OM.

Шкала оценивания решения компетентностно-ориентированной задачи; в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения - 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи - 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по *5-балльной шкале* следующим образом:

	100 ~	·	U
Соответствие	100-баппь	нои и >- 6ап	прнои шкап
Coorderendine	I O O O GUILLID	mon n o oan	JIDHON HIKAJI

Сумма	баллов	no	100-балльной	Оценка по 5-балльной шкале
100-85				отлично
84-70				хорошо
69-50				удовлетворительно
49 и ме	нее			неудовлетворительно

Критерии оценивания решения компетентностно-ориентированной задачи (нижеследующие критерии оценки являются примерными и могут корректироваться):

6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или

наиболее рациональное, или оптимальное, или единственно правильное решение); Компетентностно-ориентированная задача № решена в установленное преподавателем время или с опережением времени.

- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; Компетентностно-ориентированная задача № решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или). Компетентностноориентированная задача № не решена.