Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Чернецкая Ирина Евгеньевна Должность: Заведующий кафедрой Дата подписания: 30.09.2023 22:16:19

Уникальный программный ключ:

bdf214c64d8a381b0782ea566b0dce05e3f5ea2d

МИНОБРНАУКИ РОССИИ

Юго-Западный государственный университет

УТВЕРЖДАЮ:

Заведующий кафедрой вычислительной техники

<u>И. И.</u> И.Е. Чернецкая «ЗГ» 08 2023 г.

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Цифровая обработка и анализ изображений в информационных системах (наименование дисциплины)

> 09.04.01 Информатика и вычислительная техника (код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Раздел (тема) дисциплины Общие вопросы цифровой обработки и анализа изображений.

- 1. Области применения цифровой обработки изображений.
- 2. Носители изображений.
- 3. Методы регистрации изображений.
- 4. Средства регистрации изображений.
- 5. Основные этапы цифровой обработки.

Раздел (тема) дисциплины Улучшение изображений

- 1. Изменение контраста.
- 2. Сглаживание шумов.
- 3. Видоизменение гистограмм.
- 4. Подчеркивание границ.
- 5. Фильтрация.

Раздел (тема) дисциплины Выделение контуров изображений

- 1. Классификация методов выделения контуров изображений.
- 2. Алгоритмы выделения границ изображения
- 3. Методы пространственного дифференцирования.
- 4. Алгоритм выделения границ изображений, основанный на анализе высших производных функции яркости.

Раздел (тема) дисциплины Сегментация изображений

- 1. Классификация методов сегментации изображений.
- 2. Методы сегментации изображений наращиванием областей.
- 3. Методы сегментации изображений слиянием-расщеплением областей.

Раздел (тема) дисциплины Утоньшение и скелетизация изображений

- 1. Топологическое сжатие.
- 2. Утончение.
- 3. Скелетизация.
- 4. Виды помех на скелетном изображении
- 5. Алгоритмы устранения помех.

Раздел (тема) дисциплины Анализ и описание текстур

- 1. Типы текстур.
- 2. Признаки текстур, основанные на измерении пространственных частот.
- 3. Признаки текстур, основанные на статических характеристиках уровней яркостей элементов изображения.

Раздел (тема) дисциплины Методы представления изображений

- 1. Классификация методов представления изображений.
- 2. Позиционные методы представления изображений.
- 3. Структурные методы представления изображений.

Раздел (тема) дисциплины Выделение признаков изображений

- 1. Метод упрощения сложных полутоновых чёрно-белых изображений.
- 2. Признаки исходного изображения.
- 3. Признаки точечных объектов.
- 4. Признаки объектов из разомкнутых и замкнутых линий.
- 5. Признаки площадных объектов.

Шкала оценивания: 48-балльная.

Критерии оценивания

- 48 баллов выставляется обучающемуся, если он принимает активное участие в беседе по большинству обсуждаемых вопросов (в том числе самых сложных); демонстрирует сформированную способность к диалогическому мышлению, проявляет уважение и интерес к иным мнениям; владеет глубокими (в том числе дополнительными) знаниями по существу обсуждаемых вопросов, ораторскими способностями и правилами ведения полемики; строит логичные, аргументированные, точные и лаконичные высказывания, сопровождаемые яркими примерами; легко и заинтересованно откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **36 баллов** выставляется обучающемуся, если он принимает участие в обсуждении не менее 50% дискуссионных вопросов; проявляет уважение и интерес к иным мнениям, доказательно и корректно защищает свое мнение; владеет хорошими знаниями вопросов, в обсуждении которых принимает участие; умеет не столько вести полемику, сколько участвовать в ней; строит логичные, аргументированные высказывания, сопровождаемые подходящими примерами; не всегда откликается на неожиданные ракурсы беседы; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **24 балла** выставляется обучающемуся, если он принимает участие в беседе по одномудвум наиболее простым обсуждаемым вопросам; корректно выслушивает иные мнения; неуверенно ориентируется в содержании обсуждаемых вопросов, порой допуская ошибки; в полемике предпочитает занимать позицию заинтересованного слушателя; строит краткие, но в целом логичные высказывания, сопровождаемые наиболее очевидными примерами; теряется при возникновении неожиданных ракурсов беседы и в этом случае нуждается в уточняющих и (или) дополнительных вопросах преподавателя.
- **0 баллов** (выставляется обучающемуся, если он не владеет содержанием обсуждаемых вопросов или допускает грубые ошибки; пассивен в обмене мнениями или вообще не участвует в дискуссии; затрудняется в построении монологического высказывания и (или) допускает ошибочные высказывания; постоянно нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

1 Вопросы в закрытой форме

- 1.1 техническое зрение это
- способность технической системы воспринимать и интерпретировать визуальную информацию
- зрение техника-специалиста
- воспроизведение визуальной информации на проекторе или ином отображающем устройстве
- 1.2 монохроматическое изображение это
- изображение одного спектрального диапазона
- изображение ультрафиолетового диапазона
- изображение нескольких спектральных диапазонов
- 1.3 верно ли, что видеодатчик на базе ПЗС приемника изображения также нечувствителен к инфракрасному излучения, как и человеческий глаз
- нет
- да
- скорее да, чем нет
- 1.4 человеческий глаз хорошо воспринимает ближний инфракрасный свет
- нет

- днем
- ла
- в ночных условиях

1.5 обязательными элементами оптико-элекронного датчика является

- оптическая система и приемник изображения
- оптическая система и матричный приемник изображения
- оптическая система и аналого-цифровой преобразователь
- оптическая система и провода

1.6 радиальная дисторсия является

- погрешнстью оптической системы
- погрешнстью изготовления радиуса проводов датчика
- погрешностью приемника изображения
- погрешностью АЦП

1.7 ралиальная дисторсия приводит

- искривлению линий
- выпрямлению линий
- размытию изображения

1.8 сферическая аберрация

- приводит к размытию изображения
- приводит к зачернению изображения
- приводит к возникновению цветного ореола
- приводит к искривлению линий

1.9 хроматическая аберрация приводит

- к цветовому ореолу на границе контрастного объекта
- к большим цветным пятнам на изображении
- искривлению линий
- приводит к размытию изображения

1.10 mpeg4 Это

- формат видеофайла
- формат передачи радиосигнала
- формат статической неизменной картинки
- формат аудиозаписи

1.11 оптико-электронный датчик не бывает (выбрать исключающий ответ)

- четырехмерным
- одноэлементным
- матричным
- линейным

1.12 bmp

- это формат без сжатием изображения
- это формат со сжатием изображения
- это формат хранения исключительно монохромных изображений

1.13 изображение может быть получено не только оптическими, но и радиолокационными средствами (верно/не верно утверждение)

- да
- не знаю
- нет

1.14 изображение в компьютере представляется как

- упорядоченный набор байт, характеризующий параметры пикселей
- картинка на мониторе
- аналоговый сигнал

1.15 как правило, для представления цвета изображения используется

- три независимых компоненты яркости на каждый пиксель
- 1,5 независимых компоненты яркости на каждый пиксель
- две компоненты яркости на каждый пиксель
- 4 компоненты яркости на каждый пиксель

1.16 пиксель это

• минимальный элемент изображения

- фрагмент некоторой протяженной части изображения
- элемент фона
- 1.17 в состав системы технического зрения обязательно должен входить осветитель
- нет
- не знаю
- да
- 1.18 в состав системы технического зрения обязательно должен входить приемник изображения
- да
- не обязательно
- нет
- 1.19 бинокулярная оптико-электронная система это
- система с двумя видеодатчиками
- система с двумя процессорными вычислительными элементами
- система с двумя поочередно меняемыми оптическими системами
- система с двумя биноклями
- 1.20 контур применительно к методам обработки изображений это
- совокупность связных точек на границе резкого перепада яркости
- отдельные точки на границе объекта
- 1.21 гистограмма яркости характеризует
- количество точек изображения каждого значения яркости
- среднюю яркость изображения
- 1.22 экспозиция это
- время накопления одного кадра изображения
- время передачи одного кадра изображения
- 1.23 низкочастотный пространственный фильтр обеспечивает
- снижение уровня шума
- подчеркивание границ объектов
- 1.24 алгоритм жука относится
- к процессу сегментации
- к процессу контрастирования
- к процессу фильтрации
- 1.25 временнОй шум это
- шум яркости одних и тех же пикселей на последовательности кадров
- шум между соседними пикселями одного кадра
- 1.26 аберрация это
- погрешность линзы
- погрешность приемника изображения
- 1.27 калибровка это
- процесс настройки параметров системы технического зрения
- процесс снижения уровня случайных шумов
- 1.27 практически любой пространственный фильтр случайных шумов приводит
- к размытию изображения
- к уменьшению систематических шумов
- 1.28 кодирование изображения в формате јрд выполняется с
- потерей качества исходного изображения
- увеличением объема результирующего изображения относительно объема исходного файла
- 1.29 сжатие видеоданных в mpeg будет иметь наибольший коэффициент сжатия для
- последовательностей динамических изображений с большой неизменной областью изображения в кадре
- для динамичных сцен, характеризуемых резким изменением количества и цветоконтростных характеристик объетов
- 1.30 зависимоть шума пикселя от его площади (продолжить утверждение)
- обратнопропорциональная
- прямопропорциональная
- 1.31 какая из открытых библиотек предназначена для обработки изображений
- OpenCV

- OpenML
- OpenGL
- 1.32 медианный фильтр относится к методам
- предварительной обработки
- выделения контуров

1.33 размер изображения в байтах для кадра размером 10 на 10 пикселей для монохроматического изображения, каждая точка которого характеризуется только одним каналом яркости в диапазоне от 0 до 255 условных единиц равен

- 100 байт
- 800 байт
- 256 байт

1.34 альфа канал, в терминах синтеза изображений это

- канал, определяющий степень прозрачности пикселя
- канал, определяющий уровень серого для пикселя

1.35 бинаризация это

- приведение изображения к двум градациям яркости
- приведение изображения к контурному представлению

1.36 видеодатчик с активными пикселями это датчик у которого

- в каждом пикселе встроен аналоговый усилитель
- в каждом пикселе встроен цифровой усилитель

1.37 видеодатчик с цифровыми пикселями это датчик у которого

- в каждом пикселе встроен цифровой усилитель-преобразователь
- в каждом пикселе встроен аналоговый усилитель

1.38 для приемника изображения на базе ПЗС характерная

- черезстрочная развертка
- прогрессивная развертка

1.39 Комплекс процессов, выполняемых для создания топографических или специальных карт и планов по материалам аэрофотосъемки называют

- Фототопографической съемкой
- Космической съемкой
- Аэрофотосъемкой
- Дешифрированием
- Тахеометрической съемкой

1.40 в общем случае гистограмма цифрового изображения это

- дискретная функция
- аналоговая функция
- среднее значение яркости пикселей изображения

1.41 медианная фильтрация

- нелинейное преобразование
- линейное преобразование
- квадратичное преобразование

1.42 статистическая обработка не используется при анализе изображений

- нет
- да

1.43 наиболее распространенный размер маски для обработки изображений

- 3x3
- 5x5
- 7x7
- 32x32

1.44 преобразование Фурье позволит анализировать изображение в

- частотной области
- пространственной области

1.45 основные пространственные фильтры нельзя перевести в частотную область

- нельзя
- можно

1.46 По используемому при съемке диапазону спектра электромагнитного излучения съемочные системы делят на работающие в

- Оптическом и радиодиапазоне
- Оптическом и локальном диапазоне
- Кадровом и телевизионном диапазоне
- Телевизионном и радиодиапазоне

1.47 Методы обработки изображений классифицируют обычно на

- поточечные методы, локальные, глобальные методы
- локальные, глобальные методы
- поточечные методы, локальные

1.48 операции по обработке изображений

- все перечисленное
- Дискретизация, квантование и кодирование изображений
- Геометрические преобразования изображений
- Фильтрация изображений
- Препарирование изображений

1.49 локальные преобразования оперируют одновременно

- со значениями пикселей в окрестности
- со значениями пикселей всего изображения

1.50 матрицу пространственного фильтра также называют

- все перечисленное
- фильтром
- маской
- ядром
- OKHOM

1.51 при фильтрации изображения как правило используют

- квадратные маски
- прямоугольные маски
- круглые маски
- треугольные маски

1.52 лапласиан используется для

- выделения контуров изображения
- размытия изображения
- увеличения изображения
- сжатия изображения

1.53 в обработке изображений используют

- оба варианта верны
- линейные преобразования
- нелинейные преобразования

1.54 Одной из основных функций графического редактора является

- создание изображений
- ввод изображений
- хранение кода изображения
- просмотр и вывод содержимого видеопамяти

1.55 преобразование из RGB в полутоновый формат выполняется

- с помощью линейного преобразования
- с помощью квадратичного преобразования
- с помощью експоненциального преобразования

$1.56\ Б\Pi\Phi$ в обработке изображений это

- быстрое преобразование Фурье
- базовое преобразование Фурье
- базовый пространственный фильтр

1.57 способы повышения контраста

- линейное повышение, преобразование гистограмм
- линейное повышение
- преобразование гистограмм

1.58 КИХ-фильтр это

- фильтр с конечной импульсной характеристикой
- фильтр с бесконечной импульсной характеристикой

- фильтр с короткой импульсной характеристикой
- фильтр с кусочной импульсной характеристикой

1.59 оператор Превитта

- позволяет выделять контура
- обеспечивает размытие изображения
- обеспечивает сжатие изображения

1.60 скелетизация соотвествует

- утончению линий
- уменьшению размеров изображения
- пороговой фильтрации

1.61 оператор Собела

- позволяет выделять контура
- обеспечивает контрастирование
- обеспечивает сжатие изображения

1.62 оператор Лапласа

- позволяет выделять контура
- обеспечивает размытие изображения
- обеспечивает сжатие изображения

1.63 Графические примитивы – это

- простейшие фигуры (точка, линия, окружность, прямоугольник и др.)
- режимы работы в графическом редакторе
- пиксепи

1.64 вычисление модуля градиента яркости

- позволяет выделять контура
- обеспечивает контрастирование
- обеспечивает сжатие изображения
- обеспечивает размытие изображения

1.65 работа адаптивных фильтров зависит

- от статистических свойств изображения внутри области действия фильтра
- от статистических свойств всего изображения
- от динамических свойств изображения

1.66 виды шума:

- Экспоненциальный, равномерный, импульсный
- экспоненциальный
- равномерный
- импульсный

1.67 поведение адаптивных фильтров

- изменяется в зависимости от статистических свойств изображения внутри области действия фильтра
- изменяется в зависимости от статистических свойств всего изображения
- изменяется в зависимости от динамических свойств изображения
- не изменяется

1.68 при инверсной фильтрации

- используется Фурье преобразование изображения
- не используется Фурье преобразование изображения

1.69 для построения цепного кода контура

- оба ответа верны
- может использоваться 4-х связная модель границы
- может использоваться 8-х связная модель границы

1.70 обучающая выборка в задаче распознавания является

- априорной информацией
- апостореорной информацией
- не является информацией в задаче распознавания

1.71 правила классификации:

- возможны и параллельные и последовательные
- параллельные
- последовательные

1.72 ДПФ и БПФ в обработке изображений

- дают одинаковый результат
- не связаны между собой
- в обработке изображений не используются эти аббревиатуры

2 Вопросы в открытой фор.	ме
---------------------------	----

2.2 Метрика Хаусдорфа это	вная система технического зрения это
2.4 на выходе ДПФ получают числа 2.5 к дискретным ортогональным преобразованиям относятся 2.6 Вейвлеты это 2.7 сглаживающие фильтры используются для	рика Хаусдорфа это
2.5 к дискретным ортогональным преобразованиям относятся 2.6 Вейвлеты это 2.7 сглаживающие фильтры используются для	ежатии по стандарту JPEG используется алгоритм
2.6 Вейвлеты это	ыходе ДПФ получают числа
2.7 сглаживающие фильтры используются для	скретным ортогональным преобразованиям относятся
	влеты это
2.8 Пространственное дифференцирование как правило предназначено для	живающие фильтры используются для
	странственное дифференцирование как правило предназначено для
2.9 ресамплинг это	ПЛИНГ ЭТО
2.10 обучение, в котором отсутствуют подсказки правильных ответов учителем это	учение, в котором отсутствуют подсказки правильных ответов учителем это
2.11 CHV days an ana	Х-фильтр это

- 3 Установление правильной последовательности
- 3.1. укажите наиболее полный перечень авторов книг по обработке изображений
- гонсалес, вудс, прэтт, сойфер, дуда, харт, даджион, мерсеро
- гонсалес, вудс
- сойфер, дуда, харт, даджион, мерсеро
- вудс, даджион, мерсеро
- 3.2 Укажите правильную последовательность при обработке изображения:

Бинаризация, оцифровка, устранение шума, преобразование в оттенки серого, выделение контуров

- 3.3 Установите последовательность этапов
- выделение объектов, распознавание, выделение областей интереса.
- 4 Установление соответствия
- 4.1 к реализации ДПФ относится
- все перечисленное, кроме алгоритма Найквиста
- алгоритм Кули-Тьюки
- алгоритм Гуда-Томаса
- алгоритм Найквиста

4.2 ДПФ

- обеспечивает полноту описания изображения
- инвариантно к преобразованиям подобия
- инварианто к проективным искажениям
- позволяет получить пространственные характеристики изображения
- 4.3 преобразование Карунена-Лоэва
- обеспечивает оптимальность рассчитываемых признаков изображения
- наименее трудоемкое из известных преобразований
- используется во всех известных алгоритмах обработки изображений
- 4.4 Стандартной числовой мерой потерь при сжатии изображений обычно
- является среднеквадратическое отклонение значений пикселей восстановленного изображения от исходного
- является разность средних значений значений пикселей восстановленного изображения от исходного
- экспертная оценка
- 4.5 Главный класс изображений, на который ориентированы алгоритмы сжатия с потерями
- изображения с плавными цветовыми переходами
- изображения с резкими цветовыми переходами

- изображения с множеством мелких деталей
- 4.6 дискретное преобразование Фурье обеспечивает
- Некоррелированность и независимость коэффициентов спектра
- коррелированность и независимость коэффициентов спектра
- Некоррелированность и зависимость коэффициентов спектра
- коррелированность и зависимость коэффициентов спектра
- 4.7 обучение, в котором системе представляется набор образцов распознаваемых объектов с указанием их принадлежности классам
- обучение с учителем
- обучение без учителя
- 4.8 Фильтрация методом минимизации сглаживающего функционала со связью это
- фильтрация по Тихонову
- фильтрация по Чехову
- фильтрация по Колмогорову
- фильтрация Собела
- 4.9 пороговая фильтрация переводит полутоновое изображение в
- монохромное
- цветное
- не изменяет цвета изображения
- не используется в обработке изображений
- 4.10 Растровое графическое изображение формируется из
- пикселей
- линий
- прямоугольников

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по заочной форме обучения -60 баллов (установлено положением Π 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностно-ориентированной задачи (6). Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи. Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом.

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100-балльной шкале	Оценка по 5-балльной шкале
100-85	отлично
84-70	хорошо
69-50	удовлетворительно
49 и менее	неудовлетворительно

2.2 КОМПЕТЕНТНОСТНО-ОРИЕНТИРОВАННЫЕ ЗАДАЧИ

Компетентностно-ориентированная задача № I Написать программу для реализации медианного фильтра

Компетентностно-ориентированная задача № 2 Создать поверхность в среде Sci-lab

Компетентностно-ориентированная задача № 3 Преобразовать изображений в оттенки серого

Компетентностно-ориентированная задача № 4 Написать программу для сжатия изображения

Компетентностно-ориентированная задача № 5 Выделить объекты на изображении по цветовым признакам

Компетентностно-ориентированная задача № 6 Программно реализовать фильтр Собела

Компетентностно-ориентированная задача № 7 Программно реализовать пространственный фильтр

Компетентностно-ориентированная задача № 8 Программно реализовать фильтр Робертса

Компетентностно-ориентированная задача № 9 Программно реализовать выделение текстуры на изображении

Компетентностно-ориентированная задача № 10 Программно реализовать добавление шума на изображение

Шкала оценивания решения компетентностно-ориентированной задачи: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностно-ориентированной задачи — 6 баллов.

Балл, полученный обучающимся за решение компетентностно-ориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования.

Общий балл промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале.

Критерии оценивания решения компетентностно-ориентированной задачи:

- **6-5 баллов** выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы и разностороннее ее рассмотрение; свободно конструируемая работа представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи и формулировку доказанного, правильного вывода (ответа); задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время.
- **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы и (или) задача не решена.