Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 02.06.2021 18:44:49

Уникальный программный ключ: 9ba7d3e34c012eba476ffd2d064cf2781953be/Softfox ударственное бюджетное

Образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

МИНОБРНАУКИ РОССИИ

Кафедра экспертизы и управления недвижимостью, горного дела

Проректор по унебной работе

О.Г. Локтионова

СОВРЕМЕННЫЕ МЕТОДЫ ПРОЕКТИРОВАНИЯ

Методические указания по выполнению практических работ для студентов направления подготовки (специальности) 21.05.04 Горное дело для специализации «Открытые горные работы» «Обогащение полезных ископаемых»

Составитель: Л.А. Семенова

Рецензент Кандидат географических наук, доцент Р.А. Попков

Современные методы проектирования: методические указания по выполнению практических работ / Юго-Зап. Гос. ун-т; сост.: Л.А. Семенова.- Курск, 2017.- 17с.: рис. 6. библиограф.17

Содержит сведения о выполнении практической работы по дисциплине, рекомендации по работе в Компас 3 D.

Методические указания соответствуют требованиям программы, утвержденной на заседании кафедры Э и УH, $\GammaД$ протокол № 6 от <27> 12 2016 года.

Предназначены для студентов направления подготовки (специальности) 21.05.04 Горное дело для специализации «Обогашение полезных ископаемых».

Текст печатается в авторской редакции Подписано в печать формат 60х84 1/16 Усл. Печ. Лист Уч.-изд.л. Тираж 100экз. Заказ Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

Содержание

Практическая	работ	a №		1.
Создание пользоват	тельского і	паблона чертех	ка	
				0
П.,	- Nr. O			8
Практическая рабо				
Основные приемы	черчения в	з «Компас-Граф	рике»	
				12
Практическая рабо	та №3			
Специальные возмо	ожности че	рчения (Компа	ic-3D)	
			,	
				16
Практическая рабо	ота № 4	Инструментац	зная c n e	
твердотельного мо,		1 2	1	ди
твердотельного мо,	делирован	an arounde 5D	//	
Список питоротурі	T			17
Список литературь	ol			1/

Практические работы в САПР «Компас-График»

Практическая работа № 1. Создание пользовательского шаблона чертежа

Задание №

1: Создайте пользовательский шаблон чертежа в соответствии с прилагаемым образцом:

Заполните технические требования, неуказанную шероховатость и основную надпись чертежа.

Полученный чертеж сохраните как заготовку шаблона для последующего быс трого создания чертежа.

Методические рекомендации

- 1. Запустить «Компас». Для этого достаточно дважды кликнуть на ярлы ке программы, размещенном на рабочем столе.
- 2. Создать шаблон чертежа (рис. 2.22). Для этого на инструментальной панели **Стандартная** вызвать команду **Создать новый документ** и

выбрать **Чертеж** иливыбрать соответствующую команду на Стартовой страни це «Компаса» (рис. 2.21).

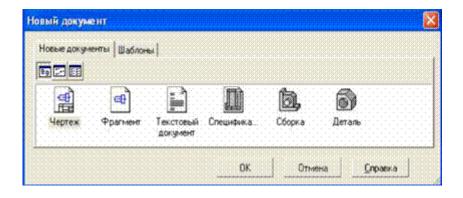


Рисунок 1 – Стартовая страница

3. Отредактировать основную надпись чертежа. Для этого выполнить двойной щелчок левой клавишей мыши (ЛКМ) в момент, когда курсор находится в областиосновной надписи — основная надпись открывается на редактирование (или с Главного меню выполнить команды Вид — Вставка — Основная надпись). С помощьюклавиатуры заполняются графы «Разработал», «Провер

ил», «Предприятие» и т.

д. После того как все изменения

внесены, на Панели Свойств выбирается команда Создать объект.

3.

Добавить неуказанную шероховатость. Для этого в Главном меню вызывается команда **Вставка** — **Неуказанная шероховатость** —

Ввод. В открывшемся диалоге с помощью переключателей выбирается **Тип** ш ероховатости. Текст можно заполнить с помощью клавиатуры

или с помощью выпадающего меню, которое открывается при двойном нажатии

левой клавиши мыши в области поля **Текст**. После внесения необходимых из менений в диалоге «Знак неуказанной

шероховатости» нажимается кнопка **Ок**.

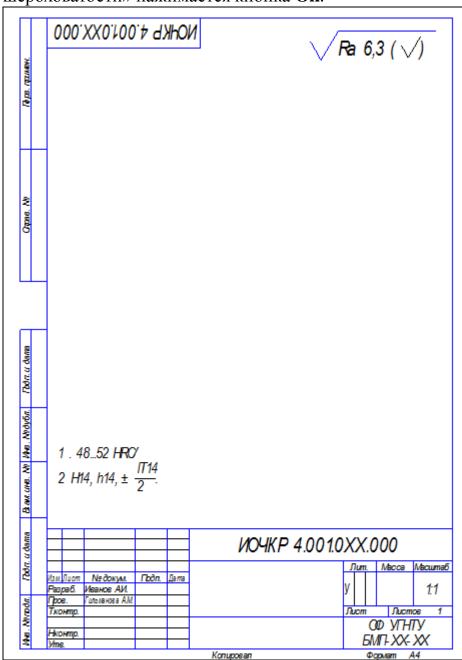


Рисунок 2 – Шаблон чертежа

4. Заполнить технические требования. Для этого в Главном меню вызы вается команда Вставка — Технические требования — Ввод. В открывшемся окне с помощьюклавиатуры вводится необходимый тек ст. Чтобы ввести специальный символ «плюс-минус», на Панели свойств на вкладке Вставка вызывается команда Вставитьспециальный знак. В открывшемся диалоге выбирается команда Простановка размеров — Плюс-минус. Чтобы добавить дробное значение, на вкладке Вставка Панелисвойств выбирается дробь необходимой высоты. По сле того как все изменения в технические

требования внесены, окно

ввода технических требований закрывается, а в открывшемся диалоге п одтверждается их изменение. Можно также воспользоваться **Текстовым шаблоном**, для этого на открытой страничке технических требований в свободном месте необходимо щелкнуть **Правой клавишей мыши** (ПКМ), из контекстного меню выбрать строку **Текстовый шаблон** — **Технические требования** — открыть соответствующую папку требований и в правом верхнем окошке проставить галочки на интересующих требованиях — вставить в лист — закрыть лист технических требований — Ок.

охранить шаблон чертежа. Для этого в главном меню вызвать команду **Файл**

Сохранить как. В открывшемся диалоге выбрать тип файла «Шаблон КОМП АС-Чертежа

(*.cdt)». В диалоге автоматически откроется папка для хранения шаблонов, ее лучше не изменять, а просто ввести новое имя файла шаблона.

6. При создании чертежа на основе шаблона необходимо вызвать диалог **Новый** документ с помощью команды **Создать новый документ** инструментальной панели **Стандартная** или с помощью команды **Файл** – **Создать Главного меню**. В открывшемся диалоге перейти на вкладку **Шаблоны**, где в правой части диалога выбратькурсором необходимы й шаблон и нажать кнопку **Ok**.

Практическая работа № 2. Основные приемы черчения в «Компас-Графике»

Задание № 1: Создайте чертеж детали в соответствии с прилагаемым о бразцом (рис. 2.23).

Методические рекомендации

переводить не требуется) 40, 13, 65, 90.

1. Построение ведется в чертеже (его можно создать на основе суще ствующего шаблона). Первоначально ведется построение вида сверху. Вызывается команда

Окружность на компактной **Инструментальной панели** в разделе **Геометр ия** и произвольно указывается ее центр

на поле чертежа, на **Панели Свойств** уточняютсяпараметры: стиль линии **Основной**, построение без осей (за построение осей отвечает специал

ьный переключатель на **Панели** свойств). Для того чтобы всепоследующие окружности строились с данными параметрами (общий центр окружностей, стиль линии, построение **без осей**), на **Панели свойств** включается режим **Запомнить** состояние. С помощью клавиатуры задаются параметры окружностей (курсор при этом

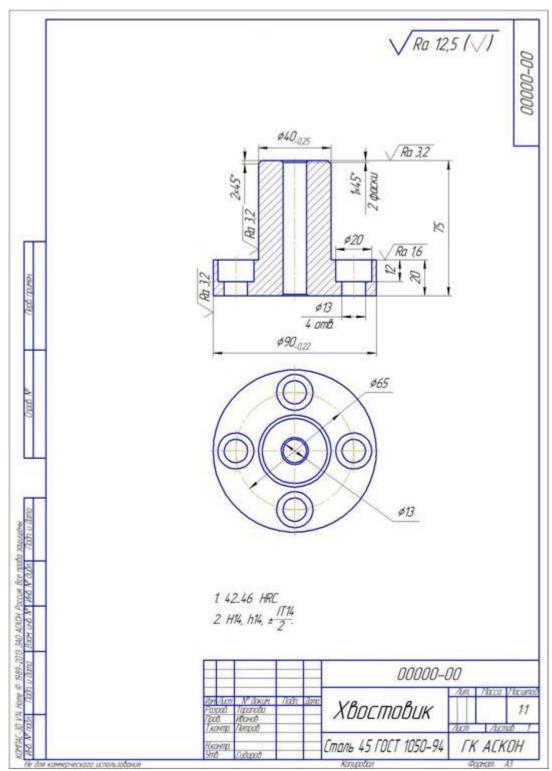


Рисунок 3 – Образец чертежа по Заданию № 2

Каждое значение подтверждается клавишей **Enter** клавиатуры. Так как включен режим **Автосоздание объекта**, то система, получив все необходимые параметры, автоматически пос троит окружности. Для окружности диаметром **65** мм необходимо отредактировать стиль линии: нажать — с помощью курсора указывается окружность диаметром **65** и из всплывающей панели выбирается стиль линии **Осевая**.

Для построения окружностей отверстий диаметром **20** мм вызывается команда **Окружность,** на **Панели**

Свойств указывается диаметр **20**, включается Построение осей, затем включается режим **Запомнить состояние** и с помощью курсора расставляются 4 окружности (их центры располагаются на окружностидиаметром 65 на углах **0**, **90**, **180**, **270**).

Не выходя из команды Окружность, отключается режим Запомнить с

остояние, отключается Построение осей диаметра на 13, снова включается расставляются недостающие окружности. , корректируется значение режим Запомнить состояние и

2. Корректируются

Глобальные привязки. На инструментальной панели **Текущее состояние** на команде **Привязки** нажимается стрелка и в

выпадающемсписке вызывается команда **Настро- ить параметры**. В диалоге отключаются все привязки, кроме **Ближайшая точка** и **Выравнивание**.

С помощью переключателейпривязка Выравнивание помещается вверх спис ка.

3. Строится главный вид детали. Так как деталь симметричная, строится лишь половина профиля.

Вызывается команда

Непрерывный ввод объектов. Первая точка лежит на одной оси с центром вида сверху, вторая точка получается с помощью привязки

Выравнивание (граничная точка окружности диаметром 90). Если при вязка Выравнивание не сразу ловит нужный объект, необходимо курсор переместить ближе кобъекту и после того, как курсор «отловит» нужную привязку, можно вернуться к дал ьнейшему построению.

Для получения следующей точки, никуда не переводя курсор, с помощью предопределенного ввода параметров указывается длина отрезка — 20. Угол строящегосяотрезка 90 можно ввести как с помощью клавиатуры, т ак и указать с помощью курсора. Следующая точка (отрезок 3) получается с помощью привязки Выравнивание(крайняя точка окружности диаметром 40). С помощью клавиатуры задается длина (55, или формула 75-20 для отрезка 4). Последняя точка (отрезок 5) получается с помощью привязки Выравнивание.

Строится половина отверстия. На **Панели свойств** или щелчком **ПКМ** для команды **Непрерывный ввод объектов** включается опция **Новый ввод**. Перваяточка строится с помощь ю привязки **Выравнивание** (крайняя точка окружности отверстия под цеков

ку **20**). С помощью клавиатуры указываются расстояние **12** и уголотрезка **270**.

Третья точка также получается с помощью привязки **Выравнивание** (в данном случае выравнивание

с центром отверстия и с серединой 3 отрезка главного видахвостовика).

Чтобы каждый раз не нажимать кнопку **Новый ввод** на **Панели свойс** тв, вместо команды **Непрерывный ввод объектов**

выбирается команда

Отрезок. Спомощью привязки **Выравнивание** достраивается отверстие под крепеж (крайняя точка на виде сверху

окружности 13). Строится центральное отверстие (на видесверху привязка **Выравнивание** берется от крайней точки окружности диаметром **13** отверсти я под крепеж).

4. Вызываем команду

Фаски. На Панели свойств должны быть включены режимы

Усекать первый элемент и **Усекать второй элемент**, корректируется значен ие фаски -2. Указываются

2 отрезка главного вида хвостовика (отрезок 4 и отрезок 5). Для второй фаски переключается режим на **He усекатьпервый элемент** и корректируется зна чение фаски — **1**. Первым указывается отрезок 5, а вторым — отрезок центрального отверстия. Далее первым указывается отрезок 1 и также отрезок центрального отверстия.

С помощью команды

Отрезок достраиваются недостающие отрезки от фасок до оси главного вида. Вызывается команда Автоосевая. Для вида сверхууказывается окружность 90 и уточняется угол поворота обозначения центра. Для главного вида указываются крайние точки для построения главной оси хвостовика. НаПанели свойств включается

режим С указанием границы и с помощью привязки Выравнивание указыв аются граничные точки для построения отверстия под крепеж.

С помощью нажатой клавиши **Ctrl** клавиатуры и курсора выделяютс я отрезки главного

вида, обозначающие половину отверстия под крепеж. Вызывается команда Симметрия и с помощью курсора указываются точки оси отверстия.

Команда **Симметрия** прерывается . Для выделения всего существующего главного вида указывается габаритный прямоугольник. Для этого в правой верхней

точке диагонали

мнимого прямоугольника зажимается левая клавиша мыши и курсор переме щается к левой нижней точке диагонали мнимого прямоугольника. Всеобъекты, которые попали в область

мнимого габаритного прямоугольника или были им пересечены, будут выдел ены. Чтобы отключить выделение центральной оси,

нажимается клавиша клавиатуры

Ctrl и курсором указывается ось. Вызывается команда **Симметрия** и с помощью курсора указываются точки центральной оси.

Вызывается команда

Штриховка и курсором указываются точки внутри замкнутых областей (контуров) для построения штриховки. Когда все области указаны и на **Панели свойств** выбраны все параметры, выбирается команда **Создать объект**.

На виде сверху с помощью привязки **Выравнивание** строятся недоста ющие окружности фасок: окружность от фаски у диаметра **40** (получится окружность диаметром **36**) и окружность у центрального отверстия **13** (получится окружность диаметром **1**).

5. Выбирается команда **Авторазмер**. Проставляются диаметральные размеры на виде сверху и линейные размеры на главном виде. Удобно проставлять сразу все линейные размеры, затем все диаметральные.

Для простановки шероховатостей выбирается команда

Шероховатость на

страничке

Обозначения. Для редактирования текстовой надписи курсоромкликается на поле **Текст** и в открывшемся диалоге вводится значение (либо с помощью клавиатуры,

либо с помощью всплывающего меню, которое открывается придвойном кли ке курсором в текстовом поле диалога). Для простановки шероховатости нео бходимо указать поверхность (отрезок или выносная линия размера) и расположение шероховатости.

Практическая работа №3 Специальные возможности черчения (Компас-3D)

Задание № 1. Создайте чертеж детали в соответствии с прилагаемым о бразцом (рис. 4).



Рисунок 4 – Образец чертежа по Заданию № 1

Методические рекомендации

- 1. Построение ведется в чертеже (его можно создать на основе сущес твующего шаблона). При необходимости меняется формат чертежа. Для этого наинструментальной панели **Стандартная** вызыв ается команда **Менеджер документа** и в открывшемся диалоге для нужного листа из списка выбирается нужный формат.В том же д иалоге можно откорректировать ориентацию листа.
- 2. Для построения главного вида вызывается команда **Прямоугольник По двум точкам**. С помощью клавиатуры указывается высота прямоугольника **100** иширина –
- **120**. Точка привязки прямоугольника указывается произвольно с помощью к урсора. С помощью команды **Автоосевая** строится ось путем указания двух т очек.
- 3. Для второй проекции с помощью привязки **Выравнивание** указывае тся центр окружности и включается режим Запомнить состояние. Диаметр первойокружности получается с помощью

привязки **Выравнивание**. Диаметр второй окружности вводится с клавиатуры в виде формулы: **100-2*5** (диаметр первойокружности минус две толщины материала). Для постро ения развертки понадобится средняя линия. Это также **Окружность с осевым стилем** линии и диаметром **95**.

4. Для построения развертки вызывается команда **Прямоугольник**. Его параметры будут задаваться с помощью **Геометричес кого калькулятора**. Чтобы еговызвать, нужно подвести курсор к

нужному числовому полю и нажать правую клавишу мыши. Если в данный момент числовое поле будет редактироваться

(например, сперва будет нажата левая клавиша мыши), **Геометрический каль кулятор** не откроется. В этом случае необходимо

деактивировать редактирование числового поля(кликнуть курсором в пустом месте экрана) и

опять подвести курсор к числовому полю и нажать правую клавишу мыши. Д ля определения высоты прямоугольника в

Геометрическом калькуляторе выбирается строка **Между 2 точками** и с помощью курсора указываются точки нижней стороны

прямоугольника на главном виде. Дляопределения ширины прямоугольника в **Геометрическом калькуляторе** выбирается пункт

Длина кривой и с помощью курсора указывается окружность, отрисов анная**осевым стилем** линии на втором виде. С помощью курсора

произвольно указывается привязка самого прямоугольника развертки.

- 5. С помощью команды **Автоосевая** указывается обозначение центра о кружности на втором виде (указывается большая окружность диаметра **100**).
 - 6. С помощью команды

Авторазмер проставляются размеры. При необходимости текстовая надпись корректируется,

для этого при простановке размеранеобходимо кликнуть в поле

Текст и в открывшемся

диалоге откорректировать параметры формирования текстовой надписи (например, отключить отклонения).

7. Для вставки обозначения

развертки на третьем виде вызывается команда

Текст (раздел **Обозначения** на **Компактной инструментальной панели**) и указывается точка его привязки.

На Панели свойств открывается вкладка Вставка и в ней выбирается коман да Вставить специальный знак. В открывшемся диалогеиз раздела Обозначение видов, разрезов и сечений двойным кликом выбирается знак Развернуто. Для создания текста на Панели свойств выбирается команда Создать объект (для команды Текст автосоздан ие объекта не предусмотрено).

7. Для получения массы изделия в разделе Измерения (2D) Компактной инструментальной панели выбирается кома нда **Расчет МЦХ тел выдавливания** (находится в группе с командой «Расчет МЦХ плоских фигур»). Сперва указывается внешняя окружность (**100**) второго вида. В открывшемся диалоге при необходимостиуточняется плотность материала и корректируетс я толщина выдавливания (**120**). Нажимается **ОК**. Затем выбирается внутренн яя окружность (**90**) второго вида. В диалогепереключается режим на **Отверстие**. Остальные параметры не изменяются. Нажимается **ОК**. Полученный результат отображается в окне текстового редактора, и егоможно скопировать для вставки в основную надпись чертежа.

Задание

№2. Создайте чертеж детали в соответствии с прилагаемым образцом (рис. 5)

Методические рекомендации

1. Построение ведется в чертеже (его можно создать на основе сущес твующего шаблона). При необходимости корректируются **Технические треб ования,Неуказанная шероховатость** и **Основная надпись** чертежа. Вызыва ется команда **Прямоугольник**. На **Панели свойств** включается режим построения **с осями**. Спомощью клавиатуры вводится высота прямоуг ольника — **90**, и ширина — **71**. Произвольно указывается его привязка. Из расширенной панели команд

Фаскавыбирается команда Фаска на углах объекта. Параметры фаски – 1x45 (по умолчанию стоят эти же значения). С помощью курсора указывается линия прямоугольника.

2. Включается режим отображения сетки

(на инструментальной панели Текущее состояние команда

Сетка). С помощью настройки ее параметров (стрелкавозле иконки команды открывает меню, в котором выбирается пункт **Настроить параметры**) корре ктируются значения: по оси X - 22.5, по оси Y -

32. Если плоховидны точки сетки, в том же диалоге настройки параметров сетки на вкладке **Отрисовка** можно увеличить размер точек. С помощью ком анды

Локальная СКинструментальной панели **Текущее состояние** в центр прямо угольника вставляется локальная система координат (точки сетки отображаются с учетом локальной СК).

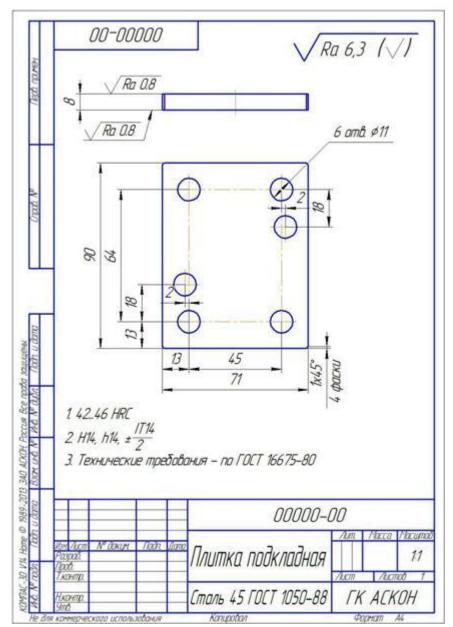


Рисунок 5 – Образец чертежа по Заданию № 2

3. B

Глобальных привязках (инструментальная панель **Текущее состояние**) вкл ючается привязка **По сетке**. Вызывается команда

Окружность. Уточняютсяпараметры: диаметр 11,

режим отрисовки с осями. Включается

режим

Запомнить состояние и по узлам сетки расставляются 4 окружности.

4. Не прерывая команду **Окружность,** отключается режим отображени я сетки. На **Панели**

свойств в поле Центр активируется меню Геометрическогокалькулятора (подведя курсор к полю необходимо нажать правую клавишу мыши) и выбир ается способ На расстоянии от точки. Для 5-й окружности точка отсчета — центр левой нижней окружности.

С помощью предопределенного ввода параметров с клавиатуры вводится Х «-2» и У «18». Для 6-й

окружности с помощью **Геометрического калькулятора** указывается центр — **На расстоянии от точки**, точка — центр правой верхней окружности. Смещение по X «**2**», а по Y «**-18**».

5. С помощью команды **Прямоугольник** строится вторая проекция. Указывается только высота прям оугольника —

8, ширина получается с помощью глобальнойпривязки **Выравнивание**. Фаски строятся с помощью команды **Отрезок**, также с помощью привязки **Выравнивание** (удобно отключить привязку **Точка на кривой**).

6.

Для простановки размеров на точном расстоянии от объектов (например, на расстоянии 10) включается режим отображения **Сетки** и настраиваются ее параметры(шаг по оси X-10, шаг по оси Y-10). С помощью **Локальной системы координат** (Локальная СК) на **Панели свойств** в поле **Выбор ЛСК** создается **новая ЛСК**(кнопка **Новая локальная СК**), указывается точка отсч ета. Для размеров на 1-

м виде удобно указывать для горизонтальных и вертикальных размеров разные ЛСК напересечении осей с внешним контуром. Для 2-го вида ЛСК –

любая вершина прямоугольника внешнего контура. Размеры проставляются с помощью команды **Авторазмер**.

7. Для получения массы изделия в разделе

Измерения (2D) Компактной инструментальной панели выбирается кома нда Расчет МЦХ тел выдавливания (находится в группе с командой Расчет МЦХ плоских фигур). Сперва указывается внешний контур 1-го вида (прямоугольник в фасками). В открывшемся диалоге принеобходимости уточняется плотность материала и корректируется толщина выдавливания (8). Нажимается ОК. Затем выбирается первая окружность. В диалогепереключается режим на Отверстие. Остальные параметры не изменяются. Нажимается ОК. Указывается следующая окружность, в диалоге ничего не меняется, а простонажимается ОК. Таким же образом указываются еще 4 отверстия. Полученный результат отображается в окне текстового редактора и его мож но скопировать длявставки в основную надпись чертежа.

Практическая работа № 4. Инструментальная среда твердотельного моделирования «Компас-3D»

Задание № **1.** Изучение интерфейса и основных возможностей программы твердотельного моделирования «Компас-3D».

Инструментальная среда твердотельного моделирования «Компас-3D» предназначена для создания твердотельных моделей различных объектов. Процесс моделирования аналогичен технологическому процессу изготовления. «Компас-3D» — это программа для операционной системы Windows, поэтому ее окно имеет те же элементы управления, что и другие Windows-приложения [5].

На рисунке 6 представлено рабочее окно трехмерного моделирования инструментальной среды «Компас-3D».

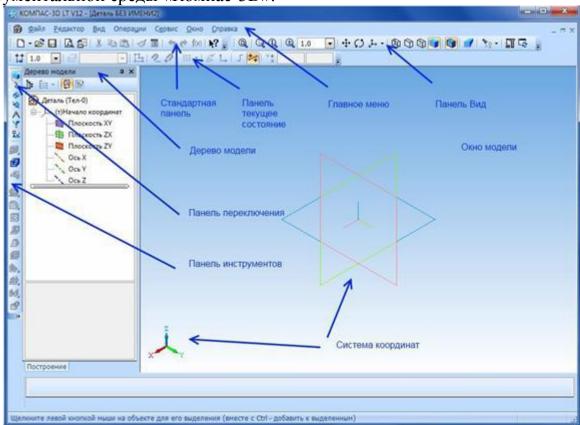


Рисунок 6 - Рабочее окно трехмерного моделирования инструментальной среды «Компас-3D

Основные элементы интерфейса:

- 1) Главное меню в нем расположены все основные меню системы, в каждом меню хранятся связанные с ним команды.
- **2) Стандартная панель управления** в ней собраны команды, которые часто употребляются при работе с программой.
- **3) Панель Вид** на ней расположены кнопки, которые позволяют управлять изображением: изменять масштаб, перемещать и вращать изображение, изменять форму представления модели.

- **4) Панель переключения Компактной инструментальной панели** (по умолчанию находится вертикально в левой части экрана) производит переключения между панелями инструментов.
- 5) Панель инструментов (Странички) состоит из нескольких отдельных страниц (панелей): Редактирования модели, Пространственные кривые, Поверхности, Вспомогательная геометрия, Измерения (3D), Фильтры, Элементы оформления.
 - 6) Строка состояния объекта указывает параметры объекта.
- 7) Дерево модели это графическое представление набора объектов, составляющих деталь. Корневой объект Дерева сама деталь. Пиктограммы объектов автоматически возникают в Дереве модели сразу после фиксации этих объектов в детали.
- 8) Контекстная панель отображается на экране при выделении объектов документа и содержит кнопки вызова наиболее часто используемых команд редактирования. Набор команд на панели зависит от типа выделенного объекта и типа документа.
- 9) Контекстное меню меню, состав команд в котором зависит от совершаемого пользователем действия. В нем находятся те команды, выполнение которых возможно в данный момент. Вызов контекстного меню осуществляется щелчком правой кнопки мыши на поле документа, элементе модели или интерфейса системы в любой момент работы.

Основные термины модели:

Модель в «Компас-3D» — в «Компас-3D» возможно создание двух **типов моделей**: деталь и сборка.

- Деталь тип модели, предназначенный для представления изделий, изготавливаемых без применения сборочных операций. Создается и хранится в документе «деталь», расширение файла *m3d*.
- Сборка тип модели, предназначенный для представления изделий, изготавливаемых с применением сборочных операций. Создается и хранится в документе «сборка», расширение файла *a3d*.

Разновидность сборки — **технологическая сборка**. Создается и хранится в документе «технологическая сборка», расширение файла — t3d.

Трехмерная модель в «Компас-3D» состоит из **объектов**. Объекты подразделяются:

- на геометрические,
- элементы оформления,
- объекты «измерение»,
- компоненты.

<u>К геометрическим</u> объектам относятся: тела, поверхности, кривые, точки, эскизы, объекты вспомогательной геометрии.

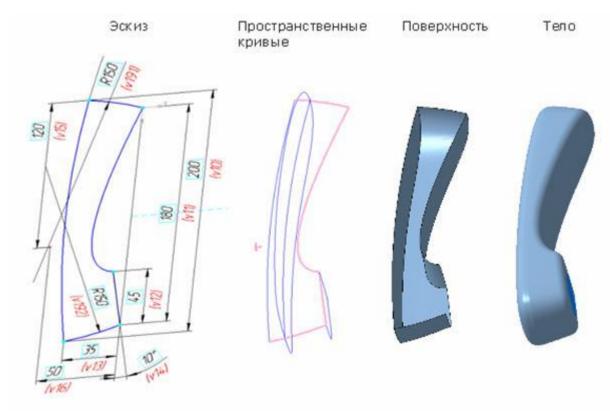


Рисунок 7 – Геометрические объекты

Модель в «Компас-3D» состоит из геометрических объектов – эскизов, пространственных кривых и точек, поверхностей, тел.

Геометрические объекты состоят из **примитивов**. Примитивами являются:

- вершина,
- ребро,
- грань.

Вершина – примитив, представляющий собой точку либо окончание ребра. Частным случаем вершины является ребро нулевой длины (например, вершина конуса).

Ребро – примитив, представляющий собой участок кривой либо граничной линии грани, ограниченный вершинами и не содержащий внутри себя других вершин. В частных случаях ребро может не ограничиваться вершинами (замкнутые ребра).

Грань – примитив, представляющий собой часть поверхности либо поверхность, ограниченную ребрами и не содержащую внутри себя других ребер. В частных случаях грань может не ограничиваться ребрами (например, сферические и тороидальные грани).

Такие объекты, как плоскости и оси, не имеют примитивов.

Остальные объекты, в зависимости от своего типа, состоят из одного или нескольких примитивов. Например, объект «точка» состоит из одной вершины, ломаные и эскизы – из ребер и вершин, тела – из ребер, вершин и граней.

Тело – объект модели, имеющий некоторый объем и соотнесенный с каким-либо материалом. Тело не имеет самостоятельного файлового представления.

Тело, как правило, представляет собой совокупность граней, ребер и вершин (рис. 2.28). В частном случае тело может быть представлено одной гранью (например, сферическое и тороидальное тела).

Рисунок 8 – Тело в Компас

Грани тела образуют замкнутую поверхность. Нарушение замк-нутости приводит к нарушению целостности тела.

Особый вид тел – **листовые тела**. Они предназначены для моделирования деталей, полученных из листового материала с помощью операций гибки.

Поверхность – геометрический объект, представленный связной совокупностью граней или одной гранью. Грани поверхности не могут являться гранями каких-либо других объектов (других поверхностей, тел).

Эскиз – объект трехмерного моделирования, созданный на плоскости или плоской грани средствами чертежно-графического редактора. Эскизы используются в некоторых операциях. Например, эскиз может задавать форму сечения тела, полученного операцией выдавливания, контур ребра жесткости и т. п.

Требования к эскизу определяются операцией, в которой он используется.

Объектами вспомогательной геометрии являются:

- системы координат,
- координатные и вспомогательные плоскости,
- координатные и вспомогательные оси,
- контрольные точки,
- присоединительные точки.

К элементам оформления относятся:

- условное обозначение резьбы,
- размеры:

- линейный,
- угловой,
- диаметральный,
- радиальный,
- обозначения:
- обозначение шероховатости,
- обозначение базы,
- линия-выноска,
- обозначение позиции,
- обозначение допуска формы и расположения.

<u>Объект «измерение»</u> – объект, содержащий результаты работы операции измерения.

Объектами «измерение» являются:

- расстояние и угол,
- длина ребра,
- площадь.

Значение, хранящееся в объекте «измерение», всегда соответствует фактическому значению измеренного параметра модели.

Компонент – это объект модели, в свою очередь являющийся моделью: деталью или сборкой.

Объекты модели создаются и редактируются путем выполнения **операций**. При создании и редактировании объекта возможно формирование ассоциативной связи его с другим объектом. **Ассоциативная связь** — это однонаправленная зависимость расположения или геометрии одного объекта от расположения или геометрии другого объекта. Зависимый объект считается **производным**, а объект, от которого производный объект зависит, — **исходным** по отношению к производному.

Модели в целом, а также отдельным ее частям (телам, компонентам) можно назначить параметры для расчета МЦХ — материал и плотность материала, а также задать **свойства** — данные об изделии, которое эта модель (часть модели) представляет.

Состав модели, последовательность ее построения и связи между объектами модели отображаются в Дереве построения.

Компонент — объект модели, представленный другой моделью. Компонентами модели могут быть детали, сборки, детали-заготовки и локальные детали, а в сборках также стандартные изделия и библиотечные элементы.

Модель компонента может храниться в отдельном файле или в файле текущей модели.

В отдельных файлах хранятся следующие компоненты:

- детали,
- сборки,
- детали-заготовки с историей,
- стандартные изделия,
- модели из библиотеки.

В данном случае в текущей модели фактически содержатся не сами компоненты, а ссылки на их файлы.

В файле текущей модели хранятся следующие компоненты:

- локальные детали,
- детали-заготовки без истории.

Эти компоненты не имеют самостоятельного файлового представления. Они хранятся непосредственно в содержащей их модели.

Особый тип компонента — локальная деталь. Локальная деталь не имеет самостоятельного файлового представления, а хранится непосредственно в содержащей ее модели. Компоненты, в свою очередь, могут включать в себя другие компоненты и так далее.

Один и тот же компонент может быть вставлен в разные модели. Возможна повторная вставка в модель уже имеющегося в ней компонента.

В модели, содержащей компоненты, можно выполнить операции, имитирующие обработку изделия в сборе, например, создать отверстие, проходящее через несколько компонентов. Результат этих операций не передается в файлы компонентов.

Компоненты могут быть связаны друг с другом **сопряжениями**. Существует два вида сопряжений:

- позиционирующие сопряжения определенным образом фиксируют один объект относительно другого;
- сопряжения механической связи определяют закон движения одного объекта относительно другого.

В модели могут присутствовать дополнительные элементы: сим-вол начала координат, плоскости, оси и т. д. [5].

Общие принципы моделирования:

Построение трехмерной твердотельной модели заключается в последовательном выполнении операций объединения, вычитания и пересечения над простыми объемными элементами (призмами, цилиндрами, пирамидами, конусами и т. д.) [5]. Многократно выполняя эти простые операции над различными объемными элементами, можно построить самую сложную модель.

Для создания объемных элементов используется перемещение плоских фигур в пространстве. Плоская фигура, в результате перемещения которой образуется объемное тело, называется эскизом, а само перемещение — операцией.

Эскиз может располагаться на одной из стандартных плоскостей проекций, на плоской грани созданного ранее элемента или на вспомогательной плоскости. Эскизы создаются средствами модуля плоского черчения и состоят из одного или нескольких контуров.

Система «Компас-3D» располагает разнообразными операциями для построения объемных элементов, четыре из которых считаются базовыми [5]:

• Операция выдавливания – выдавливание эскиза перпендикулярно его плоскости;

- Операция вращения вращение эскиза вокруг оси, лежащей в его плоскости;
- **Кинематическая операция** перемещение эскиза вдоль направляющей;
- Операция по сечениям построение объемного элемента по нескольким эскизам (сечениям).

Для четырех базовых операций, добавляющих материал к модели, существуют аналогичные операции, вычитающие материал. Операция может иметь дополнительные возможности (опции), которые позволяют изменять или уточнять правила построения объемного элемента. Например, если в операции выдавливания прямоугольника дополнительно задать величину и направление уклона, то вместо призмы будет построена усеченная пирамида. Процесс создания трехмерной модели заключается в многократном добавлении или вычитании дополнительных объемов.