Документ подписан простой электронной подписью

Информация о владельце:

Уникальный программный ключ:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 20.01.2021 15:08:23

МИНОБРНАУКИ РОССИИ

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра вычислительной техники

УТВЕРЖДАЮ
Проректор по учебной работе
О.Г. Локтионова
2016 г.
(КЗГУ)

ПРОЕКТИРОВАНИЕ МОДЕЛИ СУГЭНО В ПАКЕТЕ FUZZY LOGIC TOOLBOX

Методические указания по выполнению лабораторной работы по дисциплине «Теория нечеткой логики и множеств» для студентов специальности 09.03.01 «Информатика и вычислительная техника»

УДК 621.37(075)

Составитель: М.В. Бобырь

Рецензент Кандидат технических наук, доцент *Е.О. Брежнева*

Проектирование модели Сугэно в пакете Fuzzy Logic Toolbox: методические указания по выполнению лабораторной работы по дисциплине «Теория нечеткой логики и множеств» / Юго-Зап. гос. ун-т; сост.: М.В. Бобырь. — Курск, 2016. — 13 с.: ил. 11. — Библиогр.: с.13.

Рассмотрены базовые понятия теории нечеткой логики. Показан численный расчет модели Сугэно.

Методические указания соответствуют требованиям программы дисциплины «Теория нечеткой логики и множеств».

Предназначены для студентов специальности 09.03.01 «Информатика и вычислительная техника» дневной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать 19.10. Формат 60х84 1/16. Усл.печ. л. 0,7. Уч.-изд. л. 0,6. Тираж 50 экз. Заказ. 939 Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

ПРОЕКТИРОВАНИЕ МОДЕЛИ СУГЭНО В ПАКЕТЕ FUZZY LOGIC TOOLBOX

1. Цель работы

Получение практических навыков по проектированию модели Сугэно в пакете Fuzzy Logic Toolbox.

2. Модель Сугэно

В данном алгоритме предпосылки нечетких правил задаются так же, как в алгоритме Мамдани, то есть их вид может быть получен как экспертным, так и параметрическим методом построения функций принадлежности (ФП). Однако для заключения ФП должна быть линейна и зависимой от значений предпосылок нечетких правил:

$$y = x'_1 a_1 + x'_2 a_2 + \ldots + x'_k a_k = \sum_{k=1}^{k} x_k a_k$$

где $a_1, a_2, ..., a_k$ – весовые коэффициенты.

Модель Сугэно реализуется в три этапа.

- 1. Этап фаззификации входных данных. Здесь определяются степени принадлежности для каждой предпосылки нечетких правил $\alpha_1(a), \alpha_2(a), \alpha_1(\delta), \alpha_2(\delta)$.
- 2. Этап логического вывода. Во время операции импликации находятся уровни отсечения для каждой предпосылки нечетких правил, используя операцию минимума

$$\alpha_i = \alpha_i(a) \land \alpha_i(\delta).$$

На шаге композиции, используя известные уравнения заключений НПУ, определяются координаты по оси абсцисс

$$\theta_i = a_i a + \delta_i \delta.$$

3. Этап дефаззификации. С помощью одного из методов дефаззификации находится выходное значение системы по формуле центра тяжести.

Рассмотрим пример работы модели Сугэно. Пусть ФП входных и выходных переменных связаны следующими нечеткими правилами (рис. 1):

НПУ₁: ЕСЛИ «a есть A_1 » И « δ есть B_1 » ТО « δ есть B_2 »; НПУ₂: ЕСЛИ « δ есть δ и « δ есть δ тО « δ есть δ есть δ тО « δ есть δ

 $\Phi\Pi$ для термов входных переменных A и B записываются

$$A = \{A_1\} + \{A_2\} = \left\{ \int_{5}^{15} \left(\frac{a-5}{15-5} \right) / a + \int_{15}^{30} \left(\frac{30-a}{30-15} \right) / a \right\} + \left\{ \int_{0}^{45} \left(0, 18 \cdot a^{0,4} + 0, 1 \right) / a \right\},$$

$$E = \{E_1\} + \{E_2\} = \left\{ \int_{0}^{45} \left(0, 0000016^3 + 0, 15 \right) / 6 \right\} + \left\{ \int_{15}^{40} \left(\frac{6-15}{40-15} \right) / 6 + \int_{40}^{50} \left(\frac{50-6}{50-40} \right) / 6 \right\}.$$

 $\Phi\Pi$ для термов выходной переменной B примет вид

$$B = \{e_1\} + \{e_2\} = \left\{ \int_0^{70} (3 \cdot a - 1, 5 \cdot \delta) / \epsilon \right\} + \left\{ \int_0^{70} (a + \delta) / \epsilon \right\}.$$

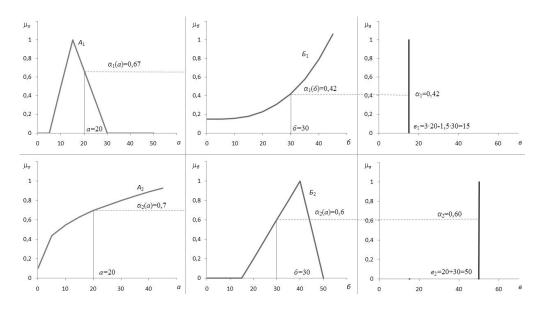


Рис. 1. Модель Сугэно

В данном алгоритме уравнения выходных термов зависят от входных:

$$e_1 = 3a - 1,56$$
; $e_2 = a + 6$.

На вход информационной системы поступили значения a=20 и δ =30. На первом этапе определяются степени принадлежности для входных переменных:

$$\alpha_1(a)=0.67$$
; $\alpha_1(\delta)=0.42$; $\alpha_2(a)=0.7$; $\alpha_2(\delta)=0.6$.

На этапе логического вывода при реализации операции импликации находятся уровни отсечения

$$\alpha_1 = \alpha_1(a) \land \alpha_1(\delta) = \min\{0,67; 0,42\} = 0,42;$$

 $\alpha_2 = \alpha_2(a) \land \alpha_2(\delta) = \min\{0,7; 0,6\} = 0,6.$

На шаге композиции с учетом взаимосвязи между входными и выходными переменными определяются

$$\theta_1 = 3a - 1,56 = 3.20 - 1,5.30 = 15;$$
 $\theta_2 = a + 6 = 20 + 30 = 50.$

При реализации третьего шага выполняется операции дефаззификации выходного значения по формуле

$$y = \frac{\alpha_1 s_1 + \alpha_2 s_2}{\alpha_1 + \alpha_2} = \frac{0.42 \cdot 15 + 0.6 \cdot 50}{0.42 + 0.6} = 35.59.$$

Если на вход системы поступят данные a=10 и b=40, тогда выходным значением, полученным по алгоритму Сугэно, будет 11,9.

3. Проектирование модели Сугэно в пакете Fuzzy Logic Toolbox

Этап 1. Для загрузки fis-редактора напечатаем слово **fuzzy** в командной строке Matlab. И выберем File – New FIS – Sugeno. После этого откроется графическое окно, показанное на рис. 2.

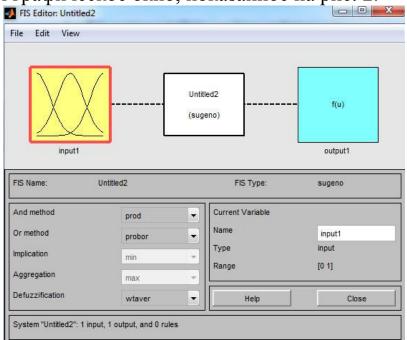


Рис. 2 Модель Сугэно

Зададим ФП следующего вида:

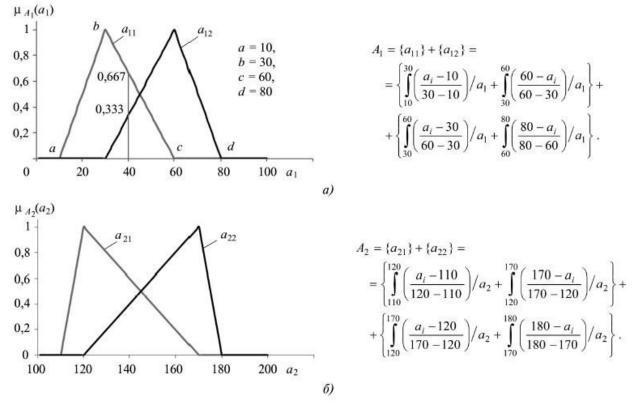


Рис. 3 Входные функции принадлежности

- Этап 2. Добавим вторую входную переменную. Для этого в меню Edit выбираем команду Add variable и выбираем Input.
- Этап 3. Переименуем первую входную переменную. Для этого сделаем один щелчок ЛКМ на блоке **input1**, введем новое обозначение **a1** в поле редактирования имени текущей переменной и нажмем **Enter**.
- Этап 4. Переименуем вторую входную переменную. Для этого сделаем один щелчок ЛКМ на блоке **input2**, введем новое обозначение **a2** в поле редактирования имени текущей переменной и нажмем **Enter**.
- Этап 5. Переименуем выходную переменную. Для этого сделаем один щелчок ЛКМ на блоке **output**, введем новое обозначение **sugeno** в поле редактирования имени текущей переменной и нажмем **Enter**.

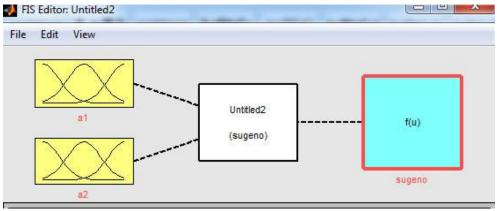


Рис. 4 Переименование переменных

- **Этап 6**. Сделаем двойной щелчок ЛКМ на блоке **a1** и перейдем в редактор функций принадлежности. Далее зададим диапазон значения первой входной переменной. В поле Range введем [0, 100] и нажмем **Enter**.
- **Этап 7**. Зададим наименования термов для первой входной переменной **х**. Для этого делаем один щелчок левой кнопкой мыши по графику первой функции принадлежности (**mf1**). Затем вводим наименование терма, a_{11} , a_{12} в поле **Name** и нажмем **Enter**.
- В поле **Params**, для каждого из термов (a_{11}, a_{12}) введем следующие значения:
 - $a_{11} \Rightarrow [10\ 30\ 60];$
 - $a_{12} \Rightarrow [30 60 80].$

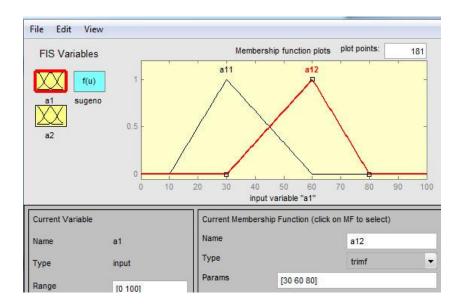


Рис. 5 Ввод параметров для термов первой переменной

Этап 8. Зададим имена для функций принадлежности второй входной переменной **a2**. Пусть у этой переменной будут тоже 2 треугольных терма. Вначале зададим диапазон значений для переменной **a2**. В поле Range напечатаем [100, 200] и нажмем **Enter**.

В поле **Params**, для каждого из термов (a_{21}, a_{22}) введем следующие значения:

 $a_{21} \Rightarrow [110 \ 120 \ 170];$

 $a_{22} \Rightarrow [120 \ 170 \ 180].$

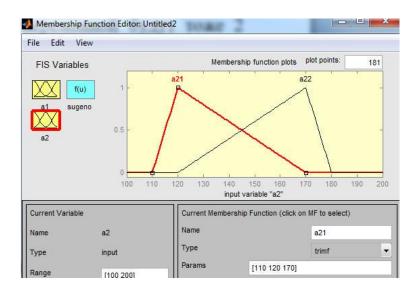


Рис. 6 Ввод параметров для термов второй переменной

Этап 9. Перейдем в редактор создания нечетких правил **RuleEditor**. Выберем в меню **Edit** команду **Edit rules** и зададим следующих два нечетких правила:

 $H\Pi_1$: Если « a_1 есть a_{11} » И « a_2 есть a_{21} » То s_1 =0,04315 a_1 – 0,3974 a_2 + 307,567. $H\Pi_2$: Если « a_1 есть a_{12} » И « a_2 есть a_{22} » То s_2 =0,25253 a_1 – 0,16091 a_2 + 303,608.

Вначале в поле FIS Variables выберем блок f(u) sugeno, затем переменные mf1 и mf2 переименуем в s_1 и s_2 , соответственно.

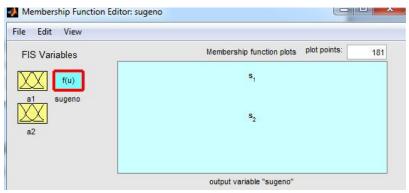


Рис. 7 Выходные ФП

Далее выделим первую переменную **s_1**. Вначале выберем линейный тип выходного терма. Для этого в поле **Type** выберем опцию **Linear**. А затем в поле **Params** введем следующие значения:

[0.04315 -0.3974 307.6]

Следует учесть порядок заполнения поля **Params**. Для линейной зависимости порядок параметров следующий: первый параметр — коэффициент при первой переменной, второй — при второй и т.д., и последний параметр — свободный член зависимости.

Далее выделим первую переменную **s_2**. Затем выберем линейный тип выходного терма. Для этого в поле **Type** выберем опцию **Linear**. А затем в поле **Params** введем следующие значения:

[0.2525 0.1609 303.608]

Для ввода двух нечетких правил необходимо в меню выбрать **Edit** кнопку **Rules**.

После этого в поле **If ... and ... Then** необходимо набрать правила. Для набора первого правила в поле **«a1 is»** выберем a_{11} . В поле **«a2 is»** выберем a_{21} . После этого нажмем кнопку **Add rule**. Аналогично создадим и следующее нечеткое правило.

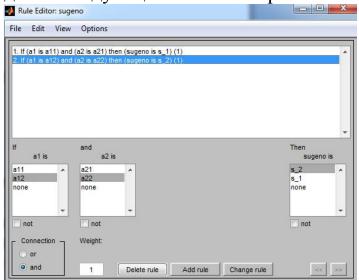


Рис. 8 Нечеткие правила

Выполнив команду View и Surface получим следующее изображение

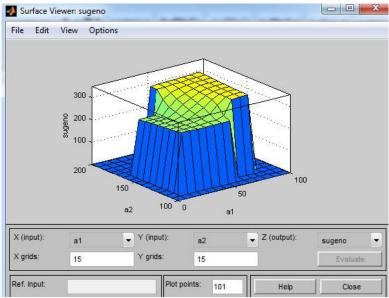


Рис. 9 Отклик результирующей переменной в модели Сугэно

Также можно перейти во вьювер нечетких правил. Например, если a_1 =55 и a_2 =130 (данные вводим в поле Input), то выходное значение составит z=303.

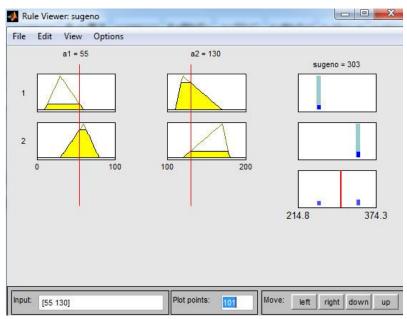


Рис. 10 Вьювер нечетких правил

Этап 10. Для сохранения разработанной нечеткой системы выполните команду File - Export - to file. Выберите любую папку на компьютере и сохраните туда разработанную нечеткую систему.

Этап 11. Количество правил можно легко редактировать. Например, мы хотим добавить еще два правила:

 $H\Pi_1$: Если « a_1 есть a_{12} » И « a_2 есть a_{21} » То $s_1 = 30$.

 $H\Pi_2$: Если « a_1 есть a_{11} » И « a_2 есть a_{22} » То $s_2 = 40$.

Вначале выполним команду **Edit** – **Add MFs**. Выберем **Тип** – **Константа**. И 2 правила. Затем переименуем **mf3** и **mf4** в **s_3** и **s_4**, соответственно.

Далее у терма s_3 в поле **Params**, введем значение 30. А у терма s_4 в поле **Params**, введем значение 40.

После этого получим график результирующей поверхности.

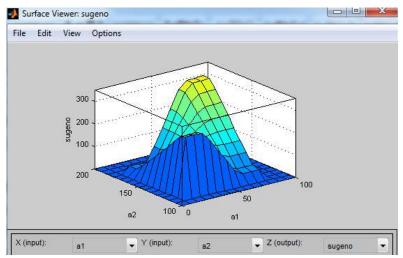


Рис. 11 Отклик результирующей поверхности

4. Задания для проектирования модели Сугэно

Ниже располагаются варианты для создания студентом модели Сугэно. Вариант назначает преподаватель.

Варианты заданий

- 1. Найти на сайтах sciencedirect.com и link.springer.com статьи по ключевому слову fis (fuzzy inference system sugeno). Выбрать Open access articles. И скачать статью с готовыми нечетко-логическими системами.
 - 2. Разработать собственную нечеткую систему.
- 3. Промоделировать разработанную нечеткую систему в среде Matlab.

5. Контрольные вопросы

- 1. Чем отличается модель Мамдани от модели Сугэно?
- 2. Расскажите структуру нечеткой модели Сугэно?
- 3. Какие типы функций принадлежности используется на выходе модели Сугэно? Приведите формулу
- 4. Каким образом нужно работать с окном редактора Surface?
- 5. Каким образом нужно работать с окном редактора Rules?
- 6. Как можно добавить 3 правила в базу знаний модели Сугэно?

8. Содержание отчёта

Отчёт должен содержать:

- 1) титульный лист;
- 2) наименование работы и цель исследований;
- 3) алгоритмов нечеткого вывода;
- 4) результаты расчета и графики результирующей переменной.

9. Библиографический список

- 1. Емельянов С.Г., Интеллектуальные системы на основе нечеткой логики и мягких арифметических операций / Емельянов С.Г., Титов В.С., Бобырь М.В. - М. : АРГАМАК МЕДИА, 2014. 341 с. (Научное сообщество).
- 2. Рубанов В.Г. Адаптивные системы принятия нечеткологических решений / Рубанов В.Г., Титов В.С., Бобырь М.В. - Б.: Белгородский государственный технологический университет им. В.Г. Шухова (Белгород). 2014. - 239.
- 3. Емельянов С.Г., Адаптивные нечетко-логические системы управления / Емельянов С.Г., Титов В.С., Бобырь М.В. - М. : АРГАМАК МЕДИА, 2013. 184 с. (Научное сообщество).
- 4. Емельянов С.Г., Автоматизированные нечетко-логические системы управления / Емельянов С.Г., Титов В.С., Бобырь М.В. М.:ИНФРА-М. 2011. 176 с. (Научная мысль).
- 5. Бобырь М.В. Теоретические основы построения автоматизированных систем управления технологическими процессами на основе нечеткой логики: монография / М.В. Бобырь, С.Г. Емельянов, В.С. Титов. Старый Оскол: Тонкие наукоемкие технологии, 2009. 232 с.