Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 25.09.2022 14:03:23

Уникальный программный клюФедеральное государственное бюджетное образовательное 9ba7d3e34c012eba476ffd2d064cf2781953be730df2374d16f3c0ce536f0fc6 учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

МИНОБРНАУКИ РОССИИ

Кафедра теплогазоводоснабжения

Проектирование магистральных газопроводов

Методические указания для выполнения практических работ и самостоятельной работы студентов по направлениям подготовки 08.03.01 — Строительство профиль «Теплогазоснабжение и вентиляция» 08.04.01 — Строительство профиль «Теплогазоснабжение населенных мест и предприятий»

Составители: Г.Г. Щедрина

Рецензент Доктор технических наук, профессор Ежов В.С.

Проектирование магистральных газопроводов: Методические указаниядля выполнения практических работ и самостоятельной работы студентов по направлениям подготовки08.03.01 — Строительство, профиль «Теплогазоснабжение и вентиляция»; 08.04.01 — Строительство, профиль «Теплогазоснабжение населенных мест и предприятий» / Юго-Зап. гос. ун-т; сост. Г.Г.Щедрина. Курск, 2017. 34 с., прил., Библиогр.: с. 32.

Методические указания разработаны в соответствии с утвержденными рабочими программами, содержат необходимый теоретикометодологический материал для решения проектных и технологических задач. Нацелены на освоение приемов формирования эффективных проектных и технологических решений при проектировании магистральных газопроводов и оборудования.

Предназначены для студентов направлений подготовки 08.03.01 Строительство профиль «Теплогазоснабжение и вентиляция»,08.04.01 — Строительство, профиль «Теплогазоснабжение населенных мест и предприятий» очной и заочной форм обучения. Могут быть использованы в учебном процессе по всем формам обучения магистров, специалистов и бакалавров строительного профиля.

Текст печатается в авторской редакции. Подписано в печать . Формат 60х84 1/16. Усл. печ. л.. Уч.-изд. л.. Тираж 50 экз. Заказ . Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

Оглавление

Введение	4	
1. Определение оптимальных параметров МГ		6
2. Выбор типа газоперекачивающих агрегатов,		
определение числа КС и расстояния между ними		10
3. Уточненный теплогидравлический расчет участка		
газопровода между КС		18
4. Расчет режима работы КС		21
5. Расчет сложных газопроводов		26
6. Словарь основных терминов и условных сокращения	й	29
Библиографический список		34

Введение

В современных условиях строительства эксплуатации И магистральных газопроводных систем необходимо поддержание высоких требований к качеству их проектирования. А это, в свою предъявляет требования к проектировщикампо расчета систематизированных знаний В области участков магистральных газопроводов.

Настоящие методические указания (МУ) предназначены для обучающихся по направлениям подготовки 08.03.01 — Строительство профиль «Теплогазоснабжение и вентиляция» и 08.04.01 — Строительство профиль «Теплогазоснабжение населенных мест и предприятий».

В методических указаниях приводятся сведения о методах расчета термодинамических свойств физических природных И Представленаметодика технологического расчета магистральных газопроводов обоснования выбора оптимальных параметров участков газопровода, теплового И гидравлического расчета газопровода между ДВУМЯ компрессорными станциями, подбор оборудования компрессорных станций, расчет режима работы КС.

Расчетные формулы и методики расчетов соответствуют отраслевым нормам технологического проектирования магистральных газопроводов.

В процессе выполнения практических работ студент обучается методам технологических расчетов систем магистрального транспорта природного газа, использованию технических условий, норм типовых материалов и каталогов, применению типовых решений и новейших достижений техники в области проектирования и эксплуатации магистральных газопроводов.

Задачами технологического расчета магистрального газопровода (МГ) являются:

- определение оптимальных параметров МГ;
- выбор типа газоперекачивающих агрегатов, нагнетателей, ABO, ПУ;
- определение необходимого количества компрессорных станций и расстановка их по трассе газопровода;

- уточненный гидравлический и тепловой расчет линейных участков;
 - расчет режима работы КС.

Исходные данные для технологического расчета:

- плановый объем транспортируемого газа Q, млрд м³/год;
- состав и свойства транспортируемого газа и его компонентов;
- общая протяженность газопровода L, км;
- технические характеристики трубопроводов и газоперекачивающих агрегатов;
 - климатологические данные района сооружения газопровода.

1Определение оптимальных параметров МГ

Одной из важнейших задач технологического расчета магистральных газопроводов является выбор оптимальных и экономически целесообразных параметров транспорта газа, а именно: диаметр (при заданной производительности МГ), производительность (при заданном диаметре труб), рабочее давление и степень сжатия КС.

Общим критерием оптимальности принимаемого решения являются максимальная прибыль или минимальные приведенные затраты. Если разница прибыли (приведенных расходов) для каких-либо вариантов не превышает 5 %, то эти варианты следует считать равноценными и для выявления оптимального варианта привлекают дополнительные критерии (металлозатраты, энергозатраты, людские ресурсы и т.д.).

Расчет начинается с выбора вариантов возможных диаметров газопровода. С учетом известной годовой пропускной способности Q_{Γ} и принятому рабочему давлению по таблице 1.1 выбирается ориентировочное значение диаметра газопровода. Для сравнения надо выбрать ближайшие больший и меньший к выбранному диаметры.

Таблица 1.1 - Ориентировочные значения диаметра газопровода

	Годовая производительность Q_{Γ} , млрд.м 3 /год				
$D_{\mathcal{Y}}$, mm	$p_{HA\Gamma}$ = 5,5 МПа	$p_{HA\Gamma}$ $=$ 7,5 МПа			
	$p_{BC} = 3,8 \ \mathrm{M}\Pi \mathrm{a}$	$p_{BC} = 5,1 \text{ M}\Pi a$			
500	1,6–2,0	2,2–2,7			
600	2,6–3,2	3,4–4,1			
700	3,8–4,5	4,9–6,0			
800	5,2-6,4	6,9–8,4			
1000	9,2–11,2	12,1–14,8			
1200	14,6–17,8	19,3–23,5			
1400	21,5–26,4	28,4–34,7			

Затем выполняется технико-экономическое сравнение выбранных трех диаметров. Технико-экономический расчет считаетсязаконченным,

если с наибольшей прибылью (наименьшими приведенными затратами) окажется средний диаметр. Если с наибольшей прибылью окажется вариант с самым малым диаметром (из трех выбранных), то надо просчитать дополнительный вариант по следующему ближайшему меньшему диаметру. Если же с наибольшей прибылью оказывается вариант самым большим диаметром, TO просчитывается дополнительный вариант по следующему ближайшему большему диаметру. Если с наибольшей прибылью оказался вариант газопровода диаметром 1420 мм, то дополнительный вариант не просчитывается. В этом случае к строительству принимается газопровод диаметром 1420 MM.

Около 90 % затрат на транспорт газа составляет сумма амортизационных отчислений и стоимость энергии.

Тогда прибыль, получаемаямагистральным газопроводом, рассчитывается по формуле:

$$\Pi_p = T \cdot Q \cdot L - \alpha_{\pi} K_{\pi} - \alpha_{CT} K_{CT} - S_{\mathfrak{I}}, \qquad (1.1)$$

где Π_p – чистая прибыль от транспорта газа, тыс. руб.;

T – тариф на транспорт газа по МГ, руб/ (тыс. м³·100 км);

Q – годовая производительность МГ, млн. м³;

 α_{J} , α_{CT} — коэффициент амортизационных отчислений от линейной части и КС соответственно;

 K_{J} , K_{CT} — капитальные затраты на сооружение линейной части и КС МГ, тыс. руб;

 S_{2} — стоимость топливного газа или электроэнергии, тыс. руб.

Значения тарифа на транспорт газа, коэффициентов амортизационных отчислений, капитальных затрат и стоимости электроэнергии и газа постоянно меняются.

Стоимость строительства и эксплуатации одной компрессорной станции может быть найдена по следующим зависимостям:

$$c_{cm} = k_0 + k_i \cdot I, \tag{1.2}$$

$$c_{\mathfrak{S}cm} = \mathfrak{I}_0 + \mathfrak{I}_i \cdot i, \tag{1.3}$$

где k_0 , \mathfrak{z}_0 — стоимость строительства и эксплуатации КС, не зависящая от числа ГПА;

 k_i , s_i — стоимость строительства и эксплуатации КС, зависящая от числа ГПА;

i– количество ГПА, установленных на КС.

Капитальные и эксплуатационные затраты зависят от региона, по которому проходит МГ, и топографических условий трассы:

$$K_{\mathcal{I}} = c_{\mathcal{I}} \cdot L \cdot k_{p} \cdot k_{T}, \tag{1.4}$$

$$\mathfrak{I}_{T} = c_{\mathfrak{I}} \cdot L \cdot k_{p} \cdot k_{T}, \tag{1.5}$$

$$K_{CT} = c_{CT} \cdot n \cdot k_p \cdot k_T, \tag{1.6}$$

$$\mathcal{G}_{CT} = c_{\mathcal{G}CT} \cdot n \cdot k_p \cdot k_T, \tag{1.7}$$

где ∂_n , ∂_{cm} – эксплуатационные расходы на линейную часть и КС;

L – длина МГ;

n – количество КС на МГ;

 $c_{\scriptscriptstyle \Pi}$ – стоимость строительства одного километра;

 $c_{\scriptscriptstyle \mathfrak{I}\!\!\!/}$ — стоимость эксплуатации одного километра трубопровода;

 k_p — районный коэффициент удорожания строительства и эксплуатации МГ;

 k_T — топографический коэффициент удорожания строительства и эксплуатации МГ.

Ориентировочные районные и топографические коэффициенты в зависимости от региона и условий строительства МГ представлены в таблицах1.2 и 1.3.

Таблица 1.2 – Ориентировочные районные коэффициенты

Регион	Капитальные	Капитальные	Эксплуатационные
строительства	вложения в	вложения в КС	расходы
	линейную часть		
Тюменская	2,0	2,0	1,5
область			

Ханты-	2,8	2,5	1,8
Мансийский НО			
Ямало-Ненецкий	2,8	2,6	1,9
НО			

Таблица 1.3 – Ориентировочные топографические коэффициенты

Участок МГ	Топографические коэффициенты		
Болотистый участок	Линейная часть КС		
	1,7 1,07		
Водные преграды	Русловая часть	Пойменная часть	
	4.8 2,0		

Если толщина стенки труб отличается от сортамента. то приближенно стоимость строительства 1 км трубопровода может быть определена по формуле

$$c_{II} = 0.5c_{IIO}(1 + \frac{\delta}{\delta_0}),$$

где $c_{\it ЛO}$ — стоимость строительства 1 км трубопровода при толщине стенки δ_0 ;

 δ – толщина стенки трубопровода.

В зависимости от типа ГПА и наличия в составе КС ABO в технологическом процессе транспорта газа может использоваться топливный газ, электроэнергия или и то, и другое.

Стоимость топливного газа определяется зависимостью

$$S_{TT} = Q_{TT} \cdot c_{TT} ,$$

где Q_{TT} – расход топливного газа за анализируемый период.

Стоимость электроэнергии определяется в зависимости от величины заявленной мощности силовых установок и количества потребленной электроэнергии.

Если заявленная мощность превышает 750 кВт, то стоимость электроэнергии рассчитывается по двухставочному тарифу

$$S_{\ni J} = c_{\ni J1} \cdot N_3 \cdot n + c_{\ni J2} \cdot N \cdot T,$$

где N_3 – заявленная мощность КС, кВт;

n — количество месяцев в анализируемом периоде;

N – потребляемая электродвигателями КС мощность [7];

T — продолжительность анализируемого периода, час.

2 Выбор типа газоперекачивающих агрегатов, определение числа КС и расстояния между ними

Исходя из расчетной суточной производительности газопровода, подбирается основное оборудование компрессорной станции (нагнетатель, ABO, ПУ).

Суточная производительность газопровода при стандартных условиях Q (млн. m^3 /сут) определяется по формуле:

$$Q = \frac{Q_{\Gamma} \cdot 10^3}{365 \cdot K_{\mu}},\tag{2.1}$$

где Q_{Γ} – годовая производительность газопровода, млрд м³/год;

 K_{U} — оценочный коэффициент использования пропускной способности газопровода, который ориентировочного можно принять $K_{U} = 0.85 - 0.9$.

Расчет выполняется в соответствии с требованиями норм технологического проектирования [8].

Для определения числа компрессорных станций необходимо уточнить рабочее давление в газопроводе на входе и выходе компрессорной станции. Выбранные давления должны соответствовать нормативным давлениям на входе и выходе центробежных нагнетателей в соответствии с их характеристиками.

Выбор рабочего давления и типа газоперекачивающего агрегата.

Современные магистральные газопроводы проектируются на рабочее давление $P = 7.5 \ \mathrm{M}\Pi \mathrm{a}.$

Проектирование газопроводов на рабочее давление $P = 5.6 \text{ M}\Pi a$ производится только ДЛЯ случаев соединения проектируемых газопроводов с системой существующих газопроводов такого же рабочего Затем, расчетной давления. исходя ПО суточной производительности и принятого рабочего давления, выбирается тип газоперекачивающего агрегата. По паспортным данным центробежного нагнетателя (ЦН) определяются номинальные значения давления всасывания P_{BC} и нагнетания P_{HAC} .

Расчет свойств транспортируемого газа.

Основными свойствами газаявляются: плотность, молярная масса, газовая постоянная, псевдокритические температура и давление, относительная плотность газа по воздуху. Некоторые свойства компонентов природных газов приведены в таблице 2.1.

Таблица 2.1- Физические свойства компонентов природных газов

	Плотно	ость, кг/м ³	Динамическа 10 ⁷ I	-	Молярная	Газовая	
Газ при 273 К и 0,1013 МПа		при 293 К и 0,1013 МПа	при 273 К и 0,1013 МПа	при 293 К и 0,1013 МПа	масса, кг/кмоль	постоян., Дж/(кг·К)	
Метан СН4	0,717	0,669	1,020	1,102	16,04	518,57	
Этан С ₂ Н ₆	1,356	1,264	0,880	0,940	30,07	276,64	
Пропан С ₃ Н ₈	2,010	1,872	0,770	0,820	44,09	188,68	
Бутан С ₄ Н ₁₀	2,307	2,519	0,690	0,760	58,12	143,08	
Пентан С ₅ Н ₁₂	3,457	3,228	0,636	0,632	72,15	115,23	
Азот N2	1,251	1,165	1,710	1,840	28,02	296,75	
Окись углерода СО	1,250	1,165	-	_	28,01	296,94	
Двуокись углерода СО ₂	1,977	1,842	1,400	1,650	44,01	188,97	

Сероводород H ₂ S	1,539	1,434	1,230	_	34,02	115,23
Воздух	1,293	1,206	1,745	1,822	28,96	292,70

Плотность газа при стандартных условиях (293 К и 0,101325 МПа) определяется по формуле аддитивности (сложения)

$$\rho_{CT} = a_1 \cdot \rho_1 + a_2 \cdot \rho_2 + \dots + a_n \cdot \rho_n, \tag{2.2}$$

где $a_1, ..., a_n$ — доля каждого компонента в смеси для данного состава газа;

 $\rho_1,...,\rho_n$ – плотность компонента при стандартных условиях, кг/м³.

Молярная масса

$$M = a_1 \cdot M_1 + a_2 \cdot M_2 + \dots + a_n \cdot M_n, \tag{2.3}$$

где $M_1,...,M_n$ – молярная масса компонента, кг/кмоль.

Газовая постоянная (Дж/(кг·К)):

$$R = \frac{R}{M}$$
, (2.4)

где $\overline{R} = 8314,4$ – универсальная газовая постоянная, Дж/(кмоль·К).

Псевдокритическая температура $T_{\Pi K}$ (K) и давление $p_{\Pi K}$ (МПа) для природных газов с содержанием метана 85 % и более могут быть найдены по известной плотности газа при стандартных условиях [8]:

$$T_{TIK} = 155,24 \cdot (0,564 + \rho_{CT}),$$
 (2.5)

$$p_{\Pi K} = 0.1773 \cdot (26.831 - \rho_{CT}), \tag{2.6}$$

Относительная плотность газа по воздуху

$$\Delta = \frac{\rho}{\rho_{BO3II}} = \frac{\rho_{CT}}{1,206}.$$
 (2.7)

Определение расстояния между компрессорными станциями.

По формулеопределения пропускной способности газопровода:

$$Q = 105,087 \cdot D_{BH}^{2,5} \sqrt{\frac{p_H^2 - p_K^2}{\Delta \cdot \lambda \cdot Z_{CP} \cdot T_{CP} \cdot 1}}, \qquad (2.8)$$

можно выразить длину линейного участка между компрессорными станциями:

$$l = \frac{105,087^2 \cdot D_{BH}^5 (p_H^2 - p_K^2)}{Q^2 \cdot \Delta \cdot \lambda \cdot Z_{CP} \cdot T_{CP}}, \qquad (2.9)$$

где D_{BH} – внутренний диаметр газопровода, м;

 p_H u p_K — соответственно давления в начале и в конце линейного участка газопровода, МПа;

 λ – коэффициент гидравлического сопротивления;

 Z_{CP} — средний по длине коэффициент сжимаемости газа $Z_{CP} = f(p_{CT}, T_{CP});$

 Δ — относительная плотность газа.

Длина последнего участка газопровода L_K с учетом его аккумулирующей способности также определяется по формуле (2.9), принимая давление в конце перегона $p_K = p'_K(p'_K)$ давление газа в конце газопровода).

Полагая, что рабочее давление в газопроводе равно номинальному давлению нагнетания ЦН (по паспортным данным ЦН), вычисляется толщина стенки газопровода [3]

$$\delta = \frac{n_p \cdot p_H \cdot D_H}{2(R_1 + n_p \cdot p_H)},\tag{2.10}$$

где n_p – коэффициент надежности по нагрузке;

 p_H – рабочее давление в трубопроводе;

 R_{I} – расчетное сопротивление металла трубы, МПа [3].

Величина толщины стенки трубопровода δ округляется в большую сторону до стандартной величины δ_H из рассматриваемого ассортимента труб [3].

Для расчета расстояния между КС принимается ориентировочное значение средней температуры:

$$T_{CP} = \frac{(T_0 + T_H)}{2},\tag{2.11}$$

где T_0 — температура окружающей среды на глубине заложения газопровода;

 T_{H^-} температура газа на входе в линейный участок, которую можно принять равной 303-313 К.

Давление в начале газопровода определяется по формуле [8]

$$p_{H} = p_{HA\Gamma} - (\delta p_{BbIX} + \delta p_{OX\Pi}) = p_{HA\Gamma} - \Delta p_{HA\Gamma}, \qquad (2.12)$$

где δp_{BMX} — потери давления в трубопроводе между компрессорным цехом и узлом подключения к линейной части магистрального газопровода (без учета потерь давления в системе охлаждения транспортируемого газа);

 $\delta p_{OX\!\!/\!\!1}$ – потери давления в системе охлаждения газа, с учетом его обвязки.

Для охлаждения газа в аппаратах воздушного охлаждения (ABO) следует принимать $\delta p_{OX\!\!/\!I}=0,\!06$ МПа. При отсутствии охлаждения газа $\delta p_{OX\!\!/\!I}=0.$

Ориентировочные потери давления представлены в таблице 2.2. Таблица 2.2 - Потери давления газа на КС

	Потери	, МПа	
Давление	на всасые	вании $\varDelta p_{BC}$	
в газопроводе	при	На нагнетании	
збыточное), МПа	одноступенчатой	$\delta p_{e\omega x}$	
	очистке газа очистке газа		
5,40	0,08	0,13	0,07
7,35	0,12	0,19	0,11
9,81	0,13	0,21	0,13

$$p_K = p_{BC} + \Delta p_{BC}, (2.13)$$

где Δp_{BC} — потери давления газа на входе КС с учетом потерь давления в подводящих шлейфах и на узле очистки газа (принимается по табл. 2.2).

Коэффициент гидравлического сопротивления λ определяется по формуле

$$\lambda = 1,05 \frac{\lambda_{TP}}{E_{T}^{2}}, \qquad (2.14)$$

где E_{Γ} — коэффициент гидравлической эффективности, принимается по результатам расчетов диспетчерской службы в соответствии с отраслевой методикой; при отсутствии этих данных коэффициент гидравлической эффективности принимается равным 0,95, если на газопроводе имеются устройства для периодической очистки внутренней полости трубопровода, а при их отсутствии - 0,92.

Коэффициент сопротивления трению для всех режимов течения газа в газопроводе определяется по формуле

$$\lambda_{TP} = 0.067 \left(\frac{158}{Re} + \frac{2 \cdot k_{9}}{D_{BH}} \right)^{0.2}, \tag{2.15}$$

где k_9 — эквивалентная шероховатость труб; для монолитных труб без внутреннего антикоррозионного покрытия принимается равной $3 \cdot 10^{-5}$ м;

 D_{BH} – внутренний диаметр трубопровода, м;

Re – число Рейнольдса, которое определяется по формуле:

$$Re = 17,75 \frac{\Delta \cdot Q}{D_{BH} \cdot \mu},\tag{2.16}$$

где Q — производительность газопровода, млн м 3 /сут;

 D_{BH} – внутренний диаметр газопровода, м;

 μ – коэффициент динамической вязкости, Па·с.

Если производительность газопровода неизвестна, то в первом приближении можно принять квадратичный режим течения газа и тогда λ_{TP} определяется:

$$\lambda_{TP} = 0.067 \left(\frac{2 \cdot k_{9}}{D_{BH}} \right)^{0.2}. \tag{2.17}$$

Коэффициент сжимаемости газа определяется по формуле

$$Z_{CP} = 1 - \frac{0.0241 p_{\Pi P}}{\tau}, \qquad (2.18)$$

где значения приведенных давления и температуры при $p=p_{\mathit{CP}}$ и $T=T_{\mathit{CP}}$ определяются как:

$$p_{\Pi P} = \frac{p}{p_{\Pi K}}; \qquad (2.19)$$

$$T_{IIP} = \frac{T}{T_{IIK}} \; ; \tag{2.20}$$

$$\tau = 1 - 1,68 \cdot T_{IIP} + 0,78T_{IIP}^2 + 0,0107 \cdot T_{IIP}^3. \tag{2.30}$$

Среднее давление в газопроводе можно определить по формуле

$$p_{CP} = \frac{2}{3} \left(p_H + \frac{p_K^2}{p_H + p_K} \right). \tag{2.31}$$

Определяем требуемое число компрессорных станций:

$$n_0 = \frac{L - L_K}{l} + 1 (2.32)$$

После округления полученного числа КС n_0 до целого значения n (как правило, в большую сторону), уточняются значения расстояний между КС

$$l = \frac{L - L_K}{n - 1} \ . \tag{2.33}$$

В случае если на КС установлены ГПА с приводом от газовой турбины или двигателя внутреннего сгорания, то часть транспортируемого газа будет потребляться на собственные нужды и производительность МГ будет от участка к участку снижаться, что приведет к изменению параметров участков МГ.

*Учет расхода топливного газа*необходимо производить при длине газопровода более 500 км.

Для такого газопровода производительность каждого участка можно выразить:

$$Q_i = Q - Q_{TT} \cdot i \,, \tag{2.34}$$

где Q_i – производительность i-го участка;

Q – производительность поступления газа на первую КС;

 $Q_{T\Gamma}$ – объем потребляемого КС топливного газа;

i – номер КС по ходу газа.

Используя уравнение пропускной способности участка можно записать следующее соотношение длин участков с различной производительностью

$$\frac{l_i}{l} = \left(\frac{Q}{Q - Q_{T\Gamma} \cdot i}\right)^2, \qquad \text{или} \qquad l_i = l \cdot \left(\frac{Q}{Q - Q_{T\Gamma} \cdot i}\right)^2. \tag{2.35}$$

Тогдадля принятогочисла КС можно записать длину газопровода как сумму длин участков его составляющих:

$$L = l \left[\left(\sum_{i=1}^{n-1} \frac{Q}{Q - Q_{T\Gamma} \cdot i} \right)^2 + \alpha \left(\frac{Q}{Q - Q_{T\Gamma} \cdot n} \right)^2 \right], \qquad (2.36)$$

где l — средняя длина участка между КС.

$$\alpha = \frac{L_K}{l} \approx \frac{p_H^2 - p_K'^2}{p_H^2 - p_K^2}.$$
 (2.37)

При принятом числе КС из (2.36) определяется средняя длина участка между КС. Затем, пользуясь формулой (2.35), рассчитывают

длину всех промежуточных участков и определяют длину конечного участка.

3 Уточненный теплогидравлический расчет участка газопровода между КС

Уточненный тепловой И гидравлический расчет участка газопровода между двумя компрессорными станциями производится с целью определения давления И температуры газа В конце рассматриваемого участка.

Абсолютное давление в конце участка газопровода определяется из формулы расхода (2.8) при средних значениях температуры и давления газа на линейном участке, которые определяются методом последовательных приближений.

$$p_{K} = \sqrt{p_{H}^{2} - \frac{Q^{2} \cdot \Delta \cdot \lambda \cdot Z_{CP} \cdot T_{CP} \cdot l}{105,087^{2} \cdot D_{BH}^{5}}}.$$
 (3.1)

Уточненный расчет участка газопровода выполняется в следующем порядке:

- 1) в качестве первого приближения значения принимаются λ и Z_{CP} , найденные из предварительного определения расстояния между КС. Значение T_{CP} определяется по формуле (17);
- 2) по формуле (35) определяется в первом приближении значение p_K ;
- 3) определяется уточненное среднее давление p_{CP} по формуле (28);
- 4) по формулам (2.19) и (2.20) с учетом средних значений давления и температуры определяются средние приведенные давление $p_{\Pi P}$ и температура $T_{\Pi P}$.

Для расчета конечного давления во втором приближении вычисляются уточненные значения T_{CP} , λ и Z_{CP} . Для этого при

определении T_{CP} будем использовать величины средней удельной теплоемкости C_P , коэффициента Джоуля-Томсона D_i и коэффициента a_t , вычисленные для значения p_{CP} и T_{CP} первого приближения;

5) удельная теплоемкость газа C_p (кДж/(кг·К)) определяется по формуле

$$C_p = 1,695 + 1,838 \cdot 10^{-3} \cdot T_{CP} + 1,96 \cdot 10^6 \frac{(p_{CP} - 0,1)}{T_{CP}^3};$$
 (3.2)

6) коэффициент Джоуля-Томсона D_i (К/МПа) вычисляется по формуле

$$D_i = \frac{1}{C_p} \left(\frac{0.98 \cdot 10^6}{T_{CP}^2} - 1.5 \right); \tag{3.3}$$

7) средняя температура газа рассчитывается по формуле

$$T_{CP} = T_0 + (T_H - T_0) \frac{1 - e^{-a_t \cdot l}}{a_t \cdot l} - D_i \cdot \frac{p_H^2 - p_K^2}{2a_t \cdot l \cdot p_{CP}} \left(1 - \frac{1 - e^{-a_t \cdot l}}{a_t \cdot l} \right), \tag{3.4}$$

где a_t – коэффициент (1/км), рассчитываемый по формуле

$$a_{t} = 0.225 \frac{K_{CP} \cdot D_{BH}}{Q \cdot \Delta \cdot C_{p}}, \tag{3.5}$$

где K_{CP} — средний на линейном участке общий коэффициент теплопередачи от газа в окружающую среду, $\mathrm{Bt/(m^2 \cdot K)};$

- 8) коэффициент сжимаемости Z_{CP} определяется по формуле (2.18);
- 9) коэффициент динамической вязкости рассчитывается по формуле

$$\mu = 5.1 \cdot 10^{-6} [1 + \rho_{CT} (1.1 - 0.25 \cdot \rho_{CT})] \cdot [0.037 + T_{IIP} (1 - 0.104 \cdot T_{IIP})] \times$$

$$\times \left[1 + \frac{p_{\Pi P}^2}{30(T_{\Pi P} - 1)}\right]; \tag{3.6}$$

- 10) число Рейнольдса вычисляется по формуле (2.16);
- 11) коэффициент сопротивления трению λ_{TP} и коэффициент гидравлического сопротивления λ вычисляются по формулам (2.14) и (2.15);
- 12) определяем конечное давление во втором приближении по формуле (3.1);
- 13) если полученный результат отличается от предыдущего приближения более, чем на 1 %, имеет смысл уточнить расчеты, выполняя третье приближение, начиная с пункта 3. Если результат удовлетворяет требованиям точности расчетов, переходим к следующему пункту;
 - 14) уточняется среднее давление по формуле (2.32);
 - 15) определяется конечная температура газа

$$T_K = T_0 + (T_H - T_0)e^{-a_t l} - D_i \cdot \frac{p_H^2 - p_K^2}{2a_t \cdot l \cdot p_{CP}} (1 - e^{-a_t l}).$$
 (3.7)

На этом тепловой и гидравлический расчет участка газопровода заканчивается.

Значение коэффициента теплопередачи K_{CP} в выражении (3.5) для подземных газопроводов (без тепловой изоляции), следует определять по формулам [8].

Расчетное значение коэффициента теплопередачи:

$$K_{CP} = \overline{K} \cdot \left(\frac{1}{D}\right)^{0.9}, (3.8)$$

где D — внутренний диаметр газопровода, м;

 \overline{K} — базовый коэффициент теплопередачи для газопровода диаметром 1 м.

При ориентировочных расчетах допускается принимать:

• для песка $\overline{K} = 1,1-2,4 \text{ BT/(м}^2 \cdot \text{K)};$

- для суглинка $\overline{K} = 1,05-1,65 \text{ Bt/(м}^2 \cdot \text{K)};$
- для смешанного грунта $\overline{K} = 1,27-1,34 \; \mathrm{Bt/(m^2 \cdot K)}.$

4 Расчет режима работы КС

Для расчетов режимов работы КС применяются характеристики ЦН, представляющие зависимость степени повышения давления ε , политропического коэффициента полезного действия $\eta_{\Pi O J}$ и приведенной относительной внутренней мощности

$$\left[\frac{N_i}{\rho_{BC}}\right]_{IIP} = \frac{N_i}{\rho_{BC}} \left(\frac{n_H}{n}\right)^3 , \qquad (4.1)$$

от приведенной объемной производительности

$$Q_{\Pi P} = \frac{n_H}{n} Q_{BC} , \qquad (4.2)$$

при различных значениях приведенных относительных оборотов

$$\left[\frac{n}{n_H}\right]_{\Pi P} = \frac{n}{n_H} \sqrt{\frac{Z_{\Pi P} \cdot R_{\Pi P} \cdot T_{\Pi P}}{Z_{BC} \cdot R \cdot T_{BC}}}, \tag{4.3}$$

где ρ_{BC} , Z_{BC} , T_{BC} , Q_{BC} – соответственно плотность газа, коэффициент сжимаемости, температура газа и объемная производительность ЦН, приведенные к условиям всасывания;

R – газовая постоянная, (2.4);

 $Z_{\Pi P}, R_{\Pi P}, T_{\Pi P}$ — условия приведения, для которых построены характеристики ЦН;

 N_i — внутренняя (индикаторная) мощность;

 n, n_H — соответственно рабочая частота вращения вала ЦН и номинальная частота вращения.

Основные параметры некоторых типов ЦН приведены в таблице 4.1.

Таблица 4.1 - Основные параметры некоторых типов центробежных нагнетателейпри номинальном режиме работы

Тип ЦН	Q_H ,	, ,	ение, МПа	3	Приво	еденные параг	метры	n_H , мин. $^{-1}$
Тип цп	млн м ³ /сут	p_{BC}	рнаг	C	$Z_{\Pi P}$	<i>R_{ПР}</i> , Дж/(кг∙К)	$T_{\Pi P}$, K	n_H , Mин.
H-300-1,23*	19,0	3,63	5,49	1,23	0,910	490,5	288	6150
370-18-1*	37,0	4,96	7,45	1,23	0,888	508,2	288	4800
H-16-56*	51,0	3,57	5,49	1,24	0,893	508,2	307	4600
235-21-1	18,3	5,18	7,45	1,44	0,888	508,2	288	4800
ГПА-Ц-6,3/76	11,4	5,14	7,45	1,45	0,900	508,2	293	8200
ГПА-Ц-16/76	32,6	5,14	7,45	1,44	0,888	508,2	288	4900
H-16-76-1,44	31,0	5,18	7,45	1,44	0,898	508,2	288	6340
650-21-2	53,0	4,97	7,45	1,45	0,900	501,4	288	3700
650-22-2	47,0	4,97	7,45	1,45	0,900	501,4	288	3700
CDR-224	17,2	4,93	7,45	1,51	0,900	490,5	288	6200
RF2BB-30	21,8	4,93	7,45	1,51	0,900	490,5	288	6200
RF2BB-36	38,0	4,93	7,45	1,51	0,890	510,1	288	4437
PCL802/24	17,2	5,00	7,45	1,49	0,900	490,5	288	6200
PCL1002/40	45,0	4,93	7,45	1,51	0,900	490,5	288	4670

^{* —} давления p_{BC} и $p_{HA\Gamma}$ для работы нагнетателей по схеме двухступенчатого сжатия

Одним из универсальных видов характеристик ЦН является приведенная характеристика по методике ВНИИГАЗа (рис. 4.1).

Порядок определения рабочих параметров следующий:

- 1) по известному составу газа, температуре и давлению на входе в ЦН определяется коэффициент сжимаемости Z_{BC}
- 2) определяются плотность газа ρ_{BC} и производительность нагнетателя при условиях всасывания Q_{BC} :

Газодинамические характеристики компрессора НЦ-16/76-1,44, расчётные величины: k = 1.312 , Z = 0.9, R = 507.9 Дж/кг.К), Т_и= 298К, п_{ин}= 5300 об/мин

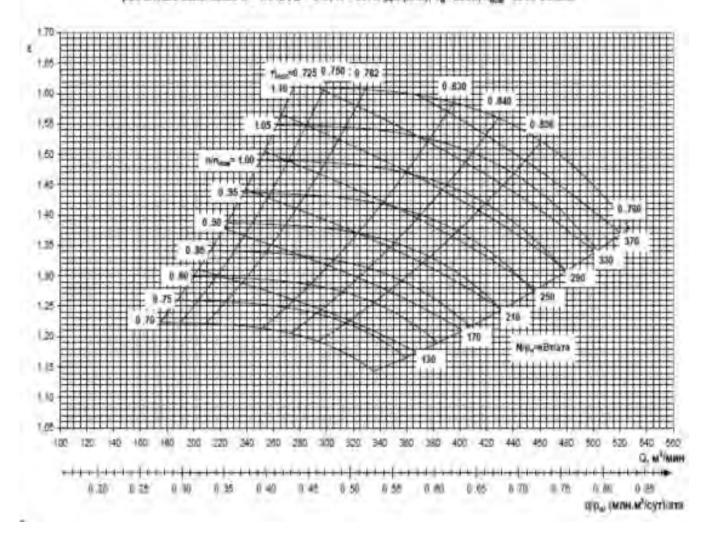


Рисунок 4.1 - Приведенная характеристика центробежного нагнетателя по методике ВНИГАЗа

$$\rho_{BC} = \rho_{CT} \cdot \frac{p_{BC} \cdot T_{CT} \cdot Z_{CT}}{p_{CT} \cdot T_{BC} \cdot Z_{BC}}, \tag{4.4}$$

$$Q_{BC} = \frac{Q_{KC}}{24 \cdot 60 \cdot m_H} \cdot \frac{\rho_{CT}}{\rho_{BC}}, \qquad (4.5)$$

где $Q_{KC} = Q$ – производительность КС при стандартных условиях;

 m_H — число параллельно работающих ЦН, определяемое из соотношения

$$m_H = \frac{Q_{KC}}{Q_H}, \tag{4.6}$$

где Q_H — номинальная производительность ЦН при стандартных условиях, млн м 3 /сут;

- 3) задаваясь несколькими (не менее трех) значениями оборотов ротора в диапазоне возможных частот вращения ГПА, по формулам (4.2) и (4.3) определяют $Q_{\Pi P}$ и $\left[\frac{n}{n_H}\right]_{\Pi P}$. Полученные точки наносятся на характеристику и соединяются линией (плавная кривая abc на рисунке 4.1);
 - 4) определяется требуемая степень повышения давления

$$\varepsilon = \frac{p_{HA\Gamma}}{p_{RC}},\tag{4.7}$$

где p_{BC} , $p_{HA\Gamma}$ — соответственно номинальное давление на входе и выходе ЦН.

Проведя горизонтальную линию из значения ε , найдем точку пересечения A с кривой abc. Восстанавливая из полученной точки перпендикуляр до пересечения с горизонтальной осью, находим $Q_{\Pi P}$.

Аналогично определяются
$$\eta_{\Pi O \Pi}$$
 и $\left[\frac{N_i}{\rho_{BC}} \right]_{\Pi P}$.

Значение $Q_{\Pi P}$ должно удовлетворять условию $Q_{\Pi P} \geq Q_{\Pi Pmin}$, где $Q_{\Pi Pmin}$ — приведенная объемная производительность на границе зоны помпажа (расход, соответствующий левой границе характеристик ЦН);

5) определяется внутренняя мощность, потребляемая ЦН,

$$N_i = \rho_{BC} \cdot \left[\frac{N_i}{\rho_{BC}} \right]_{IIP} \cdot \left(\frac{n}{n_H} \right)^3, \tag{4.8}$$

где n — фактическая частота вращения ротора ЦН, определяемая из выражения (4.2):

$$n = \frac{Q_{BC}}{Q_{\Pi P}} n_H; (4.9)$$

6) определяется мощность на муфте привода

$$N_e = N_i + N_{MEX} , (4.10)$$

где N_{MEX} — механические потери мощности в редукторе и подшипниках ЦН при номинальной загрузке (принимаются равными 1 % от номинальной мощности привода);

7) определяется располагаемая мощность газотурбинной установки (ГТУ)

$$N_{e}^{P} = N_{e}^{H} \cdot k_{N} \cdot k_{OEJI} \cdot k_{V} \cdot \left(1 - k_{t} \cdot \frac{T_{BO3JI} - T_{BO3JI}^{H}}{T_{BO3JI}}\right) \cdot \frac{p_{a}}{0,1013}, \tag{4.11}$$

где N_e^H — номинальная мощность ГТУ, кВт;

 $k_{\scriptscriptstyle N}$ – коэффициент технического состояния по мощности;

 k_{OEJ} — коэффициент, учитывающий влияние системы против обледенения (при отключенной системе $k_{OEJI}=1$);

 $k_{\scriptscriptstyle V}$ — коэффициент, учитывающий влияние системы утилизации тепла (при ее отсутствии $k_{\scriptscriptstyle V}=1$);

 k_{t} — коэффициент, учитывающий влияние атмосферного воздуха на мощность ГТУ;

 $T_{BO3Д}$, $T_{BO3Д}^{H}$ — соответственно фактическая и номинальная температуры воздуха, K;

 p_a – расчетное давление наружного (атмосферного) воздуха, МПа.

Значения N_e^H , k_N , k_{OEJ} , k_V , k_t , T_{BO3J}^H принимаются по справочным данным ГТУ представленным в таблице 4.2.

Таблица 4.2 - Техническая характеристика некоторых типов ГПА с газотурбинным приводом

					Частота вращения		
Тип ГТУ	N_e^H ,	T^H_{BO3A} ,	$k_{_N}$	k_{t}		го вала,	
THII I I J	кВт	К			МИ	ин. ⁻¹	
					n_{min}	n_{max}	
ГПА-Ц-6,3	6300	288	0,95	1,3	5740	8610	
ГТК-10	10000	288	0,95	3,7	3300	5100	
ГПУ-10	10000	298	0,95	3,7	3360	5300	
ГТН-10И	10000	288	0,95	2,0	4550	6870	
ГТК-16	16000	288	0,95	3,2	3500	4850	
ГТН-16	16000	288	0,95	3,2	4400	6600	
ГПА-Ц-16	16000	288	0,95	2,8	3430	5150	
ГТН-25	25000	288	0,95	3,2	3500	3900	
ГТН-25И	25000	288	0,95	2,2	3270	5100	

- 8) производится сравнение N_e и N_e^P . Должно выполняться условие
- $N_e \leq N_e^P$. При невыполнении этого условия следует увеличить число m_H и повторить расчет начиная с пункта 2;
 - 9) определяется температура газа на выходе ЦН:

$$T_{HA\Gamma} = T_{BC} \cdot \varepsilon^{\frac{k-1}{k \cdot \eta_{\PiO\Pi}}}, \tag{4.12}$$

где k — показатель адиабаты природного газа, k = 1,31.

5 Расчет сложных газопроводов

Для расчета сложной газопроводной системыее можно разбить на элементы, к каждому из которых применяются расчетные зависимости для простых газопроводов. При этом должны выполняться следующие условияв узловых точках: равенство давлений, сохранение массы газа (уравнение неразрывности) и его теплосодержания.

При использовании данного способа рассчитываемый участок необходимо разбить на подучастки с постоянным диаметром. Расчет

производится последовательным переходом от одного подучастка к другому по направлению течения газа.

Давление и температура газа в конце предыдущего подучастка являются начальными для последующего участка. Такой поэтапный способ расчета является наиболее точным, но достаточно трудоемким.

Во многих случаях процесс расчета сложного трубопровода ускоряется посредством приведения его к фиктивному простому эквивалентному трубопроводу. Простой газопровод будет эквивалентен сложной газопроводной системе, если у него и у системы будут одинаковы все параметры перекачки (расходы, давления в начале и в конце, температуры, теплофизические характеристики перекачиваемого газа), т.е. при различии в геометрических размерах потери на трение в эквивалентном газопроводе будут такими же, как и в сложной системе.

Расчет сложного трубопровода можно заменить расчетом простого, используя понятия эквивалентного диаметра или коэффициента расхода.

Эквивалентным диаметром D_{3K} называется диаметр простого трубопровода, имеющего пропускную способность, равную пропускной способности реального трубопровода при прочих равных условиях.

В этом случае уравнение пропускной способности участка примет вид

$$Q = K \sqrt{\frac{(p_H^2 - p_K^2)D_{3K}^5}{\lambda \cdot z \cdot \Delta \cdot T \cdot L}},$$
(5.1)

где p_H и p_K – абсолютное давление газа в начале и в конце участка, Па;

 λ – коэффициент гидравлических сопротивлений;

z — среднее значение коэффициента сжимаемости газа;

T – средняя температура газа в участке, K;

L — длина участка, м;

 Δ — относительная плотность газа.

$$K = \frac{\pi T_{CT}}{4p_{CT}} \sqrt{R_s} = \frac{3.14 \cdot 293}{4 \cdot 1,013 \cdot 10^5} \sqrt{273} = 0.0386 \frac{\text{M}^2 \cdot \text{c} \cdot \text{K}^{0.5}}{\text{K}\Gamma}.$$

При использовании смешанной системы единиц D в м, T в К, производительность в млн м³/сут, давление в МПа и длина в км,

коэффициент К будет учитывать помимо величин, указанных выше, еще и переходные коэффициенты, и его значение составит 105,087.

Коэффициентом расхода k_p называют отношение пропускной способности реального трубопровода к пропускной способности эталонного трубопровода Q_0 с произвольно выбранным эталонным диаметром D_0 при прочих равных условиях:

$$k_P = \frac{Q}{Q_0} \,. \tag{5.2}$$

Для случая простого трубопровода

$$k_{Pi} = \left(\frac{D_i^5 \lambda_0}{D_0^5 \lambda_i}\right)^{0.5},\tag{5.3}$$

где D_i и λ_i — диаметр и коэффициент гидравлического сопротивления простого трубопровода;

 D_0 и λ_0 — диаметр и коэффициент гидравлического сопротивления эталонного трубопровода.

При квадратичном режиме течения газа, полагая, что шероховатость труб одинакова, имеем

$$k_{Pi} = \left(\frac{D_i}{D_0}\right)^{2,6}. (5.4)$$

Тогда уравнение пропускной способности участка примет вид:

$$Q = k_P \cdot Q_0 = k_P \cdot K \sqrt{\frac{(p_H^2 - p_K^2)D_0^5}{\lambda_0 \cdot z \cdot \Delta \cdot T \cdot L}} . (5.5)$$

Эталонный диаметр принимается, исходя из удобства расчетов.

В качестве эталонного обычно принимают диаметр, доминирующий в сложном трубопроводе, можно использовать $D_0 = 0.7$ м или $D_0 = 1.0$ м, по отношению к которым имеются таблицы коэффициентов расхода для других диаметров.

6 Словарь основных терминов и условных сокращений

Арматура — устройства и детали (клапаны, вентили, выключатели и т. п.), не входящие в состав основного оборудования, но обеспечивающие его нормальную работу.

Байпас — обвод, параллельный прямому участку трубопровода, с запорной или регулирующей трубопроводной арматурой или приборами (напр., счетчиками жидкости или газа). Служит для управления технологическим процессом при неисправности арматуры или приборов, установленных на прямом трубопроводе, а также при необходимости их срочной замены из-за неисправности без остановки технологического процесса.

Газоперекачивающий агрегат (ГПА) — технологическое устройство, включающее привод (газотурбинную установку ГТУ, поршневой двигатель ПД либо электродвигатель ЭД) и нагнетатель (центробежный ЦБН или осевой ОН), предназначенный для повышения давления в магистральном газопроводе).

Газопровод-перемычка- газопровод, соединяющий между собой магистральные газопроводы или системы.

Газопровод магистральный — комплекс производственных объектов, обеспечивающих транспорт природного или попутного нефтяного газа, в состав которой входят однониточный газопровод, компрессорные станции, установки дополнительной подготовки газа (например, перед морским переходом), участки с лупингами, переходы через водные преграды, запорная арматура, камеры приема и запуска очистных устройств, газораспределительные станции, фазоизмерительные станции, станции охлаждения газа

Газопровод многониточный- газопровод, состоящий из нескольких взаимосвязанных параллельно уложенных трубопроводов.

Газопровод простой- газопровод с постоянным диаметром труб, без отводов к попутным потребителям и без дополнительного приема газа по пути следования.

Газопровод сложный- газопроводе постоянным или различным диаметром труб с отводами к попутным потребителям, с дополнительным приемом газа, лупингами и перемычками.

Давление рабочее- наибольшее избыточное давление, при котором обеспечивается проектный режим эксплуатации газопровода.

Дожимная компрессорная станция (ДКС)- компрессорная станция, установленная на выходе из промысла и предназначенная для повышения давления газа до рабочего давления в магистральном газопроводе.

Компрессорная станция (КС)- комплекс сооружений газопровода (магистрального), предназначенный для компримирования газа.

Коэффициент гидравлической эффективности газопровода — отношение производительности газопровода к его расчетной пропускной способности.

Коэффициент загрузки газопровода- отношение фактической производительности к проектной производительности газопровода. **Критическая температура-** наибольшая температура, при которой газ не переходит в жидкое состояние, как бы велико ни было давление.

Критическое давление- предельное давление, при котором и менее которого газ не переходит в жидкое состояние, как бы ни низка была температура.

Линейная часть магистрального газопровода- участок магистрального газопровода с запорной арматурой, с лупингами, с отводами и перемычками, без компрессорных и газораспределительных станций.

Лупинг — резервная нитка трубопровода. Устанавливаются, как правило, в участках с повышенным транспортом нефти и газа и участках с узким диаметром труб.

Манифольд- несколько трубопроводов, обычно закрепленных на одном основании, рассчитанных на высокое давление и соединенных по определенной схеме, и снабженных необходимой запорной и иной арматурой.

Напор- физическая величина, выражающая удельную, приходящуюся на единицу веса, механическую энергию потока в данной точке.

Относительная плотность — это отношение плотности определенного газа к плотности стандартного вещества (воздуха) при определенных условиях.

Помпаж- неустойчивая работа компрессора, вентилятора или насоса, характеризуемая резкими колебаниями напора и расхода перекачиваемой среды.

Производительность магистрального газопровода (валовая) - количество газа, транспортируемого по газопроводу за расчетный период (год, сезон, квартал, месяц, сутки).

Пропускная способность газопровода- расчетное количество газа, которое может пропустить газопровод в единицу времени при заданных параметрах и установившемся режиме потока газа.

Расход- физическая величина, выражающая количество жидкости или газа, протекающей через поперечное сечение потока за единицу времени.

Расход газа- объèм газа, прошедшего через поперечное сечение трубопровода за единицу времени, приведèнный к стандартным условиям.

Расчèтное давление- максимальное избыточное давление в газопроводе, на которое производится расчèт на прочность при обосновании основных размеров.

Список условных сокращений

АВО – аппарат воздушного охлаждения газа;

 $\Pi \mathbf{y}$ – пылеуловитель;

БТПГ – блок подготовки топливного, пускового и импульсного газа;

ЛПУМГ –линейное производственное управление магистральных газопроводов;

ГСМ – горюче-смазочные материалы;

ГЩУ – главный щит управления;

КЦ – компрессорный цех;

ВЗК – воздухозаборная камера;

ГТУ – газотурбинная установка;

ТВД – турбина высокого давления;

ТНД – турбина низкого давления;

ГРС – газораспределительная станция;

ТО – техническое обслуживание;

Е-2 – емкость для сбора конденсата;

КВД – компрессор высокого давления;

КНД – компрессор низкого давления.

Библиографический список

1. Трубопроводный транспорт нефти и газа / Р.А. Алиев [и др.]. – М.: Недра, 1988.

- 2. Белицкий В.Д. Проектирование и эксплуатация магистральных газопроводов: учеб. пособие / В.Д. Белицкий. Омск: ОмГТУ, 2011. 62 с.
- 3. Типовые расчеты при сооружении и ремонте газонефтепроводов / Л.И. Быков [и др.]. СПб.: Недра, 2006.
- 4. Новоселов В.Ф. Типовые расчеты при проектировании и эксплуатации газопроводов / В.Ф. Новоселов, А.И. Гольянов, Е.М. Муфтахов. М.: Недра, 1982.
- 5. Зубарев В.Г. Методические указания по дисциплине «Проектирование и эксплуатация магистральных газопроводов» для курсового проектирования / В.Г. Зубарев. ТюмГНГУ, 2006.
 - 6. Спутник газовика / A.B. Детотенко [и др.]. M.: Недра, 1978.
- 7. Волков М.М. Справочник работника газовой промышленности / М.М. Волков, А.А. Михеев, К.А. Конев. М.: Недра, 1989.
 - 8. СП 36.13330.2012 Магистральные трубопроводы.

Актуализированная редакция СНиП 2.05.06-85*. — М.:Минрегионразвития, 2012. - 87 с.

- 9. Лурье, М. В. Задачник по трубопроводному транспорту нефти, нефтепродуктов и газа: учеб. пособие для студентов высш. учеб. заведений /М. В. Лурье. М.: Недра, 2003. 349 с.
- 10. Агапкин, В. М. Справочное руководство по расчèтам трубопроводов / В. М. Агапкин, С. Н. Борисов, Б. Л. Кривошеин М.: Недра, 1987. 189 с.
- 11. Магистральный трубопроводный транспорт газа в терминах и определениях [Текст] : справочник / Б. В. Будзуляк [и др.] ; Открытое акционерноеобщество «Газпром» ; Информационно-рекламный центр

газовой промышленности (ООО «ИРЦ Газпром»). – Москва: ИРЦ Газпром, 2007.-248 с.