Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

Должность: проректор по учебной работе

МИНОБРНАУКИ РОССИИ

Дата подписания: 10.11.2023 03:15:07 Федеральное государственное бюджетное Уникальный программный ключ:

0b817са911e6668abb13a5d420бразования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра биомедицинской инженерии

УТВЕРЖДАЮ
Проректор по учебной работе
О.Г. Локтионова
2017 г.

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В МЕДИКО-БИОЛОГИЧЕСКОЙ ПРАКТИКЕ

Методические указания к практическим занятиям по дисциплине «Моделирование биологических процессов и систем»

Составители: О.В. Шаталова, К.Д.А. Кассим.

Рецензент Кандидат технических наук, доцент М.А. Ефремов

Компьютерное моделирование в медико-биологической практике: методические указания к практическим занятиям / Юго-Зап. гос. ун-т; сост.: О.В. Шаталова, К.Д.А. Кассим. Курск, 2017. 40 с.

Предназначено для студентов по направлению подготовки 12.03.04 «Биотехнические системы и технологии» и по специальности 30.05.03 «Медицинская кибернетика» по дисциплине «Моделирование биологических процессов и систем». Может быть использована аспирантами, обучающимися по направленностям 05.11.13 — Системный анализ, управление и обработка информации и 05.11.17 — Приборы, системы и изделия медицинского назначения.

Текст печатается в авторской редакции

Подписано в печать 5 06 . Д. Формат 60×84 1/16. Бумага офсетная. Усл. печ. л. 2,33. Уч.-изд. л. 2,1. Тираж 100 экз. Заказ 894. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

Практическая работа №1

«Моделирование речевого сигнала»

Краткие теоретические сведения

Основные механизмы звукообразования речи

Речевой сигнал является средством передачи разнообразной информации как вербальной (словесной), так и невербальной (эмоциональной). Для быстрой передачи информации в процессе эволюции был отобран особым образом закодированный и структурированный акустический сигнал. Для создания такого специализированного акустического сигнала используется "голосовой аппарат", совмещенный с физиологическим аппаратом, предназначенным для дыхания и жевания (поскольку речь возникла на поздних стадиях эволюции, то к речеобразованию пришлось приспособить уже имеющиеся органы.

Процесс образования И восприятия речевых сигналов, рисунок 1.1, включает схематически показанный на формулировка следующие основные этапы: сообщения, кодирование в языковые элементы, нейромускульные действия, движения элементов голосового тракта, излучение акустического сигнала, спектральный анализ и выделение акустических признаков периферической слуховой системе, передача выделенных признаков по нейронным сетям, распознавание языкового кода (лингвистический анализ), понимание смысла сообщения.

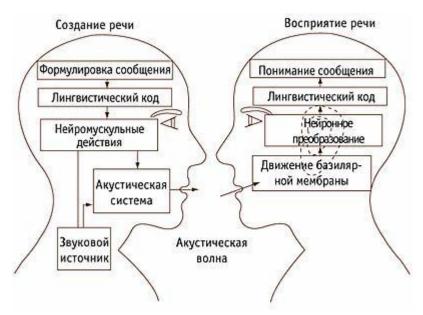


Рисунок 1.1 - Основные процессы образования и восприятия речи

Голосовой аппарат является, по существу, духовым музыкальным инструментом. Однако среди всех музыкальных инструментов он не имеет себе равных по своей многогранности, разносторонности, возможности передачи малейших оттенков и др. Все способы звукоизвлечения, которые используются в духовых инструментах, используются в процессе образования речи (в т.ч. вокальной речи), однако все они перестраиваемы (по приказам мозга), и имеют широчайшие возможности, недоступные ни одному инструменту.

Если рассматривать структуру голосообразующего аппарата как духового музыкального инструмента, он состоит из трех основных частей (рисунок 1.2):

- генератора дыхательной системы, состоящей из воздушного резервуара (легких), где запасается энергия избыточного давления, мускульной системы и выводного канала (трахеи) со специальным аппаратом (гортанью), где воздушная струя прерывается и модулируется;
- вибраторов голосовых связок, воздушных турбулентных струй (создающих краевые тоны), импульсных источников (взрывов);
- - *резонаторов* разветвленной и перестраиваемой системы резонансных полостей сложной геометрической формы (глотки, ротовой и носовой полости), называемой артикуляционной системой.

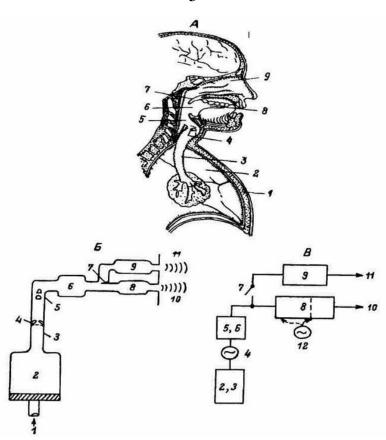


Рисунок 1.2 - Схема речеобразующего аппарата А - анатомическое изображение; Б - функциональные элементы; В -эквивалентная блок-схема. На А: 1 - грудная клетка, 2 - лёгкие, 3 - трахея, 4 - голосовые связки, 5 - гортанная трубка, 6 - полость глотки, 7 - нёбная занавеска, 8 - полость рта, 9 - полость носа. На Б: 1 - сила дыхательных мышц, 2 - объём легких, 3 - трахея, 4 - голосовые связки, 5 - гортанная трубка, 6 - полость глотки, 7 - нёбная занавеска, 8 - полость рта, 9 - полость носа, 10 - излучение из ротового отверстия, 11 - излучение из носовых отверстий. На В: 2, 3 - ёмкость легких и трахеи, 4 - голосовой источник колебаний, 5, 6 - ёмкость гортани и глотки, 7 - механизм нёбной занавески, 8 - емкость полости рта, 9 - емкость полостей носа, 10 - выходной сигнал ротового тракта, 11 - выходной сигнал носового тракта, 12 - шумовой источник.

Генерация энергии воздушного столба происходит в легких, которые представляют собой своеобразные меха, создающие поток воздуха при вдохе и выдохе за счет разницы атмосферного и внутрилегочного давления. Процесс вдоха и выдоха происходит за расширения грудной счет И клетки, сжатия которые обычно c помощью осуществляются двух групп мышц: межреберных и диафрагмы, при глубоком усиленном дыхании

(например, при пении) сокращаются также мышцы брюшного пресса, груди и шеи. При вдохе диафрагма уплощается сокращение наружных межреберных мышц опускается вниз, поднимает ребра и отводит их в стороны, а грудину – вперед. Увеличение грудной клетки растягивает легкие, что приводит к внутрилегочного падению давления ПО отношению атмосферному, и в этот "вакуум" устремляется воздух. При выдохе мускулы расслабляются, грудная клетка за счет своей тяжести возвращается в исходное состояние, диафрагма поднимается, объем легких уменьшается, внутрилегочное давление растет, воздух устремляется в обратном направлении. Таким образом, вдох – процесс активный, требующий затраты энергии, выдох – процесс пассивный. При обычном дыхании это процесс происходит примерно 17 раз в минуту, управление этим процессом как при обычном дыхании, так и при речи, происходит бессознательно, но при пении процесс постановки дыхания происходит сознательно и требует длительного обучения Количество энергии, которое может быть израсходовано на создание речевых акустических сигналов, зависит от объема запасенного воздуха и соответственно величины дополнительного давления в легких. Учитывая, что максимальный ЗВУКОВОГО давления, который уровень развивать певец (имеется в виду оперный), составляет 100...112 дБ, голосовой аппарат очевидно, ЧТО является эффективным преобразователем акустической энергии, Его КПД 0,2%, порядка как И у большинства составляет инструментов. Модуляция воздушного потока (за счет вибраций голосовых связок) и создание подглоточного избыточного давления происходит в гортани. Гортань (larynx) – это клапан, который находится на конце трахеи (узкой трубки, по которой воздух Этот легких). поднимается клапан предназначен предохранения трахеи от попадания посторонних предметов и для поддержания высокого давления при подъеме тяжестей. Именно этот аппарат и используется в качестве голосового источника при речи и пении. Гортань образована из набора хрящей и мышц. Спереди ее охватывает щитовидный хрящ (thyroid), сзади перстневидный хрящ (cricoid), сзади также располагаются более хрящи: черпаловидные, рожковидные парные клиновидные. Сверху гортани расположен еще один надгортанник (epiglottis), также типа клапана, который опускается

при глотании и закрывает гортань. Все эти хрящи соединены мышцами, от подвижности которых зависит скорость поворота хрящей. С возрастом подвижность мышц уменьшается, хрящи также становятся менее эластичными, поэтому возможности виртуозного владения голосом при пении также уменьшаются.

Наиболее сложно устроен средний отдел гортани, в котором расположены парная мышечная перегородка (эластичный конус) и складок. Верхние называются преддверными, голосовыми", а нижние – голосовыми. В толще "ложными последних лежат голосовые связки, образованные эластическими Промежуток между правой и левой волокнами, мышцы. И голосовыми складками называется голосовой щелью. Голосовые связки натянуты между щитовидным и черпаловидным хрящами. Размеры голосовой щели в открытом состоянии 2 см в длину и 1 см в ширину. Именно голосовые складки и являются основным (но не единственным) источником голосообразования (вибратором). Преддверные выделяют специальную голосовые складки слизистую секрецию, которая помогает смазывать голосовые складки и предохраняет их от повреждения при трении во время звукообразования.

Между двумя парами складок находятся небольшие полости которые позволяют беспрепятственно (желудочки гортани), голосовым складкам и играют роль акустических фильтров, уменьшая уровень высоких гармоник (скрипучесть голоса), они же играют роль резонаторов для тихих тонов и при пении в фальцете. При движении черпаловидных хрящей голосовые складки могут сдвигаться раздвигаться, открывая проход воздуха. И поворотах щитовидного и перстневидного хрящей они могут растягиваться и сжиматься, при активации вокальных мышц они могут расслабляться и напрягаться. Процесс образования звуков речи определяется движением (колебаниями) связок, что приводит к модуляции потока воздуха выдыхаемого из легких. Такой процесс называется фонацией (существуют другие И механизмы звукообразования, они будут рассмотрены дальше).

Начнем с рассмотрения *процесса фонации*: перед началом речи голосовые складки должны быть сведены черпаловидными хрящами, что приводит к запиранию потока воздуха и возникновению избыточного подглоточного давления (происходит "предфонационная настройка"). Воздух, который выталкивается

легкими из трахеи, накапливается в подскладочном пространстве, и начинает давить на них. Когда избыточное давление повышается до определенной величины, складки размыкаются устремляется В голосовую щель. В момент максимального открытия щели скорость потока воздуха становится максимальной, давление внутри щели падает (по закону Бернулли), причем скорость протекания воздуха неодинакова – в самой узкой части Внутри голосовой она максимальна. голосовой щели образуется давления. Окружающее более зона пониженного высокое собственная упругость давление, также связок Этот складки сомкнуться. процесс заставляют аналогичен возбуждению колебания тростей В деревянных ДУХОВЫХ инструментах. Таким образом, чередование избыточного давления в подскладочном пространстве и отрицательного давления из-за эффекта Бернулли заставляет складки смыкаться-размыкаться, т.е. обеспечивает нормальный режим их колебаний (рисунок 1.3). При этом происходит модуляция потока воздуха, который порциями (как в духовых инструментах) вталкивается в резонансные полости. Последовательность воздушных толчков, возникающих результате колебаний голосовых связок, называется глоттальной волной, обычно она представляется в виде зависимости объемной скорости воздуха от времени. Как видно из графиков, такой сигнал представляет собой последовательность импульсов, форма которых зависит от соотношения времени открытия складок (скорость потока постепенно нарастает) и времени их закрытия (скорость уменьшается). Период такой волны определяется длительностью общего цикла колебаний связок, т.е. основной колебания. Амплитуда определяется максимальной скоростью потока воздуха, которая, в свою очередь, зависит от величины подскладочного избыточного давления.

Рисунок 1.3 - Процесс колебаний голосовых складок

Акустический речевой сигнал возникает в результате сложных координированных движений, происходящих в ряде органов, вся совокупность которых и называется речевым аппаратом (рисунок 1.2, A).

Легкие со всей дыхательной мускулатурой обеспечивают развитие давлений и возникновение воздушных потоков в речевом тракте. Последний (рисунок 1.2, Б, В) представляется гортанью и рядом воздушных полостей, конфигурация которых существенно изменяется в процессе речеобразования. Ведущую роль играют движения небной занавески, языка, губ и нижней челюсти.

Механизмы возбуждения акустических колебаний связаны либо с работой гортани, либо с возникновением шумных или импульсных звуков при прохождении воздушного потока через сужения, образующиеся в определенных местах речевого тракта.

Возбужденные акустические колебания подвергаются частотной фильтрации в воздушных полостях речевого тракта, действующих как акустические частотные фильтры. Конфигурация и объемы этих полостей в процессе речеобразования определенным

образом изменяются. Соответственно этому изменяется и спектр исходных звуковых колебаний, создаваемых акустическими источниками.

Образование воздушных потоков, работа механизма гортани, все движения органов, образующих речевой тракт («артикуляторов»), происходят закономерно и координировано. Благодаря этой динамически слаженной деятельности и возникают сигналы связной речи.

При акустическом моделировании каждый участок РА (полость, сужение) представляется в виде секции, параметры в которой можно считать распределенными равномерно.

Акустические параметры полостей РА неравномерно распределены вдоль его оси. Общая длина речевого тракта у взрослого человека (от голосовых складок до губ) около 17 см, длина носовой полости (от нёбной занавески до ноздрей) 12,5 см, площадь переменного сечения тракта в среднем составляет примерно 5...6 см².

Простейшей моделью вокального тракта можно считать цилиндрическую трубу длиной 17 см, закрытую на одном конце (аналогично трубе кларнета). Собственные моды (формы) колебаний такой трубы показаны на рис . 4, частоты определяются из соотношений: $L=\lambda/4$; $L=3\lambda/4$; $L=5\lambda/4$ и т.д., таким образом частоты равны $f_n=(2n-1)c/4L$, где n-целое число; L-длина трубы; сскорость звука.

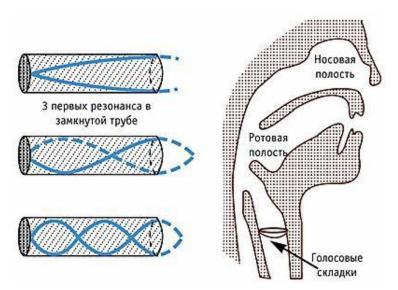


Рисунок 1.4 - Формы колебаний для цилиндрической трубы и голосового тракта

В спектре такой трубы присутствуют только нечетные гармоники 1:3:5... Для длины L=17 см, собственные частоты оказываются равными 500, 1500, 2500 Гц. Если у трубы менять в разных точках площадь поперечного сечения, то положение ее собственных частот будет смещаться. Совершенно аналогичные процессы происходят в вокальном тракте: в нем также имеется свой набор собственных частот с соответствующими модами колебаний, т.е. определенным распределением узлов ипучностей вдоль его длины. Меняя площадь поперечного сечения в вокальном тракте, можно также все время менять положение собственных частот.

Если на вход такой трубы (системы труб) подать сигнал, сформированный при колебаниях голосовых связок (рисунок 1.4), то на выходе можно записать сигнал, спектр которого будет иметь форму, показанную на рисунке 1.5, т.е. гармоники, совпадающие с собственными частотами тракта, будут усилены за счет резонансов.

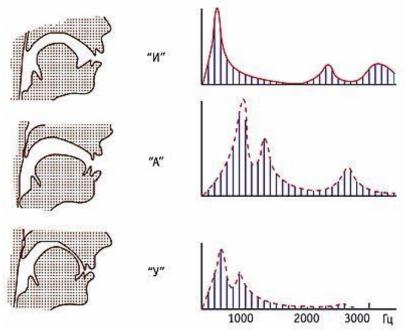


Рисунок 1.5 - Положение тракта для разных звуков речи и вид звукового сигнала с формантами

Области спектральных максимумов, соответствующие резонансным частотам вокального тракта, называются формантами (иногда их просто называют резонансами вокального тракта). Каждому звуку речи (простейший звук речи называется фонемой) соответствует своя форма вокального тракта, которая варьируется за счет изменения положения языка, губ, зубов и т.д., и свое положение формант (F-картина). Примеры показаны на рисунок 1.5.

Г. Фант рассматривал голову как отражающую доску, имеющую радиус 9 см, в центре которой действует поршневая диафрагма. Действие отражающей доски учитывается коэффициентом $K_s(\omega)$ входящим в формулу для сопротивления излучения. На низких частотах $K_s(\omega)=1$, на частотах около 2 кГц $K_s(\omega)=1.7$, а на более высоких частотах коэффициент $K_s(\omega)$ опять уменьшается. В формулах выше коэффициент $K_s(\omega)=2$, что соответствует отражению от бесконечно большой доски.

На рисунке 1.6 изображён схематический разрез речевого аппарата (PA) при произнесении диктором гласных (и, о, у). Хотя конфигурация полостей PA отличается сложной формой, в PA можно выделить ротовую, глоточную и носовую полости. При образовании русских гласных проход из полости глотки в носовую полость закрыт нёбной занавеской. Полости рта и глотки разделены сужением, образуемым спинкой языка и нёбом. Второе сужение образуется с участием губ и двух рядов зубов.

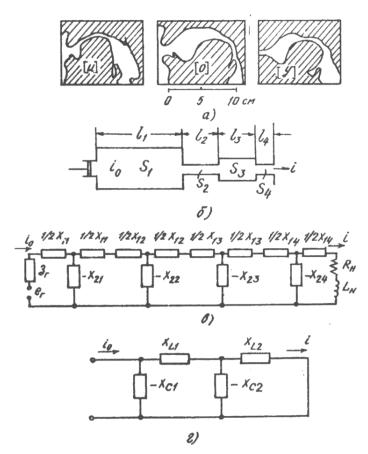


Рисунок 1.6 - Акустическая модель речевого аппарата а) - продольное сечение ГА; б) - акустическая модель; в) - эквивалентная электрическая схема; г) - упрощённая эквивалентная схема

Введем ряд упрощений, которые, с некоторым приближением позволят получить достаточно наглядное описание процессов происходящих в РА. По измерениям, проведённым академиком В.Н. Сорокиным, площадь голосовой щели во время фонации не превышает 0,2-0,4; площадь же поперечного сечения глотки имеет величину в 10-20 раз большую. Поэтому голосовую щель можно рассматривать как источник с большим внутренним сопротивлением, т.е. как источник объемной скорости.

Точно так же можно пренебречь упругостью стенок полостей. В результате получим акустическую модель РА, изображенную на рисунке 1.6,б. Голосовые связки изображены в виде поршня.

Секция S_1 представляет собой полость гортани, секция S_2 область сжатия, образуемую спинкой языка, секция S₃ - ротовую полость и секция S_4 - область сжатия, образуемую ротовым отверстием. Звуковая энергия, излучаемая из ротового отверстия, отражается от лица говорящего, т.е. лицо как бы является отражательной аппарат доской. Речевой имеет следующие среднестатистические размеры: длина вдоль его оси от голосовой щели до ротового отверстия равна 17,5 см, площадь поперечного сечения полостей - не более 5... 15 см². При таких размерах распространение звуковых волн вдоль оси РА не зависит от изгибов формы. Для сигнала с частотой ниже некоторой граничной f₀ в PA выполняется условие распространения плоских волн. Для полого цилиндра диаметром 2R

$$f_0 = 1.17 \cdot \frac{c}{R},$$
 (1.1)

где $c=3.53\cdot 10^2$ м/с - скорость распространения звука при $t=37^\circ$ С. При $f_0=6$ кГц, $2\cdot R=2\cdot 1.17\cdot 3.53\cdot 10^2\cdot 10^2$ / $(6\cdot 10^3)=6.8\cdot cm$, т.е. больше поперечного размера РА в любой его точке.

При длине волны $\lambda = c/f_0$, значительно превышающей длину РА (f $\approx 1000 \, \Gamma$ ц), допустима замена распределенных параметров на сосредоточенные.

Составим электрический аналог акустической модели. Путем замены каждой полости Т-образной эквивалентной схемой получим

схему, изображенную на рисунке 1.5,в. Генератор e_r является аналогом голосовой щели и представляет собой источник тока i_0 с внутренним сопротивлением z_r . Ток i, проходящий через активное R_H и индуктивное L_H сопротивления, представляют собой аналог объемной скорости в ротовом отверстии. Величины R_H и L_H - представляют собой сопротивление излучения и массу воздуха в ротовом отверстии.

Последние определяются по формулам:

$$R_{H} = \frac{\rho \cdot \omega^{2}}{2 \cdot \pi \cdot c},$$

$$L_{H} = \frac{8 \cdot \rho}{3 \cdot \pi^{2} \cdot r},$$
(1.2)

где $\rho = 1.14$ кг/м³ - плотность воздуха; r - радиус кругового отверстия, равного площади ротового отверстия.

Введем в схему рисунке 1.5,в следующие упрощения: пусть последовательно с большим внутренним соединен X_{11} сопротивлением пренебречь. генератора \mathbf{Z}_{r} И ИМ ОНЖОМ Сопротивления упругости x_{22} и x_{24} представляют соответственно небольшие области сжатия в ротовой полости между спинкой языка и нёбом и в ротовом отверстии. Их величина велика и поэтому ими также можно пренебречь. Итак, с принятыми упрощениями схема, приобретает вид, изображенный на рисунке $1.5,\Gamma$.

С учетом формулы (1.2)

$$x_{c1} = x_{21} = \frac{\rho \cdot c}{S_1 \cdot \sin\left(\frac{\omega \cdot l_1}{c}\right)};$$

$$x_{c2} = x_{23} = \frac{\rho \cdot c}{S_3 \cdot \sin\left(\frac{\omega \cdot l_3}{c}\right)};$$

$$\begin{split} x_{L1} &= \frac{1}{2} \cdot x_{11} + x_{12} + \frac{1}{2} \cdot x_{13} = \frac{\rho \cdot c}{S_1} \cdot tg \bigg(\frac{\omega \cdot l_1}{2 \cdot c} \bigg) + \frac{2 \cdot \rho \cdot c}{S_2} \cdot tg \bigg(\frac{\omega \cdot l_2}{2 \cdot c} \bigg) + \\ &+ \frac{\rho \cdot c}{S_3} \cdot tg \bigg(\frac{\omega \cdot l_3}{2 \cdot c} \bigg); \end{split}$$

$$x_{L2} = \frac{1}{2} \cdot x_{13} + x_{14} + x_{H} = \frac{\rho \cdot c}{S_{3}} \cdot tg \left(\frac{\omega \cdot l_{3}}{2 \cdot c}\right) + \frac{2 \cdot \rho \cdot c}{S_{4}} \cdot tg \left(\frac{\omega \cdot l_{4}}{2 \cdot c}\right) + \frac{8 \cdot \rho \cdot c}{3 \cdot \pi^{2} \cdot r}.$$

$$(1.3)$$

Соотношение объемных скоростей на выходе РА:

$$\frac{\dot{i}}{i_0} = \frac{x_{c1}/x_{c2}}{(x_{L1} - x_{c1}) \cdot \left(\frac{1}{x_{c2}} - \frac{1}{x_{L2}}\right) - 1}.$$
 (1.4)

Поскольку потери R и G в формантной модели не учитываются, то на резонансных частотах $i/i_0 \to \infty$ при условии, что $x_{1,2} \neq 0$.

Таким образом, для нахождения резонансных частот в модели необходимо решить уравнение

$$(x_{L1} - x_{C1}) \cdot \left(\frac{1}{x_{C2}} - \frac{1}{x_{L2}}\right) - 1 = 0,$$
 (1.5)

Задание

Расчетная часть (расчеты выполняются в программе Matcad)

- 1. Получить вариант для разработки модели звука.
- 2. Составить формулу для расчета частотного отклика (зависимость полного сопротивления схемы от частоты) речевого тракта с использованием рис. 2, г для упрощенной электрической эквивалентной схемы.

- 3. Подставить значения сопротивлений (1.3) в формулу и рассчитать полное сопротивление схемы в частотном диапазоне речевого сигнала 70-7000 Гц.
- 4. Сохранить массив в виде текстового файла (функция writeprn).
 - 5. Результаты расчета представить в виде графика.
- 6. Рассчитать резонансные частоты для модели соответствующего звука, используя уравнение (1.5).
 - 7. Сравнить результаты, полученные в п.3 и п.5.

Экспериментальная часть

- 1. Используя микрофон и программу «Звукозапись» из «Стандартных» программ Windows, записать соответствующий звук или слово, содержащее рассматриваемый звук в качестве ударного, например, «ухо» для звука «у», «сила» для звука «и», «море» для звука «о».
- 2. Используя программу SpWin 7 (или подобную), вырезать из звукового файла участок, соответствующий рассматриваемому звуку, и сохранить его в файл звукового формата (например, wav). Сделать скриншот.
 - 3. Представить его в виде спектра. Сделать скриншот.
- 4. Сохранить файл звука как ASCII код (в формате текстового файла, txt).
- 5. Полученный массив данных представить в виде графика, используя программу Matcad. Рассчитать его спектр. Построить график.
- 6. Сравнить полученный спектр и расчетный частотный отклик (п.5 расчетной части). Сделать выводы.

Варианты

Общие исходные данные:

 ρ =1,165 кг/м³ — плотность воздуха при T=30° С на уровне моря;

 $c=3,53\cdot10^2$ м/с – скорость распространения звука при $T=37^{\circ}$ С;

r = 0.0056 м - радиус кругового отверстия, равного площади ротового отверстия.

Разработка модели звука «И»

 $S_1 = 3.14 \cdot 10^{-4}$ м² – полость гортани;

 $1_1 = 0,115 \text{ м} - длина полости гортани;}$

 $S_2 = 0,196 \cdot 10^{-4} \text{ м}^2 - \text{ область сжатия, образуемая спинкой языка;}$

 $1_2 = 0.04$ м – длина области сжатия;

 $S_3 = 4.9 \cdot 10^{-4} \text{ м}^2$ – ротовая полость; $l_3 = 0.015 \text{ м}$ – длина ротовой полости;

 $S_4 = 0.785 \cdot 10^{-4} \text{ м}^2$ — область сжатия, образуемая ротовым отверстием $l_4 = 0.005 \text{ м}$ — длина области сжатия;

Разработка модели звука «О»

 $S_1 = 4.9 \cdot 10^{-4} \, \text{м}^2 - \text{полость гортани}; \, l_1 = 0.095 \, \text{м} - \text{длина}$ полости гортани;

 $S_2 = 0.785 \cdot 10^{-4} \text{ м}^2 - \text{ область сжатия, образуемая спинкой языка;}$

 $1_2 = 0,025 \text{ м} -$ длина области сжатия;

 $S_3 = 15,9 \cdot 10^{-4} \text{ м}^2$ — ротовая полость; $l_3 = 0,03 \text{ м}$ — длина ротовой полости;

 $S_4 = 3,4 \cdot 10^{-4} \text{ м}^2$ — область сжатия, образуемая ротовым отверстием $l_4 = 0,0015 \text{ м}$ — длина области сжатия;

Разработка модели звука «У»

 $S_1 = 7,06 \cdot 10^{-4} \,$ м $^2 \,$ — полость гортани; $l_1 = \, 0,114 \,$ м — длина полости гортани;

 $S_2 = 0.441 \cdot 10^{-4} \text{ м}^2 - \text{ область сжатия, образуемая спинкой языка; } l_2 = 0.03 \text{ м} - длина области сжатия;}$

 $S_3 = 12,56 \cdot 10^{-4} \, \text{м}^2 - \text{ротовая полость}; \, l_3 = 0,02 \, \text{м} - \text{длина}$ ротовой полости;

 $S_4 = 0.196 \cdot 10^{-4} \text{ м}^2$ — область сжатия, образуемая ротовым отверстием $I_4 = 0.01 \text{ м}$ — длина области сжатия;

Содержание отчета

- 1. Формула для расчета частотного отклика (зависимость полного сопротивления схемы от частоты) речевого тракта.
- 2. График зависимости полного сопротивления схемы от частоты (частотного отклика), рассчитанный в Matcad с отмеченными значениями резонансных частот (функция Trace).
- 3. Результаты расчета уравнения (1.5) в виде графика с отмеченными значениями резонансных частот.
 - 4. Выводы по п. 7 расчетной части.
- 5. Скриншоты звукового файла и его спектра (из программы Cool Edit).
- 6. График экспериментального массива данных и его спектра с отмеченными значениями резонансных частот.
 - 7. Выводы по п. 6 экспериментальной части.

Практическое занятие №2

«Основные свойства слуха»

Краткие теоретические сведения

Орган слуха человека является своеобразным приемником звука, резко отличающимся от приемников звука, создаваемых человеком.

Ухо человека обладает свойствами частотного анализатора, восприятием ПО частотному динамическому дискретным И (аналоговый звуковой диапазонам сигнал превращается последовательность электрических импульсов двоичного типа). Все эти операции осуществляются во внутреннем ухе, в так называемой улитке. В улитке находится основная (базилярная) мембрана, состоящая из большого числа волокон, слабо связанных между мембраны собой. Вдоль основной расположены нервные окончания, каждое из которых (а их свыше 20 000) возбуждается от прикосновения к ним волокон основной мембраны, посылая в слуховой центр мозга электрические импульсы. Там эти импульсы подвергаются сложному анализу, в результате которого человек определяет передаваемое сообщение.

Строение слухового аппарата

Слуховая система является своеобразным приемником информации и состоит из периферической части и высших отделов слуховой системы. Наиболее изучены процессы преобразования звуковых сигналов в периферической части слухового аппарата.

Периферическая часть состоит следующих частей:

- - Ушная раковина это акустическая рупорная антенна, принимающая, локализующая, фокусирующая и усиливающая звуковой сигнал;
 - - Среднее ухо микрофон;
 - - Внутреннее ухо частотный и временной анализатор;
- - Высшие отделы головного мозга аналога- цифровой преобразователь, преобразующий аналоговый сигнал в двоичные нервные импульсы- электрические разряды.

Общий вид периферической слуховой системы показан на рисунке 2.1.

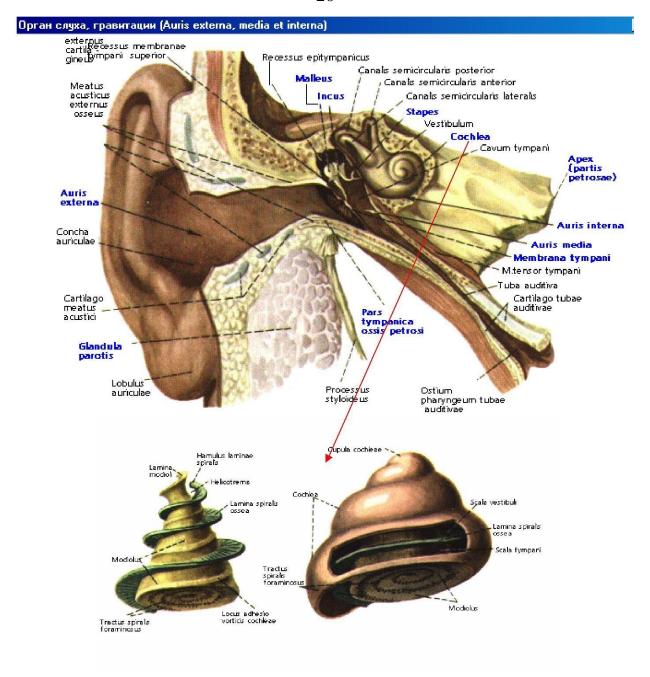


Рисунок 2.1 - Общий вид периферической слуховой системы

Обычно периферическую слуховую систему делят на три части: внешнее, среднее, внутреннее ухо.

Внешнее ухо состоит из ушной раковины и слухового канала, заканчивающегося тонкой мембраной, называемой барабанной перепонкой.

Внешние уши и голова это компоненты внешней акустической антенны, которая соединяет (согласовывает) барабанную перепонку с внешним звуковым полем. Основные функции внешних ушей - бинауральное (пространственное) восприятие, локализация

звукового источника и усиление звуковой энергии, особенно в области средних и высоких частот. Слуховой канал представляет собой изогнутую цилиндрическую трубку длиной 22,5 мм, которая имеет первую резонансную частоту порядка 2,6 кГц, поэтому в этой области частот он существенно усиливает звуковой сигнал, и именно здесь находится область максимальной чувствительности слуха. Барабанная перепонка - тонкая плёнка толщиной 74 мкм, имеет вид конуса, обращённого острием в сторону среднего уха. На низких частотах она движется как поршень, на более высоких - на ней образуется сложная система узловых линий, что также имеет значение для усиления звука.

Среднее ухо - заполненная воздухом полость, соединённая с носоглоткой евстахиевой трубой для выравнивания атмосферного давления. При изменении атмосферного давления воздух может входить или выходить из среднего уха, поэтому барабанная перепонка не реагирует на медленные изменения статического давления - спуск-подъём и т.п. В среднем ухе находятся три маленькие слуховые косточки: молоточек, наковальня и стремечко. Молоточек прикреплён к барабанной перепонке одним концом, вторым он соприкасается с наковальней, которая при помощи маленькой связки соединена со стремечком. Основание стремечка соединено с овальным окном во внутреннее ухо.

Среднее ухо выполняет следующие функции: согласование импеданса воздушной средой улитки внутреннего уха; защита от громких звуков (акустический рефлекс); усиление (рычаговый механизм), за счёт которого звуковое давление, передаваемое во внутреннее ухо, усиливается почти на 38 дБ по сравнению с тем, которое попадает на барабанную перепонку. Внутреннее ухо находится в лабиринте каналов в височной кости, и включает в себя орган равновесия (вестибулярный аппарат) и улитку.

Улитка играет основную роль в слуховом восприятии. Она представляет собой трубку переменного сечения, свёрнутую три раза подобно хвосту змеи. В развёрнутом состоянии она имеет длину 3.5 см. Внутри улитка имеет чрезвычайно сложную структуру. По всей длине она разделена двумя мембранами на три полости: лестница преддверия, срединная полость и барабанная лестница (рисунок 2.2)

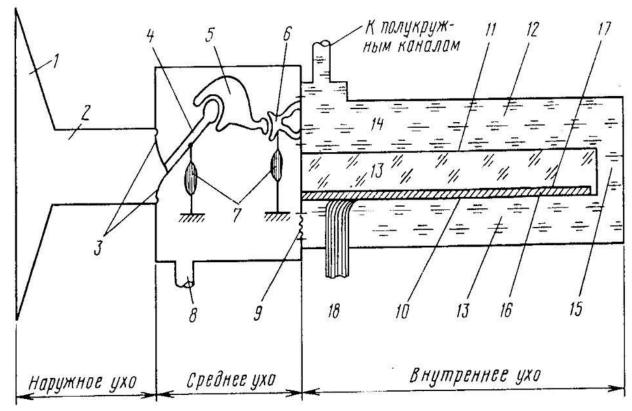


Рисунок 2.2 – Устройство органа слуха

1-ушная раковина; 2- слуховой проход; 3- барабанная перепонка; 4-молоточек; 5-наковальня; 6 - стремя; 7- мышцы; 8- евстахиева труба; 9- круглое окно; 10- основная мембрана; 11- мембрана Рейснера; 12- лестница преддверия; 13- эндолимфа; 14-перилимфа; 15- геликотрема; 16- кортиев орган; 17- покровная мембрана.

Сверху срединная полость закрыта мембраной Рейснера, снизу - базилярной мембраной. Все полости заполнены жидкостью. Верхняя и нижняя полости соединены через отверстие у вершины улитки (геликотрему). В верхней полости находится овальное окно, через которое стремечко передает колебания во внутреннее ухо, в нижней полости находится круглое окно, выходящее обратно в среднее ухо. Базилярная мембрана состоит из нескольких тысяч поперечных волокон: длина 32 мм, ширина у стремечка - 0,05 мм (этот конец узкий, легкий и жесткий), у геликотремы - ширина 0,5 мм (этот конец толще и мягче). На внутренней стороне базилярной мембраны находится орган Корти, а в нем - специализированные волосковые В рецепторы клетки. направлении орган Корти состоит из одного ряда внутренних волосковых клеток и трех рядов наружных волосковых клеток. Между ними образуется тоннель. Волокна слухового нерва

пересекают тоннель и контактируют с волосковыми клетками.

Слуховой нерв представляет собой перекрученный ствол, сердцевина которого состоит из волокон, отходящих от верхушки улитки, а наружные слои - от нижних ее участков. Войдя в ствол мозга, нейроны взаимодействуют с клетками различных уровней, поднимаясь к коре и перекрещиваясь по пути так, что слуховая информация от левого уха поступает в основном в правое полушарие, происходит главным образом обработка где эмоциональной информации, а от правого уха в левое полушарие, где в основном обрабатывается смысловая информация. В коре основные зоны слуха находятся в височной области, между обоими полушариями имеется постоянное взаимодействие.

Общий механизм передачи звука упрощенно может быть следующим образом: звуковые волны звуковой канал и возбуждают колебания барабанной перепонки. Эти колебания через систему косточек среднего уха передаются овальному окну, которое толкает жидкость в верхнем отделе улитки (лестнице преддверия), в ней возникает импульс давления, который заставляет жидкость переливаться из верхней половины в нижнюю через барабанную лестницу и геликотрему и оказывает давление наперепонку круглого окна, вызывая при этом его смещение в сторону, противоположную движению стремечка. Движение жидкости вызывает колебания базилярной мембраны Преобразование волну). механических колебаний мембраны в дискретные электрические импульсы нервных волокон органе Корти . Когда базилярная В вибрирует, реснички на волосковых клетках изгибаются, и это генерирует электрический потенциал, что вызывает поток нервных электрических импульсов, несущих всю необходимую информацию звуковом о поступившем сигнале дальнейшей В мозг ДЛЯ переработки и реагирования.

Восприятие по частоте

Каждое из волокон основной мембраны резонирует на вполне определенной для него частоте. Сложный звук, состоящий из ряда частотных составляющих, вызывает колебания ряда волокон соответственно частотам составляющих. На рисунке 2.3 приведен схематический разрез улитки основной мембраны, по оси абсцисс

дано расстояние (в миллиметрах) от начала улитки до волокон основной мембраны, там же указаны частоты, на которые отзываются эти волокна. Частоты ниже 60 Гц воспринимаются по гармоникам. Ha рисунке 2.4 субъективным приведена эквивалентная электрическая модель слухового анализатора. В ней параллельных звеньев — резонаторов, соответствующих последовательные волокнам мембраны; индуктивности соответствуют соколеблющейся массе лимфы. Ток в параллельных звеньях соответствует скорости колебаний волокон. На рисунке приведены числовые значения элементов модели. Модель показала хорошее соответствие реальной слуховой улитке.

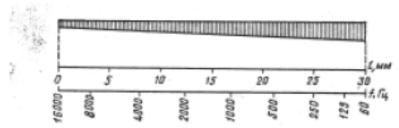
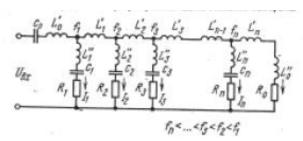



Рисунок 2.3 – Продольный разрез улитки вдоль основной мембраны

Рисунке 2.4 – Эквивалентная электрическая схема улитки

В таблице 2.1 приведены величины средних значений звукового давления, создаваемого музыкальными инструментами для отрывков исполнения длительностью 15 с.

Таблица 2.1 - Величины средних значений звукового давления

	,		1	Ì	1) 0		
№	Инструмент	Расстояние, м	Среднее звуковое давление, Па	Пик-фактор, дБ	Пиковое значение мощности излучения, вт	Область наивысших пиковых значений, Гц	Пиковое значение в пределах полосы наибольшей мощности,
1	Большой барабан 90×38 см						
	Проба А	0,9	9,9	10	24,6	250-500	9,8
	1	,	,		,	20-62,5	0,24
	Проба Б	0,9	2,78	7,7	1,2	250-500	0,19
2	Большой барабан			1		l	1
	75×30 см	0,9	3,5	16	13,4	125-250	1,7
	85×48 см	0,9	6,6	5,8	4,9	20-62,5	1,2
3	Барабан военный	1,2	1,46	20, 5	11,9	250-500	3,7
4	Цимбалы 37 см	0,9	1,8	-	9,5	8000- 11300	0,95
5	Треугольник	0,9	0,23	-	0,05	5600-8000	0,017
						62,5-125	0,078
6	Контрабас	1,5	0,42	10, 8	0,156	125-250	0,078
7	Бас-саксафон	1,05	0,41	16, 6	0,288	250-500	0,228
8	Бас-труба	1,5	0,54	9,7	0,206	250-500	0,082
9	Тромбон	0,9	0,65	17, 5	6,4	600-700	0,064
						2000-2800	0,051
1 0	Труба	0,9	0,86	12	0,314	250-500	0,047
				_		500-700	0,047
1 1	Английский рожок	0,9	0,38	11,	0,053	250-500	0,053
1	Кларнет	0,9	0,35	11,	0,05	250-500	0,0053

2				5			
1	Флейта	1,05	0,16	-	0,0555	700-1000	0,0045
3					,		,
						1400-2000	0,0045
1	Пикколо	1,05	0,22	-	0,084	2000-2800	0,021
4							
1	Рояль	3,0	0,26	9,8	0,267	250-500	0,267
5							
					0,248	250-500	0,248
1	Орган	3,6	0,21	13,	0,35	250-500	0,11
6				2			
1	Орган	3,6	2,0	8,7	12,6	20-62,5	2,5
7	фортиссимо						
1	Оркестр из 15	$ 4,0^{1} $	0,79	14,	9,0	250-500	0,45
8	инструментов			3			
				1		2000-2800	0,32
1	Оркестр из 18	4,0	0,66	10,	2,5	250-500	0,8
9	инструментов			3		2000 2000	
	0 75					2000-2800	-
2	Оркестр из 75						
0	инструментов	1.52	0.51	1.7	0.2	125 250	0.92
	Проба А	$4,5^2$	0,51	17,	8,2	125-250	0,82
				7		250.500	1.02
						250-500	1,03
	Προδο D	4,5	0.46	27	66.5	2000-2800	1,03
	Проба В	4,3	0,46	27,	66,5	250-500	0,7
				O		8000-	5,3
						12000	3,3
	Проба С	4,5	0,47	21,	13,9	250-500	1,4
	Tipoou C	7,5	0,-1	$\begin{bmatrix} 21, \\ 2 \end{bmatrix}$	10,7	250 500	1,7
				-		2000-2800	1,4
	Проба D	4,5	0,66	24,	13,8	125-250	1,7
	1			1	, -		,
						250-500	1,7
						2000-2800	1,7

 $^{^{1}}$ Пульт дирижера 2 Пульт дирижера

Задание

Смоделировать частотный отклик улитки с использованием пакета MicroCap. Для чего выполнить следующее:

- 1. Выбрать из таблицы 2.1 инструмент, для которого будет рассчитываться отклик.
- 2. В соответствии с частотным диапазоном наивыеших значений звукового давления и используя рисунке 2.2 определить расстояние (в миллиметрах) от начала улитки до волокон основной мембраны, соответствующее данному диапазону.
- 3. Считая, что 30 мм улитки (вся длина) моделируется 140 звеньями в частотном диапазоне 60-16000 Гц, определить номера (k) и количество звеньев, соответствующих заданному частотному диапазону.
- 4. Составить эквивалентную схему участка улитки, используя рисунок 2.2. Рассчитать в MathCAD параметры эквивалентной схемы, где k номер звена.

$$\begin{split} L_k' &= 24,02 \cdot 10^{-3} \cdot e^{0,0029k} \; \Gamma \text{H}; \quad L_k'' = 75,12 \cdot 10^{-3} \cdot e^{0,0029k} \; \Gamma \text{H}; \\ C_k &= 553 \cdot 10^{12} \cdot e^{0,05k} \; \Phi; \quad R_k = 5,825 \cdot 10^3 \cdot e^{-0,013k} \; \text{Om}; \\ L_0'' &= 0,067 \; \Gamma \text{H}; \\ R_0 &= 70,957 \; \text{Om} \end{split}$$

5. Составить полученную схему в программе Містосар и смоделировать частотный и временной отклик. Использовать в качестве источника звука генератор шумового сигнала.

Содержание отчета

- 1. Расчет количества звеньев и их номеров.
- 2. Расчет параметров звеньев в программе MathCAD.
- 3. Электрическая эквивалентная схема улитки, выполненная в программе Microcap.
- 4. Графики частотной характеристики схемы и временного отклика.

Практическая работа №3

«Моделирование электрического генератора сердца»

Краткие теоретические сведения

Расчет параметров электрокардиограммы желудочкового комплекса

Рассмотрим работу дипольного эквивалентного генератора (ДЭЭГС) сердца электрического процессе электрической систолы. Будем считать, что сердце обладает активным сопротивлением R, индуктивностью L и емкостью C. Рассмотрим в качестве модели три взаимно перпендикулярных расположенных колебательных фронтальной, контура, во горизонтальной и саггитальной плоскостях, рисунок 3.1. ЭДС Е во всех контурах одинаковы. Для желудочков непосредственным водителем ритма является атриовентрикулярный узел. Так как в процессе кардиоцикла происходит изменение емкости C, связанной с циклической частотой, то электрические колебания в ДЭЭГС носят параметрический характер.

Рассмотрим работу сердца как электрического генератора в процессе электрической систолы.

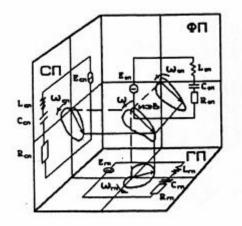


Рисунок 3.1 - Электрическая схема дипольного эквивалентного электрического генератора сердца

В любой плоскости зависимость дипольного момента D ИЭВ от угла поворота q определяется дифференциальным уравнением:

$$\frac{\mathrm{d}^2 \mathrm{D}}{\mathrm{d}\theta^2} + \mathrm{D} = \mathrm{C}_1,\tag{3.1}$$

где C_1 – постоянная величина.

Решением этого уравнения является зависимость вектора дипольного момента от угла поворота и времени, которое удобно записать в виде:

$$D = A \sin^{2}(\theta + \phi)/2 + B \cos^{2}(\theta + \phi)/2.$$
 (3.2)

В формуле (3.2) А и В – постоянные интегрирования, так что $C_1 = (A+B)/2$. Угол ϕ – это угол наклона электрической оси сердца (ЭО) или оси петель вектор электрокардиограммы. На рисунке 3.2 показана вектор-электрокардиограмма петель QRS и Т, построенная по формуле (3.2). Угол ϕ принят равным 2,3 рад, что примерно соответствует норме. На рисунке 3.2 также показаны начала отсчетов углов ϕ и ϕ . Положительным считается направление против часовой стрелки. Значения постоянных A и B будут определены в дальнейшем.

Существует также метод регистрации проекций пространственной кривой на выделенной плоскости — вектор-электрокардиография (ВЭКГ).

Рассмотрим работу ДЭЭГС. Будем считать, что сердце обладает активным сопротивлением R, индуктивностью L и емкостью C. Схему ДЭЭГС представим в виде контура с последовательно включенными R, L, C и источником тока с ЭДС E, закон изменения которого отражает работу водителя ритма, рисунок 3.2. Для желудочков непосредственным водителем ритма является атриовентрикулярный узел.

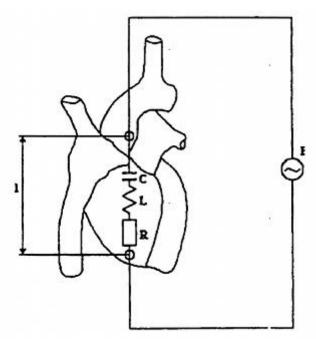


Рисунок 3.2 - Электрическая схема дипольного эквивалентного электрического генератора сердца

Уравнение Кирхгофа для мгновенных значений напряжений в контуре имеет вид:

$$U_r + U_i + U_c = E,$$
 (3.3)

где в левой части сумма напряжений на соответствующих сопротивлениях. Используя известные выражения, связывающие эти напряжения и ток i, получим:

$$IR + \frac{d(L_i)}{dt} + \int \frac{idt}{C} = E.$$
 (3.4)

Активное сопротивление миокарда определяется прежде всего сопротивлением цитоплазмы и межклеточной жидкости, поэтому его ОНЖОМ считать постоянным течение кардиоцикла. В Индуктивность возбудимой мембраны существует только во время возбуждения и связана со спиральным движением ионов в ионных каналах. Поэтому сложно предположить, что эволюционно мог сформироваться механизм активной регуляции индуктивности. индуктивность сердца величиной постоянной. Будем считать Продифференцируем (3.4) по времени t:

$$L\frac{d^2i}{dt^2} + R\frac{di}{dt} + \frac{i}{C} = \frac{dE}{dt}.$$
 (3.5)

Поделив уравнение (3.5) на L, и обозначив $w_0 = 1/(LC)^{1/2}$ собственную частоту колебаний тока в ДЭЭГС, найдем:

$$\frac{d^{2}i}{dt^{2}} + \frac{R}{L}\frac{di}{dt} + w_{0}^{2}i = \frac{1}{L}\frac{dE}{dt}.$$
 (3.6)

Уравнение (3.6) описывает вынужденные колебания нелинейного осциллятора, так как собственная частота колебаний сердца может изменяться за счет изменения емкости С.

Будем искать решение этого уравнения путем умножения его на произвольную функцию f(t):

$$f(t)\frac{d^{2}i}{dt^{2}} + f(t)\frac{R}{L}\frac{di}{dt} + w_{0}^{2}f(t)i = \frac{1}{L}\frac{dE}{dt}f(t). \quad (3.7)$$

Подчиним функцию f(t) условию:

$$f(t)\frac{d^{2}i}{dt^{2}} + f(t)\frac{R}{L}\frac{di}{dt} = \frac{d}{dt}\frac{dE}{dt}\left(f(t)\frac{di}{dt}\right).$$

Из которого следует:

$$f(x) = \exp\left(\int \frac{R}{L} dt\right). \tag{3.8}$$

Уравнение (3.7) после умножения на f(t) принимает вид:

$$f(t)\frac{d}{dt} + \left(f(t)\frac{di}{dt}\right) + \left(wf(t)\right)^{2}i\frac{1}{L}\frac{dE}{dt} = \frac{1}{L}\frac{dE}{dt}f(t)^{2}.$$
 (3.9)

Введём новую переменную по формуле:

$$d0 = \frac{dt}{f(t)}. (3.10)$$

Исходя из уравнения (3.9), функция f(t) имеет размерность, обратную циклической частоте. Поэтому обозначим эту функцию $f(t) = 1/w\partial$.

Умножим уравнение (3.9) на расстояние между истоком и стоком ДЭЭГС и перепишем его в новых обозначениях:

$$\frac{1}{w_{\partial}} \frac{d}{dt} \left(\frac{1}{w_{\partial}} \frac{dD}{dt} \right) + \left(\frac{w_0}{w_{\partial}} \right)^2 D = \frac{1}{w_{\partial}^2 L} \frac{dE}{dt}, \quad (3.11)$$

где D=il, а функция q в соответствии с (3.10) представляет собой угол поворота вектора ДЭЭГС, который вращается с циклической частотой $w\partial$.

В соответствии с (3.8) временная зависимость $w\partial$, учитывая, что R и L – постоянные величины, имеет вид

$$\mathbf{w}\partial - \mathbf{w}\mathbf{t}_0 \cdot \exp[-\mathbf{R}(\mathbf{t} - \mathbf{t}_0)/\mathbf{L}], \tag{3.12}$$

где ${\rm wt}_0$ — циклическая частота вращения вектора ДЭЭГС в момент времени ${\rm t}_0$.

Падение потенциала водителя ритма, состоящего из атипичных миокардиальных волокон, а следовательно, и dE/dt в интервале Q-T происходит по экспоненциальному закону. Поэтому можно предположить, что в правой части уравнения (3.11) стоит величина, близкая к постоянной. Обозначая эту величину C1, а также учитывая, что $dq=w_{\partial}dt$, из (3.11) получаем уравнение:

$$\frac{\mathrm{d}^2 \mathrm{D}}{\mathrm{d}\theta^2} + \left(\frac{\mathrm{w}_0}{\mathrm{w}_{\partial}}\right)^2 \mathrm{D} = \mathrm{C}_1. \tag{3.13}$$

Кроме того, естественно предположить, что в процессе эволюции электрические параметры миокарда сформировались таким образом, что собственная частота \mathbf{w}_0 сравнялась с частотой

 w_{∂} вращения вектора D дипольного момента ДЭЭГС. Тогда уравнение (3.13) принимает вид:

$$\frac{d^2D}{d\theta^2} + D = C_1. {(3.14)}$$

Решением этого уравнения является зависимость вектора дипольного момента от угла поворота и времени:

$$D = C_1 + C_2 \cos(\theta + \varphi) = C_1 + C_2 \cos(\int_0^t w_{\partial} dt + \varphi), \quad (3.15)$$

где ф – начало отсчета угла поворота вектора D.

Подставляя в (3.15) формулу (3.12), получаем зависимость величины вектора D от времени:

$$D = C_1 + C_2 \cos\{(w_{t0}L/R)[1 - \exp(-R(t - t_0)/L)] + \varphi\}. (3.16)$$

На рисунке 3.3 показана зависимость вектора D от угла поворота, построенная по формуле (3.15). Значение C_1 принято равным $1 \cdot 10^{-5}$ Ам, величина $C_2 = 1.7 \cdot 10^{-5}$ Ам, угол $\phi = 2,3$ рад. Из рисунка видно, что вектор ДЭЭГС описывает две петли. Сначала петлю QRS, отражающую деполяризацию желудочков, затем петлю T, описывающую их реполяризацию. Для предсердий нужно решать отдельную электродинамическую задачу по аналогии с представленной в данной работе задаче для желудочков.

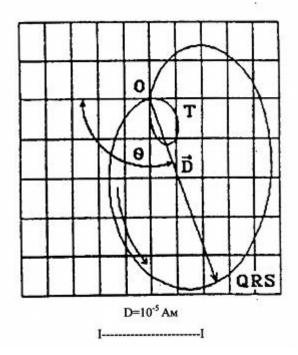


Рисунок 3.3 - Вектор-электрокардиограмма комплекса QRST, построенная в полярных координатах D(q)

Зависимость вектора D от времени, построенная по формуле (3.16), показана на рисунке 3.4. Принято, что в момент времени t_0 =64 мс циклическая частота вращения вектора ДЭЭГС wt₀=29 рад/с. Отношение R/L принято равным 6 с-1. В этих условиях цикл QRST составляет 360 мс. Из рисунке 3.4 видно, что вектор Dсначала растет, падает отражает a затем ДО нуля, ЧТО деполяризацию желудочков. После этого он меняет свой знак, и последующее его изменение отражает реполяризацию желудочков сердца.

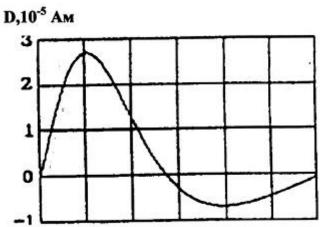


Рисунок 3.4 - Расчет зависимости дипольного момента интегрального электрического вектора сердца от времени

На рисунке 3.5 показана модельная линейная ЭКГ, построенная по формуле:

$$U(t) = U_0 D(t) \cos q, \qquad (3.17)$$

где принято U_0 =0,5 В/Ам. Угол ϕ , определяющий поворот ВЭКГ на рисунке 3.2, для данного графика принят равным 3,1 рад для более яркого проявления всех зубцов ЭКГ в интервале QRST.

Изменение емкости, индуктивности и активного сопротивления как всего миокарда, так и отдельных его частей, которое наблюдается при патологии, приводит к изменению формы и размеров петель ВЭКГ. Поэтому замер таких параметров ДЭЭГС, как R, L, C может иметь диагностическое значение.

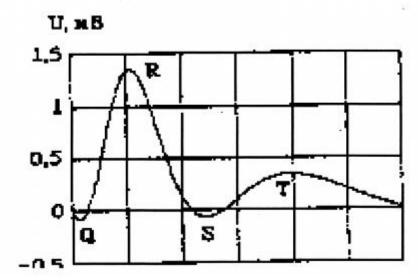


Рисунок 3.5 - Модельная электрокардиограмма для электрической систолы

В заключение можно отметить, что сердце работает на основе баланса между формой потенциала водителя ритма dE/dt и возбуждения. емкости процессе изменением миокарда В Циклические изменения емкости, а следовательно, и собственная частота колебаний ДЭЭГС $w_0 = 1/(LC)^{1/2}$ должны соответствовать работе водителя ритма. В противном случае происходит развитие патологических процессов В сердце, которые находят отражение на электрокардиограмме.

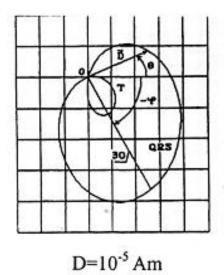


Рисунок 3.6 - Вектор-электрокардиограмма комплекса QRST, построенная в полярных координатах D(q)

Проектируя на линию отведения петли рисунке 3.6 (в данном случае выбрано горизонтальное направление отведения), можно построить линейную электрокардиограмму (ЭКГ) по формуле:

$$U = kD\cos\theta = \left(R\frac{\cos^2(\theta + \phi)/2}{\cos\phi} - T\frac{\sin^2(\theta + \phi)/2}{\cos\phi}\right)\cos\theta. \quad (3.18)$$

На рисунке 3.6 видна связь проекций длин главных осей петель QRS и T равных соответственно B и A на линию отведения с амплитудами зубцов линейной ЭКГ R и T. Рисунок 3.6 построен для длин главных осей петель $B = 2.0 \cdot 10^{-5}$ Aм, $A = B/(R/T) = 0.67 \cdot 10^{-5}$ Aм. Амплитуды зубцов ЭКГ приняты: R = 1.5 мB, T = 0.5 мВ.

Циклическая частота вращения ИЭВ зависит от времени по закону:

$$w = wt_0 \cdot exp[-R(t-t_0)/L],$$
 (3.19)

где ${\rm wt}_0$ – циклическая частота вращения вектора ДЭЭГС в момент времени ${\rm t}_0$. То, что данное изменение угловой скорости (рисунок 3.7) отражает экспериментальный факт можно косвенно судить по известному отношению времен реполяризации и деполяризации

желудочков. Отношение этих времен, т.е. длительностей зубца Γ и комплекса QRS, лежит в диапазоне 1,3-2,7. Это указывает на снижение угловой скорости вращения вектора ДЭЭ Γ С.

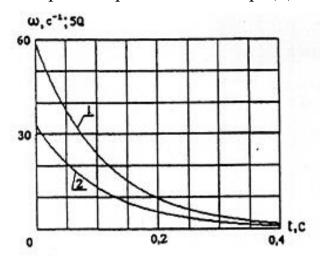


Рисунок 3.7 - Зависимость циклической частоты вращения вектора *D* и добротности Q от времени в процессе электрической систолы. 1 -циклическая частота вращения w, 2 - добротность «электрического сердца» Q

Так как w=dq/dt, то зависимость угла поворота вектора от времени можно найти по формуле:

$$q = Q_0[1 - \exp(-R(t - t_0)/L)] - \varphi, \qquad (3.20)$$

где $Q_0 = \operatorname{wt}_0 L/R$ — добротность эквивалентного контура в момент времени t_0 , ϕ — угол, под которым направлена главная ось петли QRS(электрическая ось сердца ЭО) (рисунок 3.6). Добротность, естественно, не является постоянной величиной в процессе кардиоцикла. Учитывая (3.19), можно видеть, что в процессе электрической систолы она падает по закону:

$$Q = wL/R = Q_0 \cdot \exp[-R(t - t_0)/L]. \tag{3.21}$$

К сожалению, традиционно зубец Q, и величина добротности обозначаются одной буквой. Это же относится к зубцу R и величине сопротивления. Предполагается, что это не вызовет затруднений. На рисунке 3.7 показаны графики изменений

циклической частоты w_0 и добротности Q в зависимости от времени. Графики построены для R/L=9 с $^{-1}$ и $Q_0=4,4($ wt $_0=Q_0R/L=40$ рад/с).

На рисунке 3.8 показаны зависимости дипольного момента D, cosq и линейной ЭКГ U от времени, построенные по формулам (3.2), (3.18) и (3.19) для вышеуказанных значений величин R, T, Q_0 , R/L при φ=0 (т.е. электрическая ось сердца совпадает с линией характерно что наиболее ДЛЯ нормы стандартного отведения). Из графиков видно, что положительные значения зубцов R и T определяются одинаковыми знаками величин D и cosq в то время как отрицательные значения зубцов Q и S – разными знаками. Параметры подбирались таким образом, чтобы ЭКГ соответствовала норме. Так как при $t=t_0$ в соответствии с (3.20) $q=\phi$, то из (3.18) получаем U=R, следовательно, t_0 -это время достижения максимума зубца R.

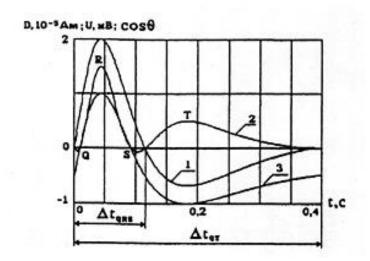


Рисунок 3.8. Анализ формирования комплекса QRST электрокардиограммы. 1 - дипольный момент интегрального

Задание:

Используя исходные данные из таблицы рассчитать, используя программу Mathcad, электрический генератор сердца.

- 1. Построить график D(Q) в полярных координатах по двум формулам (3.2) и (3.15). Сравнить.
- 2. Построить график D(t) в прямоугольных координатах по формуле (3.16).
- 3. Построить график U(t) в прямоугольных координатах по формулам (3.17) и (3.18). Сравнить.

- 4. Построить графики Q(t), Q(t) в прямоугольных координатах по формулам (3.20) и (3.21). Сравнить.
- 5. Построить график w(t) в прямоугольных координатах по формуле (3.12).
- 6. Построить на одном графике D(t), $\cos Q(t)$ и U(t) при j=0. Из графиков определить времена D(t)QRS, D(t)QT, D(t)RT, D(t)R.

Номер строки – номер варианта

Таблица 1 – Исходные значения к расчету

	Гаолица I — Исходные значения к расчету										
	C_1 , AM, 10^{-5}	C_2 , AM, 10^{-5}	ф, рад	t_0 , MC	\mathbf{w}_0 , рад/с	$R/L c^{-1}$	$k = U_0, B/A$	$A, Am, 10^{-5}$	$B, Am, 10^{-5}$	R, мВ	Т, мВ
1	1,00	-1,70	2,30	64,00	29,00	6,00	0,50	0,67	2,00	1,50	0,50
2	1,10	-1,80	2,40	65,00	30,00	7,00	0,54	0,70	2,20	1,80	0,80
3	0,90	-1,90	2,50	66,00	31,00	8,00	0,37	0,80	2,10	1,90	0,90
4	1,05	-1,60	2,70	67,00	30,50	9,00	0,46	0,90	2,40	1,60	0,60
5	1,20	-1,10	3,14	69,00	29,50	6,50	0,67	0,65	2,90	1,10	0,10
6	0,98	-1,50	1,50	45,00	31,50	7,50	0,29	0,75	2,50	1,50	0,50
7	0,75	-1,40	2,60	43,00	28,00	8,50	0,75	0,85	2,60	1,40	0,40
8	0,95	-1,30	2,90	47,00	28,50	9,50	0,87	0,95	2,70	1,30	0,30
9	1,03	-1,20	2,15	49,00	27,00	6,10	0,57	0,61	2,80	1,20	0,20
10	1,04	-2,00	3,10	51,00	27,00	6,20	0,32	0,62	2,00	2,00	1,00
11	1,20	-1,25	3,05	50,00	26,00	6,80	0,52	0,68	2,75	1,25	0,25
12	1,14	-1,56	1,57	52,00	25,00	7,30	0,47	0,73	2,44	1,56	0,56
13	0,84	-1,72	1,60	56,00	24,00	7,50	0,84	0,75	2,28	1,72	0,72
14	0,73	-2,04	1,80	59,00	35,00	7,90	0,73	0,79	1,96	2,04	1,04
15	1,11	-2,36	1,95	39,00	36,00	8,20	0,41	0,82	1,64	2,36	1,36
16	1,17	-2,07	2,10	32,00	32,40	8,40	0,86	0,84	1,93	2,07	1,07
17	1,08	-2,09	2,05	35,00	35,80	8,80	0,71	0,88	1,91	2,09	1,09
18	1,30	-1,74	2,85	37,00	28,20	9,20	080	0,92	2,26	1,74	0,74
19	1,06	-1,83	2,64	38,00	29,70	9,30	0,40	0,93	2,17	1,83	0,83
20	1,13	-1,94	2,43	87,00	30,10	6,45	0,21	0,65	2,06	1,94	0,94
21	1,05	-1,82	2,74	89,00	31,70	7,92	0,63	0,79	2,18	1,82	0,82
22	1,07	-2,06	2,83	81,00	32,80	8,12	0,69	0,81	1,94	2,06	1,06
23	0,94	-2,50	2,47	82,00	33,50	9,05	0,77	0,91	1,50	2,50	1,50
24	0,97	-1,47	2,53	93,00	29,40	7,53	0,51	0,73	2,53	1,47	0,47
25	0,89	-1,78		95,00	28,10	10,00	0,60	1,00	2,22	1,78	0,78