Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 25.09.2022 14:10:35

Уникальный программный ключ: 9ba7d3e34c012eba476ffd2d064cf2781953be730df2374d16f3c0ce536f0fc6

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра охраны труда и окружающей среды

КАЧЕСТВЕННАЯ ОЦЕНКА ДЕРЕВЬЕВ ОТКАЗОВ

Методические указания для выполнения практической работы по дисциплине «Надёжность технических систем и техногенный риск» для студентов, обучающихся по направлению «Техносферная безопасность»

УДК 658.34:621.3

Составители: В.И. Томаков, М.В. Томаков

Рецензент

Кандидат технических наук, доцент А.В. Беседин

Качественная оценка деревьев отказов: методические указания для выполнения практической работы по дисциплине «Надёжность технических систем и техногенный риск» для студентов, обучающихся по направлению «Техносферная безопасность» / Юго-Зап. гос. ун-т; сост.: В.И. Томаков, М.В. Томаков. — Курск, 2017. — 16 с.

Изучается логический метод оценки дерева отказов. Метод используется для прогнозирования появления нежелательных сочетаний элементарных исходных событий, которые обязательно приводят к появлению завершающего события в дереве отказов.

При выполнении практической работы у обучающихся формируется компетенция: способностью оценивать риск и определять меры по обеспечению безопасности разрабатываемой техники (ПК-3).

Методические указания предназначены для студентов, обучающихся по направлению «Техносферная безопасность» всех форм обучения.

Текст печатается в авторской редакции

Подписано в печать 2017 г. Формат 60х84 1/16. Усл. печ. л. . Уч. изд. л. . Тираж экз. Заказ 1140. Бесплатно. Юго-Западный государственный университет 305040, г.Курск, ул. 50 лет Октября, 94.

Цель практической работы:

- изучить методику качественной оценки наступления завершающего события в дереве отказов;
- приобретение практических навыков, необходимых для качественной оценки дерева отказов.

Указания к выполнению практической работы

Законспектируйте содержание основных положений порядка качественной оценки дерева отказов, основные понятия, а также алгоритм действий и необходимые для выполнения работы правила.

Выполните задания по указанию преподавателя.

Ответьте письменно на вопросы и задания по указанию преподавателя.

Отчет о выполненной работе

- 1. Конспект, включающий:
- основные понятия о методе качественной оценки дерева отказов;
 - основные понятия метода;
- основные положения и алгоритм качественной оценки дерева отказов.
 - 2. Необходимые схемы и преобразования.
 - 3. Письменные ответы на контрольные вопросы и задания.

Работа должна быть выполнена собственноручно.

Отчет следует предоставить на сброшюрованных листах формата А4 или в отдельной ученической тетради.

Схемы следует выполнять, используя чертежные шаблоны или инструменты.

1 Задачи качественной оценки дерева отказов

Отказ технической системы может произойти различными путями. Каждый отличающийся от других путь есть вид отказа системы, включающий отказ одного или нескольких элементов системы. С целью уменьшения возможности отказа системы необходимо выявить виды отказов и затем установить наиболее часто повторяющиеся (случающиеся) или наиболее вероятные из них.

Качественная оценка позволяет выполнить идентификацию событий или комбинации событий, ведущих к вершине дерева отказов завершающему нежелательному событию.

Качественная оценка дерева отказов даёт наглядное представление о поведении технической системы в плане надежности, так как помогает выявлять сочетания исходных отказов элементов системы, которые обязательно или с большой вероятностью могут привести к нежелательному завершающему событию, а также установить наиболее часто встречающиеся элементы, из-за отказа которых произойдёт общий отказ всей системы.

Качественный анализ позволяет конструкторам, пользователям и руководителям обосновать конструктивные изменения в плане безопасности, облегчает анализ надежности сложных систем.

2 Метод качественной оценки дерева отказов - метод «Минимальных аварийных сочетаний»

Качественная оценка основана на использовании т.н. минимальных сечений дерева отказов. Сечение определяется как минимальное количество элементарных событий, образующих сочетания, приводящих к нежелательному исходу - событию.

Если из множества событий, принадлежащих некоторому сечению, нельзя исключить ни одного события, и в то же время это множество событий из сочетаний приводит к нежелательному исходу, то в этом случае говорят о наличии минимального сечения или минимального аварийного сочетания исходных событий. Поэтому этот метод называют методом «Минимальных аварийных сочетаний» - МАС.

Метод МАС дает возможность сократить число аварийных сочетаний и число исходных событий, входящих в каждое аварийное сочетание. Это упрощает проведение анализа ДО, в т.ч. количественного.

Рассматриваемый метод качественной оценки дерева отказов основан на использовании так называемых минимальных аварийных сочетаний (сечений) дерева отказов (МАС). Поэтому введем понятия: «сечение», «сочетание», «минимальное сечение», «минимальное аварийное сочетание».

Сочетание (сечение) - это совокупность основных событий, осуществление которых вызывает наступление завершающего события.

Сочетание (сечение) называется минимальным, если число принадлежащих ему событий не может быть уменьшено, и оно попрежнему приводит к наступлению завершающего события.

Сочетание (сечение) определяется как некоторое множество основных исходных событий всех видов, осуществление которых вызывает наступление завершающего события.

Минимальное аварийное сочетание - это определенный наименьший набор исходных событий; если все эти исходные события случаются, существует гарантия, что конечное событие в дереве отказов происходит.

3 Алгоритм качественной оценки дерева отказов

Алгоритм логической оценки ДО учитывает правило, что любое событие на входе логических схем **И**, **И**Л**И** вызывает появление одного события на её выходе. Поэтому все события на входе схем **И**, **И**Л**И** являются элементами отдельных сечений. Поэтому в ряде случаев качественную оценку дерева отказов называют логической.

Алгоритм логической оценки ДО учитывает тот факт, что логическая схема **ИЛИ** всегда увеличивает число (количество) сочетаний (сечений), а логическая схема **И** всегда увеличивает размер сочетания (сечения) за счет увеличения числа входящих в сочетание исходных элементарных событий.

Алгоритм работает следующим образом.

- 1. Присвоить буквенный символ каждому логическому знаку.
- 2. Пронумеровать каждое исходное событие.
- 3. Отыскать самый верхний логический элемент. Анализ выполняется сверху вниз. Это будет первая строка первого столбца матрицы.

- 4. Последовательно, методом итераций выполнить один из двух типов основных перестановок (а) или (б) по порядку сверху вниз:
- а) логические знаки **ИЛИ** заменить построениями вертикального типа входов в эти логические знаки (столбец) и увеличить число аварийных сочетаний;
- б) логические знаки **И** заменить построениями горизонтального типа входов в эти логические знаки (строка) и увеличить размеры аварийных сочетаний.
- 5. Когда все логические знаки заменены исходными событиями, следует получить минимальные аварийные сочетания, удалив повторяющиеся аварийные сочетания (в случае их наличия).

Пример 1. Рассмотрим работу алгоритма для гипотетического дерева отказов, приведенного на рисунке 1. Этот пример будет полезен для понимания практических основ работы этого алгоритма.

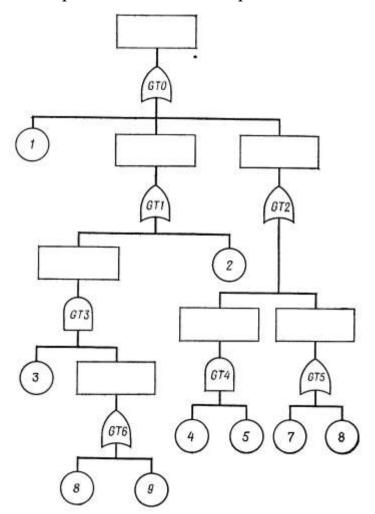


Рисунок 1 - Гипотетическое дерево отказов

Событие 6, согласно правилам построения ДО, исключено ввиду малого значения вероятности его появления ($P \times 10^{-8}$) за время t.

Логическим знакам и исходным событиям этого дерева отказов уже присвоены необходимые обозначения.

Работа алгоритма начинается с логического узла GT0, изображенного под прямоугольником в ДО, который соответствует завершающему событию. Он расположен в самом верху.

GT0

Этот логический узел GT0 конечного события является схемой **ИЛИ**. Поэтому каждый её вход соответствует элементу определенной строки матричного списка. Составление матричного списка начинается с записи выходных событий 1, GT1 и GT2 на входе в GT0 в одном столбце, но в разных строках, т.е. с замены GT0 (шаг 1):

1 GT1 шаг 1 GT2

Чтобы получить полный матричный список, заменяем схему **ИЛИ** GT1 событиями на ее входе, которые записываются в отдельные строки, как показано ниже (шаг 2):

1 GT3 2 GT2

Аналогично заменяем схему GT2 событиями на ее входе (шаг 3):

1 GT3 2 GT4 GT5

Точно так же поступаем и со схемой GT3. Поскольку это схема **И**, то она заменяется событиями на ее входе построениями горизонтального типа входов (по строке) в этот логический знак (шаг 4):

1		
3	GT6	шаг 4
2		
GT4		
GT5		

Аналогично схема GT4 заменяется событиями на ее входе (шаг 5):

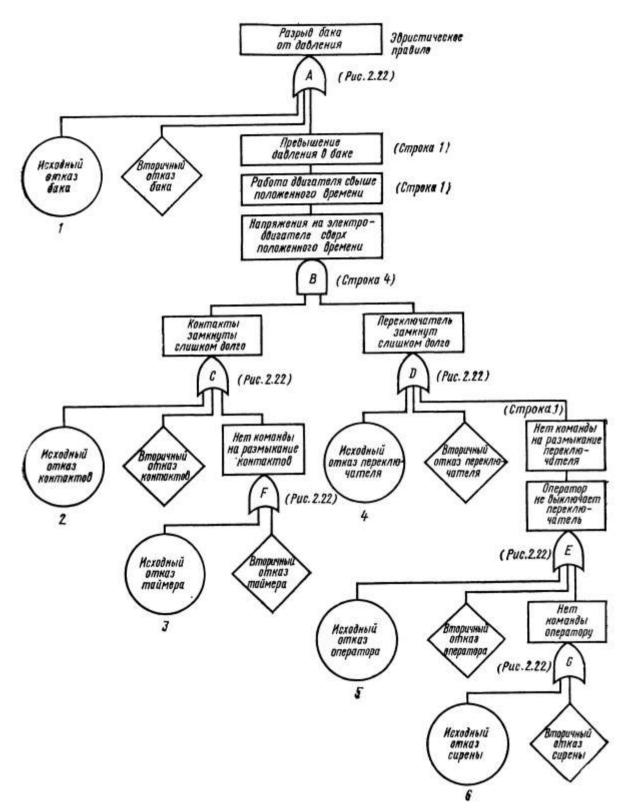
Поскольку схема GT5 является схемой **ИЛИ**, она заменяется входными событиями, 7, 8 (шаг 6):

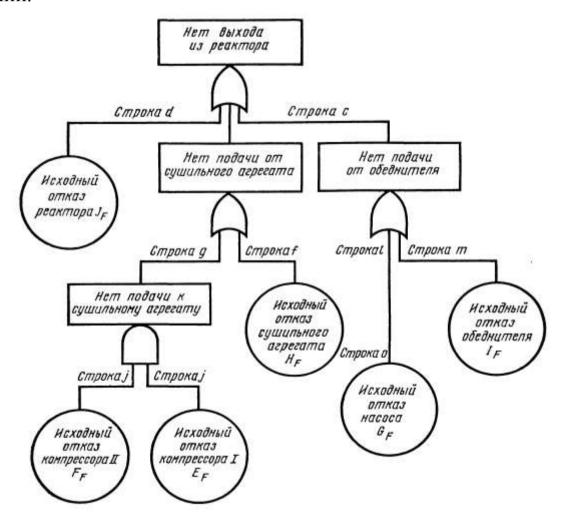
Логический узел $G\overline{16}$ также представляет собой схему **ИЛИ**, которая заменяется событиями 8 и 9 на ее входе (шаг 7):

Как видно из полученного матричного списка, сочетание {8} содержит единственное исходное событие. Если это нежелательное событие произойдет, то, невзирая на то, что имеется сечение {3, 8}, обязательно произойдёт головное событие, например отказ всей системы, авария и т.п. Поэтому, исключая сечение {3, 8}, получаем следующие минимальные сечения: {1}, {2}, {7}, {8}, {3, 9}, {4, 5}.

4 Практическая часть

Задание 1. На рисунке 2 приведено дерево отказов для системы перекачки нефтепродуктов с завершающим событием «разрыв бака». Логическим знакам и основным исходным событиям этого дерева уже присвоены необходимые обозначения. Найти перечень минимальных аварийных сочетаний.




Рисунок 2 - Дерево отказов для системы перекачки

Задание 2. На рисунке 3 приведена схема блока выключателей и соответствующее дерево отказов. Требуется найти перечень минимальных аварийных сочетаний.

Рисунок 3 - Схема блока включателей и соответствующее дерево отказов

Задание 3. На рисунке 4 приведено дерево отказов для химического реактора. Требуется найти перечень минимальных аварийных сочетаний.

Задание 4. На рисунке 5 показано дерево отказов для системы электрических нагревателей. Логическим знакам и основным исходным событиям этого дерева уже присвоены необходимые обозначения. Найти перечень минимальных аварийных сочетаний.

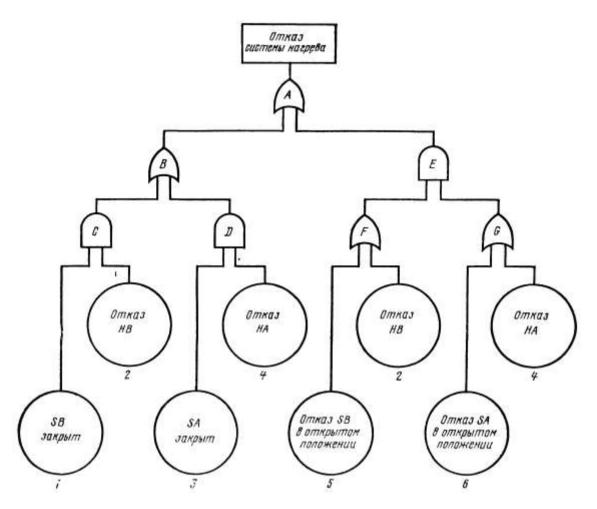


Рисунок 5 - Дерево отказов для системы электрических нагревателей

Задание 5. Найти перечень минимальных аварийных сочетаний для дерева событий возникновения пожара, показанного на рисунке 6.

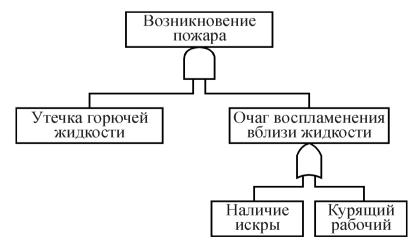


Рисунок 6 - Дерево событий

Задание 6. На рисунке 7 показано дерево отказов релейной системы включения освещения с общими событиями. Логическим знакам и основным исходным событиям этого дерева уже присвоены необходимые обозначения. Найти перечень минимальных аварийных сочетаний.

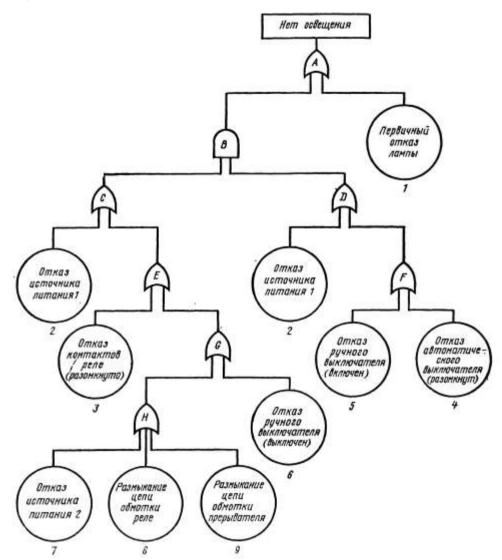


Рисунок 7 — Дерево отказов релейной системы включения освещения с общими событиями

Задание 7. На рисунке 8 показана структурно-логическая схема причин поражения человека при пожаре в виде модели «дерева отказа». Как видно из схемы, поражение человека при пожаре произойдет, если одновременно возникнут три события: 1) человек не сможет эвакуироваться из горящего здания; 2) не сработает автоматическая система пожаротушения; 3) человека не смогут спасти силы противопожарной службы. Найти перечень минимальных аварийных сочетаний.

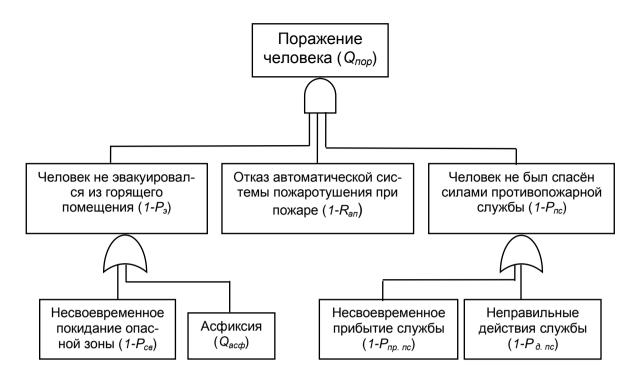


Рисунок 8 - Структурно-логическая схема причин поражения человека при пожаре

5 Дополнительные задания для студентов, пропускающих аудиторные занятия

Задание 5.1. На рисунке 5.1 показано дерево отказов системы автоматизированной заправки емкости с исходными событиями, приведенными в таблице 5.1. Основным исходным событиям этого дерева уже присвоены необходимые обозначения. Найти перечень минимальных аварийных сочетаний.

Таблица 5.1 - Исходные события дерева отказов

№ п.п.	Событие или состояние		
1	Система автоматической выдачи дозы (САВД) оказалась отключенной		
	(ошибка контроля исходного положения)		
2	Обрыв цепей передачи сигнала от датчиков объема дозы		
3	Ослабление сигнала выдачи дозы помехами (нерасчетное внешнее воз-		
	действие)		
4	Отказ усилителя-преобразователя сигнала выдачи дозы		
5	Отказ расходомера		
6	Отказ датчика уровня		
7	Оператор не заметил световой индикации о неисправности САВД		
	(ошибка оператора)		
8	Оператор не услышал звуковой сигнализации об отказе САВД (ошибка		

№ п.п.	Событие или состояние
	оператора)
9	Оператор не знал о необходимости отключения насоса по истечении
	заданного времени
10	Оператор не заметил индикации хронометра об истечении установлен-
	ного времени заправки
11	Отказ хронометра
12	Отказ автоматического выключателя электропривода насоса
13	Обрыв цепей управления приводом насоса

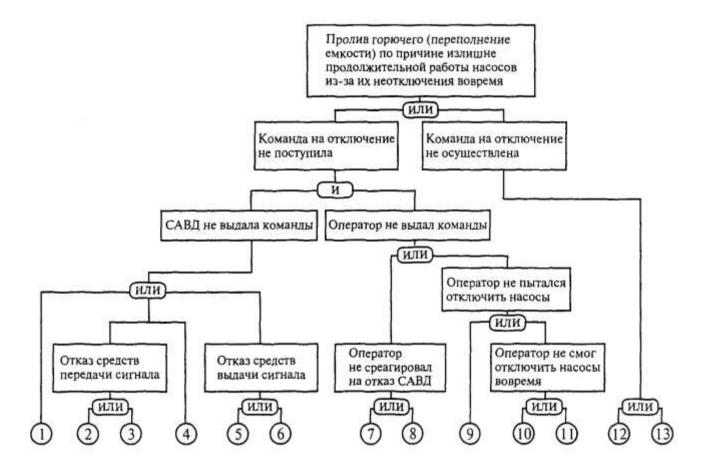


Рисунок 5.1 - Дерево отказов заправочной операции

Задание 5.2. На рисунке 5.2 показано дерево отказов системы очистки отходящих газов с общими событиями. Логическим знакам и основным исходным событиям этого дерева уже присвоены необходимые обозначения. Найти перечень минимальных аварийных сочетаний.

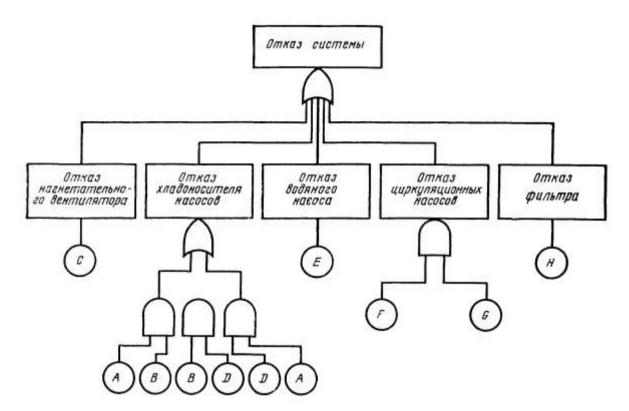


Рисунок 5.2 - Дерево отказов для системы охлаждения и очистки отработавшего газа

Вопросы и задания

- 1. Для каких целей выполняется качественная оценка дерева отказов?
- 2. Какие данные необходимы для качественной оценки дерева отказов?
- 3. Перечислите основные этапы процедуры качественной оценки дерева отказов.
- 4. Каким методом в данной практической работе выполнялась качественная оценка дерева отказов?
- 5. Сформулируйте правило замены логического знака **ИЛИ** входами событий в этот логический знак.
- 6. Сформулируйте правило замены логического знака **И** входами событий в этот логический знак.
 - 7. Заполните пробел в записанном логическом правиле: «Знаки ИЛИ число аварийных сочетаний».
- 8. Заполните пробел в записанном логическом правиле: «Знаки И _____ число аварийных сочетаний».
 - 9. В каком порядке производится логический анализ дерева отказов?
 - 10. Сформулируйте определение: «Аварийное сочетание это ...»
 - 11. В каком случае, согласно логическому анализу ДО, существует гаран-

тия, что конечное событие (отказ) происходит?

- 12. Сформулируйте определение: «Минимальное аварийное сочетание это ...».
- 13. Закончите определение: «Множество основных исходных событий, осуществление которых вызывает наступление завершающего события, определяется как ...».
 - 14. Что понимается под сочетанием (сечением) в дереве отказов?

Список источников информации

- 1. ГОСТ Р 27.302-2009. Анализ дерева неисправностей. М.: Стандартинформ, 2011. 22 с.
- 2. ГОСТ Р 51901.13-2005. Менеджмент риска. Анализ дерева неисправностей: Fault Tree Analysis (FTA). М.: Стандартинформ, 2005. 13 с.
- 3. Надежность технических систем и техногенный риск: учебное пособие / под ред. М. И. Фалеева. М.: Деловой экспресс, 2002. 368 с.
- 4. Томаков В.И. Прогнозирование техногенного риска с помощью «Деревьев отказов»: учебное пособие. Курск, 1997. 99 с.

Содержание

1 Общие положения о выполнении практической работы	3	
2 Процедура количественной оценки дерева отказов	4	
3 Вероятностная оценка дерева отказов	5	
3.1 Основные понятия о случайных событиях	5	
3.2 Теоремы сложения и умножения вероятностей случайных событий	6	
3.3 Аналитическое описание простых схем	8	
4 Практическая часть	10	
5 Дополнительные задания, для студентов пропускающих аудиторные		
анятия		
Вопросы и задания	27	
Список источников информации	28	