Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

МИНОБРНА УКИ РОССИИ

Дата подписания: 02.1 Федеральное государственное бюджетное образовательное уникальный программный ключ. 9ba7d3e34c012eba476ffd2 убиреждение высщего профессионального образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра охраны труда и окружающей среды

ОПРЕДЕЛЕНИЕ ТЕПЛОТЕХНИЧЕСКИХ ХАРАКТЕРИСТИК ТВЕРДЫХ БЫТОВЫХ ОТХОДОВ ДЛЯ ИСПОЛЬЗОВАНИЯ В КАЧЕСТВЕ ТОПЛИВА

Методические указания к проведению практического занятия по дисциплинам «Экология», «Экология городской среды», «Экология Курского края», «Техногенные системы и экологический риск», «Экспертиза безопасности» для студентов всех специальностей и направлений

Составитель В.В. Протасов

Рецензент Кандидат технических наук, доцент *А.В. Беседин*

Определение теплотехнических характеристик твердых бытовых отходов для использования в качестве топлива: методические указания к проведению практического занятия по дисциплинам «Экология», «Экология городской среды», «Экология Курского края», «Техногенные системы и экологический риск», «Экспертиза безопасности» / Юго-Зап. гос. ун-т; сост.: В.В. Протасов. Курск, 2013. 18 с.: Библиогр.: с. 18.

Представлены методики расчета теплотехнических характеристик твердых бытовых отходов для использования в качестве топлива.

Предназначены для студентов всех специальностей и направлений, изучающих дисциплины «Экология», «Экология городской среды», «Экология Курского края», «Техногенные системы и экологический риск», «Экспертиза безопасности».

Текст печатается в авторской редакции

Подписано в печать Формат 60х84 1/16. Бумага офсетная. Усл. печ. л. 1,04. Уч.-изд.л.0,95. Тираж 30 экз. Заказ . Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94.

Цель работы: приобретение, отработка и закрепление практических умений и навыков применения теоретических знаний при решении практических задач, связанных с расчетами теплотехнических характеристик твердых бытовых отходов для использования в качестве топлива.

Топливом принято любое вещество, способное называть вступать в быстропротекающий окислительный процесс (горение) с Процесс окислителем (кислород воздуха). горения поддерживается либо самопроизвольно (самовозгорание), принудительно (зажигание) вплоть до полного исчерпания горючих веществ в очаге горения.

Практическое значение могут иметь виды топлива, отвечающие следующим требованиям:

- доступности и распространенности для массового использования;
- достаточной химической активности топлива, которая обеспечивает возникновение его горения в кислороде воздуха;
- наличие достаточных тепловыделений на единицу массы сжигаемого вещества.

Твердые бытовые отходы (ТБО) отвечают этим требованиям: ТБО являются неисчерпаемыми из-за массового воспроизводства населением; иногда на полигонах ТБО наблюдается самовозгорание (это происходит, если масса и толщина слоя ТБО достаточны для создания условий, рассеивание при которых теплоты становиться меньше, чем количество теплоты, выделяющейся при их биотермическом разложении); ТБО по энергетической ценности низкокалорийных сравнимы c некоторыми видами природных топлив.

Параметры, характеризующие топливо

1. Удельная теплота сгорания - Q, МДж/кг (ккал/кг). Этот показатель, отнесенный к рабочей массе вещества, является важной характеристикой энергетической ценности топлива и соответствует низшей теплоте сгорания при его заданной влажности и зольности – Q^P .

В энергетике пересчет с Q_n^P в Q_n^Γ (и наоборот) осуществляют по следующим формулам:

$$Q_n^P = \frac{Q_n^{\Gamma}(100 - A_n^P - W_n^P)}{(100 - 0.023W_n^P)};$$

$$Q_n^{\Gamma} = \frac{Q_n^P + 0.023 W_n^P}{(100 - A_n^P - W_n^P)} 100.$$
 (1)

где Q_n^P в Q_n^Γ - удельная теплота сгорания каждого компонента ТБО соответственно на рабочую и горючую массу, %; A_n^P , W_n^P - массовые количества золы и влаги в рабочем топливе, %; 0,023 - удельная теплота парообразования воды при атмосферном давлении, МДж/кг; P - указатель рабочей массы ТБО; T - указатель горючей массы ТБО; n - порядковый номер компонента (n=1...13).

Зная удельную теплоту сгорания отдельных компонентов смеси веществ, можно вычислить $Q_{\mathrm{общ}}^{P}$ в целом по формуле

$$Q_{o\delta u}^{P} = Q_{1}^{P} \cdot I_{1} + Q_{2}^{P} \cdot I_{2} + Q_{3}^{P} \cdot I_{3} + \dots Q_{n}^{P} \cdot I_{n}$$
 (2)

где Q_1^P , Q_2^P , Q_3^P ... Q_n^P - удельная теплота сгорания отдельных компонентов ТБО (табл. 2.2); I_1 , I_2 , I_3 ... I_n - доли соответствующих компонентов в общей массе ТБО, в %; P - указатель рабочей массы ТБО; $_n$ - порядковый номер компонента (n=1...13).

Теплота сгорания $Q_{oбщ}^P$, полученная по формуле (2), может быть проверена на базе элементарного (теплотехнического) состава отходов по формуле Менделеева, кДж/кг:

$$Q_{o \delta u i}^{P} = 4,18 \cdot (81C_{o \delta u i}^{P} + 300H_{o \delta u i}^{P} - 25(O_{o \delta u i}^{P} - S_{o \delta u i}^{P}) - 6(9H_{o \delta u i}^{P} + W_{o \delta u i}^{P}))$$
(3)

где $C_{oбщ}^P$, $H_{oбщ}^P$, $S_{oбщ}^P$ - теплота сгорания углерода, водорода, серы; $O_{oбщ}^P$ -теплота, поглощаемая окислителем; $W_{oбщ}^P$ - теплота, затрачиваемая на испарение воды; 4,18 - коэффициент пересчета Дж в кал (1 Дж = 4,18 кал).

Удельная теплота сгорания ТБО, вычисленная по формулам (2) и (3), может отличаться на величину не более $\pm 10\%$, что для предварительных оценочных подсчетов не является существенным.

2. Элементарный состав рабочей массы топлива состоит из: углерода (C^p) , водорода (H^p) , кислорода (O^p) , азота (N^p) , серы (S^p) , золы (A^p) и воды (W^p) .

При этом по массе: $C^p + H^p + O^p + N^p + S^p + A^p + W^p = 100\%$.

Массу топлива, не содержащую влагу и золу, называют *горючей* массой топлива: $C^{\Gamma} + H^{\Gamma} + O^{\Gamma} + N^{\Gamma} + S^{\Gamma} = 100\%$.

Массу топлива, не содержащую только влагу, называют $\emph{сухой}$ массой $\emph{C}^c + \emph{H}^c + \emph{O}^c + \emph{N}^c + \emph{S}^c + \emph{A}^c = 100\%$.

Морфологический состав ТБО представляет гетерогенную смесь (табл.1).

Таблица 1 Морфологический состав твердых бытовых отходов для различных климатических зон, % массы

Компонент	К	лиматическая зо	на
	средняя	киная	северная
Бумага, картон	25-30	20-28	21-24
Пищевые отходы	30-38	35-45	28-36
Древесина	1,5-3,0	1-2	2-4
Металл черный	2,0-3,5	1,5-2,0	3,0-4,5
Металл цветной	0,2-0,3	0,2-0,3	0,2-0,3
Текстиль	4-7	4-7	5-7
Кости	0,5-2,0	1-2	2-4
Стекло	5-8	3-6	6-10
Кожа, резина	2-4	1-3	3-7
Камни	1-3	1-2	1-2
Пластмасса	2-5	1,5-2,5	2-4
Прочие	1-2	1-2	1-3
Отсев (менее 16 мм)	7-13	10-18	7-13

Анализ морфологического состава ТБО проводится путем экспериментальных исследований его на полигонах, отбором проб из мусоросборных контейнеров домовладений. Обычно удельный вес ТБО колеблется от 198 до 220 кг/м 3 .

В таблице 2 приведены данные по элементному составу горючей массы и элементарному составу рабочей массы ТБО.

Таблица 2 Состав летучих фракций при горении твердых бытовых отходов и их удельная теплота сгорания

Компонент	Co	став тв	ердых	бытовы	х отходо	ов в % г	10	$\underline{\mathbf{Q}^{\mathrm{p}}}$
	$\frac{C_{\rm L}}{C_{\rm b}}$	$\underline{\mathbf{H}^{\mathbf{p}}}$	$\overline{\mathrm{O}_\mathrm{b}}$	\underline{N}^{P}	$\frac{S^{P}}{S^{1}}$	$\underline{\mathbf{A}}^{\mathrm{p}}$	$\underline{\mathbf{W}^{\mathrm{p}}}$	$\overline{\overline{\mathbf{Q}^{\mathrm{r}}}}$
	C_{L}	H^{r}	$O_{\scriptscriptstyle m L}$	$\overline{N^{1-}}$	S^{1-}	-	-	МДж/кг
Пищевые отходы	12,6	<u>1,8</u>	8,0	0,95	0,15	4,5	<u>72</u>	3,34
	53,6	7,7	34,1	4,0	0,60	-	-	22,28
Бумага, картон	<u>27,7</u>	<u>3,7</u>	28,3	0,16	0,14	<u>15</u>	<u>25</u>	<u>9,94</u>
	46,2	6,2	47,1	0,27	0,23	-	-	16,85
Древесина	40,5	<u>4,8</u>	33,8	<u>0,1</u>		0,8	<u>20</u>	<u>14,46</u>
	51,0	6,1	42,6	0,2	0,1	-	-	20,27
Кожа, резина	65,0	<u>5,0</u>	<u>12,6</u>	<u>0,2</u>	0,7	<u>11,6</u>	<u>5</u>	<u>25,79</u>
	77,9	6,0	15,1	0,3	-	-	-	31,06
Пластмасса	<u>55,1</u>	<u>7,6</u>	<u>17,5</u>	0,9	0,4	10,6	<u>8</u>	<u>24,37</u>
	67,7	9,3	21,5	1,1	-	-	-	30,18
Текстиль	<u>40,4</u>	<u>4,9</u>	23,2	<u>4,8</u>		<u>8</u>	<u>20</u>	<u>15,72</u>
	56,1	6,8	32,2	-	0,1	-	-	22,53
Стекло, камни	-	-	-	-	-	100	-	-
Металл	-	-	-	-	-	100	-	_
Отсев менее 16	<u>13,9</u>	<u>1,9</u>	<u>14,1</u>	-	<u>0,1</u>	<u>50</u>	<u>20</u>	<u>4,60</u>
MM	46,4	6,3	47,0		0,3	-	-	17,01

Зная морфологический состав ТБО и элементный или элементарный составы отдельных его компонентов, можно найти состав всей массы рассматриваемых отходов:

$$C_{oбiii}^{P} = C_{1}^{P} \cdot I_{1} + C_{2}^{P} \cdot I_{2} + C_{3}^{P} \cdot I_{3} + \cdots + C_{n}^{P} \cdot I_{n};$$

$$H_{oбiii}^{P} = H_{1}^{P} \cdot I_{1} + H_{2}^{P} \cdot I_{2} + H_{3}^{P} \cdot I_{3} + \cdots + H_{n}^{P} \cdot I_{n};$$

$$O_{oбiii}^{P} = O_{1}^{P} \cdot I_{1} + O_{2}^{P} \cdot I_{2} + O_{3}^{P} \cdot I_{3} + \cdots + O_{n}^{P} \cdot I_{n};$$

$$N_{oбiii}^{P} = N_{1}^{P} \cdot I_{1} + N_{2}^{P} \cdot I_{2} + N_{3}^{P} \cdot I_{3} + \cdots + N_{n}^{P} \cdot I_{n};$$

$$S_{oбiii}^{P} = S_{1}^{P} \cdot I_{1} + S_{2}^{P} \cdot I_{2} + S_{3}^{P} \cdot I_{3} + \cdots + S_{n}^{P} \cdot I_{n};$$

$$A_{oбiii}^{P} = A_{1}^{P} \cdot I_{1} + A_{2}^{P} \cdot I_{2} + A_{3}^{P} \cdot I_{3} + \cdots + A_{n}^{P} \cdot I_{n};$$

$$W_{oбiii}^{P} = W_{1}^{P} \cdot I_{1} + W_{2}^{P} \cdot I_{2} + W_{3}^{P} \cdot I_{3} + \cdots + W_{n}^{P} \cdot I_{n}$$

где C_{1}^{P} , C_{2}^{P} , C_{3}^{P} ... C_{n}^{P} - содержание углерода в каждом компоненте ТБО, % (аналогично и по другим элементам); I_{1} , I_{2} , I_{3} ... I_{n} - доли соответствующих компонентов в общей массе ТБО, сумма которых равна единице; P - указатель рабочей массы ТБО; $_{n}$ - порядковый номер компонента ($n = 1 \dots 13$).

Массу каждого компонента пересчитывают с горючей на рабочую (и наоборот) по формулам, %:

$$C_{n}^{P} = C_{n}^{\Gamma} (100 - A_{n}^{P} - W_{n}^{P}) / 100;$$

$$O_{n}^{P} = O_{n}^{\Gamma} (100 - A_{n}^{P} - W_{n}^{P}) / 100;$$

$$H_{n}^{P} = H_{n}^{\Gamma} (100 - A_{n}^{P} - W_{n}^{P}) / 100;$$

$$S_{n}^{P} = S_{n}^{\Gamma} (100 - A_{n}^{P} - W_{n}^{P}) / 100;$$

$$N_{n}^{P} = N_{n}^{\Gamma} (100 - A_{n}^{P} - W_{n}^{P}) / 100$$
(5)

где C_n^p , O_n^p , H_n^p , S_n^p , N_n^p - содержание углерода, кислорода, водорода, серы, азота в каждом компоненте ТБО, %; C_n^r , O_n^r , H_n^r , S_n^r , N_n^r - содержание углерода, кислорода, водорода, серы, азота в каждом компоненте горючей массы ТБО, %; A_n^P , W_n^P - массовые количества золы и влаги в рабочем топливе, %; N_n^p - указатель рабочей массы ТБО; N_n^r - указатель горючей массы ТБО; N_n^r - порядковый номер компонента (N_n^r - N_n^r - порядковый номер компонента (N_n^r - N_n^r - N_n^r - порядковый номер компонента (N_n^r - N_n^r - N_n^r - порядковый номер компонента (N_n^r - N_n^r - N_n^r - порядковый номер компонента (N_n^r - $N_$

3. Важнейшими характеристиками ТБО как топливо являются предельные значения *влажности*, *зольности* и *горючих составляющих*. В различные времена года влажность может колебаться от 20-25 до 50-60% по массе, зольность - от 10-15 до 25-30%. Так, например в г. Курске влажность ТБО может колебаться от 30 до 58% по массе в зависимости от времени года.

Колебания этих важнейших характеристик отходов вызывают колебания $Q_{oбw}^{P}$. Например, в среднем по России эти колебания

находятся в пределах от 4,18 до 8,5 МДж/кг.

Убедиться в том, что ТБО отвечают обязательному условию при котором любое вещество может считаться топливом, можно, сравнивая характеристики низкокалорийных топлив с теплотехническими характеристиками ТБО.

В таблице 3 приведены данные по элементному составу и удельной теплоте сгорания несортированных ТБО, используемых в различных странах мира в качестве топлива. Для сравнения те же данные по ископаемым топливам, применяемым в энергетике (углям, торфу и древесине) приведены в таблице 4.

Таблица 3 Элементный и элементарный составы твердых бытовых отходов и их низшие теплоты сгорания в среднем за год по ряду стран и городов

Страна			Macco	вый состан	3, %			Q^p
(город)	C^p	H^p	Op	N^{P}	S^{P}	A^{P}	\mathbf{W}^{p}	Q^{r}
	C^{r}	H^{r}	O_{L}	N^{Γ}	S^{r}	-	-	МДж/кг
Австрия	21,59	1,80	10,12	0,42	0,26	29,30	36,42	7,24
(Вена)	62,98	5,51	29,52	1,23	0,76	-	-	23,82
Великобртания	20,96	1,99	12,32	0,31	0,20	38,73	25,49	7,20
(Лондон)	58,58	5,56	34,43	0,87	0,56	-	-	21,90
Бельгия	22,10	1,53	8,82	0,25	0,28	40,30	26,72	7,45
(Брюссель)	67,01	4,64	26,74	0,76	0,85	-	-	24,53
Испания	19,34	1,95	11,13	0,47	0,21	26,65	40,25	6,36
(Мадрид)	58,55	6,89	32,51	1,42	0,63	-	-	22,27
Канада	25,57	3,19	18,40	0,42	0,13	25,26	27,03	9,30
(Оттава)	53,60	6,67	38,58	0,88	0,27	1	1	20,90
Нидерланды	22,17	1,51	8,34	0,23	0,28	43,27	24,2	7,58
(Амстердам)	68,45	4,64	25,64	0,71	0,86			25,1
Финляндия	26,31	3,38	23,35	0,22	0,13	21,95	24,66	9,24
(Хельсинки)	49,28	6,33	43,74	0,41	0,24	-	-	18,43
Франция	24,19	3,00	18,99	0,34	0,12	28,24	25,12	8,59
(Париж)	51,86	6,43	40,72	0,73	0,26	1	-	19,76
Швейцария	21,41	2,30	15,89	0,27	0,19	31,04	28,90	7,15
(Берн)	53,44	5,74	39,68	0,67	0,47	-	-	19,70
США	24,66	3,11	18,97	0,35	0,13	27,64	25,14	8,90
(Вашингтон)	53,24	6,65	39,10	0,74	0,27	-	-	20,00
кинопR	21,54	2,30	12,48	0,57	0,20	25,20	37,71	7,40
(Токио)	58,15	6,20	88,69	1,40	0,56	-	-	21,70
					родам Рос			
Москва	21,30	2,90	16,90	0,90	0,20	22,00	36,50	7,51
	51,32	6,99	40,80	2,17	0,48	-	-	20,12
Санкт-	17,52	2,31	14,33	0,47	0,09	31,15	34,14	5,90
Петербург	50,48	6,63	41,28	1,35	0,26	-	-	19,11
Нижний	19,62	2,62	16,67	0,56	0,11	20,51	39,91	6,52
Новгород	49,56	6,62	42,13	1,41	0,28	-	-	19,00
Владивосток	16,34	2,18	13,27	0,59	0,13	24,35	43,14	5,27
	50,26	6,71	40,82	1,81	0,40	-	-	19,52

Таблица 4 Элементарный состав и низшая теплота сгорания некоторых низкокалорийных твердых топлив России и СНГ

Месторождение и		Массовый состав, %								
наименование	C^p	H^p	O_b	N^{P}		A^{P}	\mathbf{W}^{p}	$egin{array}{c} Q^p \ Q^r \end{array}$		
	C^{Γ}	H^{r}	O_{L}	N^{Γ}	S^{Γ}	-	-	МДж/кг		
Подмосковный бассейн	27,4	2,16	8,63	0,46	2,85	26,5	32	9,88		
бурый уголь	66,0	5,20	23,13	1,10	4,40	-	-	25,74		
Трест «Черепеть-уголь»	26,0	2,2	9,2	0,4	2,2	29,0	31	9,20		
бурый уголь	65,0	5,2	23,3	1,0	5,5	-	-	24,95		
Райчихинский бурый	30,4	1,7	12,2	0,5	0,3	7,9	47	9,49		
уголь	67,4	3,8	27,0	1,1	0,7	-	-	23,66		
Сланец	13,5	1,8	4,3	0,3	3,4	59,2	17,5	5,81		
Капширского	57,9	7,7	18,5	1,3	14,6	-	-	26,84		
Торф	24,7	2,6	15,2	1,1	0,1	6,3	50	8,11		
	56,5	6,0	34,8	2,5	0,2	-	-	21,44		
Дрова	30,0	3,6 6,1	25,1	0,4	-	0,6	40	10,2		
	51.0		42.2	0.7	_	_	_	18.85		

Данные табл. 3 и табл. 4 позволяют говорить о том, что теплота сгорания ТБО, рассчитанная по элементным составам твердых бытовых отходов ряда стран, зависит главным образом от W^p и A^p . Анализ приведенных данных показывает также, что значения теплот сгорания ТБО и низкокалорийных топлив близки друг к другу.

Следует также отметить, что теплота сгорания несортированных ТБО существенно колеблется в зависимости от времени года. Это является одним из основных отличий несортированных ТБО, используемых в качестве топлива, от ископаемых природных топлив, используемых в энергетике.

Применение сортировки позволяет улучшить теплотехнические характеристики ТБО (табл. 5).

Таблица 5 Теплотехнические характеристики твердых бытовых отходов до и после сортировки

Отходы			Q^p , ккал/кг							
	C^p	H^p	min	сред	max					
До сортировки	21,3	2,7	16,8	0,44	0,16	25,5	33,1	1000	1400	1700
После сортировки	25,0	3,2	19,8	0,51	0,19	12,3	39,0	1176	1588	2000

Комбинированные топлива

 $O_{\rm b}$ Устранение ТБО колебания достигается путем предварительной сортировки отходов И смешивания ИХ cнизкокалорийным твердым ископаемым топливом, ЭТОМ образуется комбинированное топливо.

В общем случае состав комбинированного топлива определить по формуле

$$\mathsf{M}_i^{\mathsf{комб}} = M_i^{\mathsf{тбо}} \cdot X + M_i^{\mathsf{H.TОПЛ}} \cdot (1 - X),$$
 (6)

 $M_i^{\text{тбо}}$, $M_i^{\text{н.топл}}$ - i-й компонент соответственно где ТБО И низкокалорийного природного топлива; XТБО В комбинированном топливе.

Удельную теплоту сгорания комбинированного топлива можно определить по формуле

$$(Q^P)^{\text{комб}} = (Q^P)^{\text{тбо}} \cdot X + (Q^P)^{\text{н.топл}} \cdot (1 - X) \tag{7}$$

Пример 1. Рассчитать элементный состав горючей массы топлива из ТБО, если морфологический состав отсортированного и обезвоженного ТБО равен (в %): бумага - 9,2; пищевые отходы -42,0; древесина - 4,4; кожа, резина - 11,9; пластмасса - 9,7; текстиль -2,3; отсев менее 16 мм - 20,5.

Решение.

Пересчитаем массу каждого компонента ТБО с рабочей на горючую массу по уравнению (5) с использованием данных табл. 2:

Бумага:

$$C_1^{\Gamma} = \frac{100 \cdot C_1^{P}}{100 - A_1^{P} - W_1^{P}} = 27,7 \cdot \frac{100}{100 - 15 - 25} = 46,16\%$$
 $O_1^{\Gamma} = \frac{100 \cdot O_1^{P}}{100 - A_1^{P} - W_1^{P}} = 28,3 \cdot \frac{100}{100 - 15 - 25} = 47,17\%$
 $H_1^{\Gamma} = \frac{100 \cdot H_1^{P}}{100 - A_1^{P} - W_1^{P}} = 3,7 \cdot \frac{100}{100 - 15 - 25} = 6,17\%$
 $S_1^{\Gamma} = \frac{100 \cdot S_1^{P}}{100 - A_1^{P} - W_1^{P}} = 0,14 \cdot \frac{100}{100 - 15 - 25} = 0,23\%$
 $N_1^{\Gamma} = \frac{100 \cdot N_1^{P}}{100 - A_1^{P} - W_1^{P}} = 0,16 \cdot \frac{100}{100 - 15 - 25} = 0,27\%$
 $C_1^{\Gamma} + O_1^{\Gamma} + H_1^{\Gamma} + S_1^{\Gamma} + N_1^{\Gamma} = 100\%$.
Следовательно, расчет выполнен верно.

2. Пищевые отходы:

$$C_{2}^{\Gamma} = \frac{100 \cdot C_{2}^{P}}{100 - A_{2}^{P} - W_{2}^{P}} = 12.6 \cdot \frac{100}{100 - 4.5 - 72} = 53.62\%$$

$$O_{2}^{\Gamma} = \frac{100 \cdot O_{2}^{P}}{100 - A_{2}^{P} - W_{2}^{P}} = 8.0 \cdot \frac{100}{100 - 4.5 - 72} = 34.04\%$$

$$H_{2}^{\Gamma} = \frac{100 \cdot H_{2}^{P}}{100 - A_{2}^{P} - W_{2}^{P}} = 1.8 \cdot \frac{100}{100 - 4.5 - 72} = 7.66\%$$

$$S_{2}^{\Gamma} = \frac{100 \cdot S_{2}^{P}}{100 - A_{2}^{P} - W_{2}^{P}} = 0.15 \cdot \frac{100}{100 - 4.5 - 72} = 0.64\%$$

$$N_{2}^{\Gamma} = \frac{100 \cdot N_{2}^{P}}{100 - A_{2}^{P} - W_{2}^{P}} = 0.95 \cdot \frac{100}{100 - 4.5 - 72} = 4.04\%$$

$$C_{2}^{\Gamma} + O_{2}^{\Gamma} + H_{2}^{\Gamma} + S_{2}^{\Gamma} + N_{2}^{\Gamma} = 100\%.$$

Следовательно, расчет выполнен верно.

3. Древесина:

$$C_{3}^{\Gamma} = \frac{100 \cdot C_{3}^{P}}{100 - A_{3}^{P} - W_{3}^{P}} = 40,5 \cdot \frac{100}{100 - 0,8 - 20} = 51,14\%$$

$$O_{3}^{\Gamma} = \frac{100 \cdot O_{3}^{P}}{100 - A_{3}^{P} - W_{3}^{P}} = 33,8 \cdot \frac{100}{100 - 0,8 - 20} = 46,28\%$$

$$H_{3}^{\Gamma} = \frac{100 \cdot H_{3}^{P}}{100 - A_{3}^{P} - W_{3}^{P}} = 4,8 \cdot \frac{100}{100 - 0,8 - 20} = 6,06\%$$

$$S_{3}^{\Gamma} = \frac{100 \cdot S_{3}^{P}}{100 - A_{3}^{P} - W_{3}^{P}} = 0 \cdot \frac{100}{100 - 0,8 - 20} = 0\%$$

$$N_{3}^{\Gamma} = \frac{100 \cdot N_{3}^{P}}{100 - A_{3}^{P} - W_{3}^{P}} = 0,1 \cdot \frac{100}{100 - 4,5 - 72} = 0,12\%$$

$$C_{3}^{\Gamma} + O_{3}^{\Gamma} + H_{3}^{\Gamma} + S_{3}^{\Gamma} + N_{3}^{\Gamma} = 100\%.$$

Следовательно, расчет выполнен верно.

4. Кожа, резина:

$$C_4^{\Gamma} = \frac{100 \cdot C_4^{P}}{100 - A_4^{P} - W_4^{P}} = 65,0 \cdot \frac{100}{100 - 11,6 - 5} = 77,94\%$$

$$O_4^{\Gamma} = \frac{100 \cdot O_4^{P}}{100 - A_4^{P} - W_4^{P}} = 12,6 \cdot \frac{100}{100 - 11,6 - 5} = 15,11\%$$

$$H_4^{\Gamma} = \frac{100 \cdot H_4^{P}}{100 - A_4^{P} - W_4^{P}} = 5,0 \cdot \frac{100}{100 - 11,6 - 5} = 5,99\%$$

$$S_4^{\Gamma} = \frac{100 \cdot S_4^{P}}{100 - A_4^{P} - W_4^{P}} = 0,6 \cdot \frac{100}{100 - 11,6 - 5} = 0,72\%$$

$$N_4^{\Gamma} = \frac{100 \cdot N_4^{P}}{100 - A_4^{P} - W_4^{P}} = 0.2 \cdot \frac{100}{100 - 11.6 - 5} = 0.24\%$$

$$C_4^{\Gamma} + O_4^{\Gamma} + H_4^{\Gamma} + S_4^{\Gamma} + N_4^{\Gamma} = 100\%.$$

Следовательно, расчет выполнен верно.

5. Пластмасса:

$$C_5^{\Gamma} = \frac{100 \cdot C_5^P}{100 - A_5^P - W_5^P} = 55,1 \cdot \frac{100}{100 - 10,6 - 8} = 67,69\%$$

$$O_5^{\Gamma} = \frac{100 \cdot O_5^P}{100 - A_5^P - W_5^P} = 17,5 \cdot \frac{100}{100 - 10,6 - 8} = 21,50\%$$

$$H_5^{\Gamma} = \frac{100 \cdot H_5^P}{100 - A_5^P - W_5^P} = 7,6 \cdot \frac{100}{100 - 10,6 - 8} = 9,34\%$$

$$S_5^{\Gamma} = \frac{100 \cdot S_5^P}{100 - A_5^P - W_5^P} = 0,3 \cdot \frac{100}{100 - 10,6 - 8} = 0,37\%$$

$$N_5^{\Gamma} = \frac{100 \cdot N_5^P}{100 - A_5^P - W_5^P} = 0,9 \cdot \frac{100}{100 - 10,6 - 8} = 1,10\%$$

$$C_5^{\Gamma} + O_5^{\Gamma} + H_5^{\Gamma} + S_5^{\Gamma} + N_5^{\Gamma} = 100\%.$$

Следовательно, расчет выполнен верно.

6. Текстиль:

$$C_{6}^{\Gamma} = \frac{100 \cdot C_{6}^{P}}{100 - A_{6}^{P} - W_{6}^{P}} = 40.4 \cdot \frac{100}{100 - 7.0 - 20} = 55.34\%$$

$$O_{6}^{\Gamma} = \frac{100 \cdot O_{6}^{P}}{100 - A_{6}^{P} - W_{6}^{P}} = 23.2 \cdot \frac{100}{100 - 7.0 - 20} = 31.78\%$$

$$H_{6}^{\Gamma} = \frac{100 \cdot H_{6}^{P}}{100 - A_{6}^{P} - W_{6}^{P}} = 4.9 \cdot \frac{100}{100 - 7.0 - 20} = 6.71\%$$

$$S_{6}^{\Gamma} = \frac{100 \cdot S_{6}^{P}}{100 - A_{6}^{P} - W_{6}^{P}} = 1.1 \cdot \frac{100}{100 - 7.0 - 20} = 1.51\%$$

$$N_{6}^{\Gamma} = \frac{100 \cdot N_{6}^{P}}{100 - A_{6}^{P} - W_{6}^{P}} = 3.4 \cdot \frac{100}{100 - 7.0 - 20} = 4.66\%$$

$$C_{100 + 100 + 100}^{\Gamma} + C_{100 +$$

Следовательно, расчет выполнен верно.

7. Отсев мене 16мм:

$$C_7^{\Gamma} = \frac{100 \cdot C_7^{P}}{100 - A_7^{P} - W_7^{P}} = 13.9 \cdot \frac{100}{100 - 50 - 20} = 46.34\%$$

$$O_{7}^{\Gamma} = \frac{100 \cdot O_{7}^{P}}{100 - A_{7}^{P} - W_{7}^{P}} = 14.1 \cdot \frac{100}{100 - 50 - 20} = 47.0\%$$

$$H_{7}^{\Gamma} = \frac{100 \cdot H_{7}^{P}}{100 - A_{7}^{P} - W_{7}^{P}} = 1.9 \cdot \frac{100}{100 - 50 - 20} = 6.33\%$$

$$S_{7}^{\Gamma} = \frac{100 \cdot S_{7}^{P}}{100 - A_{7}^{P} - W_{7}^{P}} = 0.1 \cdot \frac{100}{100 - 50 - 20} = 0.33\%$$

$$N_{7}^{\Gamma} = \frac{100 \cdot N_{7}^{P}}{100 - A_{7}^{P} - W_{7}^{P}} = 0 \cdot \frac{100}{100 - 50 - 20} = 0\%$$

$$C_{7}^{\Gamma} + O_{7}^{\Gamma} + H_{7}^{\Gamma} + S_{7}^{\Gamma} + N_{7}^{\Gamma} = 100\%.$$

Следовательно, расчет выполнен верно.

Рассчитаем доли каждого компонента в горючей массе ТБО: 1. Бумага:

100-25=75% (обезвоженная масса ТБО); 100-25-15=60% (горючая масса ТБО)

Таким образом 75-9,2

$$60-x_1$$

Следовательно, доля бумаги в горючей массе ТБО составит $x_1 = 60.9, 2/75 = 7,36\%$.

2. Пищевые отходы:

100-72=28% (обезвоженная масса ТБО); 100-72-4,5=23,5% (горючая масса ТБО)

Таким образом 28-42

$$23,5-x_2$$

Следовательно, доля бумаги в горючей массе ТБО составит $x_2 = 23,5.42/28 = 35,25\%$.

Итак, по каждому компоненту ТБО: для древесины 4,36%; для кожи, резины 10,45%; для пластмассы 8,58%; для текстиля 2,10%; для отсева 7,69%.

Таким образом,

$$\sum_{1} x_1 = 7,36 + 35,25 + 4,36 + 10,45 + 8,58 + 2,10 + 7,69 = 75,79\%$$
1 Bymara:

75,79-100

 $7,36-I_1; I_1=9,71\%$

2. Пищевые отходы:

75,79-100

35,25-I₂; I₂=46,51%

Итак, по каждому компоненту ТБО: для древесины 5,75%; для

кожи, резины 13,79%; для пластмассы 11,32%; для текстиля 2,77%; для отсева 10,15%.

Таким образом,

$$\sum I_1 = 9,71 + 46,51 + 5,75 + 13,79 + 11,32 + 2,77 + 10,15 = 100\%$$

Найдем элементный состав горючей массы ТБО по формуле (4):

$$C_{oби_{4}}^{\Gamma} = C_{1}^{\Gamma} \cdot I_{1} + C_{2}^{\Gamma} \cdot I_{2} + C_{3}^{\Gamma} \cdot I_{3} + \cdots + C_{n}^{\Gamma} \cdot I_{n} = 46,16 \cdot 0,0971 + 53,62 \cdot 0.0971 + 53,6$$

$$\cdot 0,4651 + 51,14 \cdot 0,0575 + 77,94 \cdot 0,1379 + 67,69 \cdot 0,1132 + 55,34 \cdot 0,4651 + 51,14 \cdot 0,0575 + 77,94 \cdot 0,1379 + 67,69 \cdot 0,1132 + 55,34 \cdot 0,1000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000 + 100000$$

$$0.0277 + 46.34 \cdot 0.1015 = 57\%$$

И так далее
$$H_{oбщ}^{\Gamma}=7,22\%;~O_{oбщ}^{\Gamma}=33,04;~N_{oбщ}^{\Gamma}=2,20\%;~S_{oбш}^{\Gamma}=0,54\%.$$

57,0+7,22+33,04+2,20+0,54=100% - элементный состав горючей массы ТБО найден верно.

Определите Пример 2. удельные теплоты сгорания комбинированных топлив, если ТБО смешали с низкокалорийными природными топливами (бурый уголь (Подмосковный бассейн); месторождения; торф) сланец Капширского В соотношении ТБО:природное сырье - 85:15 %. Морфологический состав рабочей массы ТБО (в %): бумага - 27,2; пищевые отходы - 53,8; кожа, резина - 10,0; текстиль - 9,0. Значения удельных теплот сгорания отдельных компонентов ТБО приведены в табл. 2. Значения минимальных теплот сгорания низкокалорийных природных топлив приведены в табл. 2.4.

Решение.

Теплота сгорания твердых бытовых отходов определяется по формуле (2):

$$Q_{oбiu}^P = Q_1^P \cdot I_1 + Q_2^P \cdot I_2 + Q_3^P \cdot I_3 + Q_4^P \cdot I_4 =$$

$$= 9,94 \cdot 0,272 + 3,34 \cdot 0,538 + 25,79 \cdot 0,1 + 15,72 \cdot 0,09 =$$

$$= 8,4944 \text{ МДж/кг}.$$

Определим теплоты сгорания комбинированных топлив, используя формулу (2.7):

ТБО:бурый уголь – 85:15

$$(Q^P)^{\text{комб}} = (Q^P)^{\text{тбо}} \cdot X + (Q^P)^{\text{н.топл}} \cdot (1 - X)$$

= 8,4944 · 0,85 + 9,88 · 0,15 == 8,7МДж/кг.

ТБО:сланец – 85:15

$$(Q^P)^{\text{комб}} = (Q^P)^{\text{тбо}} \cdot X + (Q^P)^{\text{н.топл}} \cdot (1 - X)$$

= 8,4944 · 0,85 + 5,81 · 0,15 == 8,09МДж/кг.

ТБО:торф – 85:15
$$(Q^P)^{\text{комб}} = (Q^P)^{\text{тбо}} \cdot X + (Q^P)^{\text{н.топл}} \cdot (1 - X) \\ = 8,4944 \cdot 0,85 + 8,11 \cdot 0,15 == 8,04 \text{МДж/кг.}$$

Задание 1. Рассчитайте элементарный состав рабочей массы ТБО и его удельную теплоту сгорания (Q^P) в среднем за год по ряду стран и городов по вариантам, приведенным в табл. 6. Исходные данные по элементному составу горючей массы ТБО и его удельной теплоте сгорания (Q^Γ) , а также значения влажности и зольности ТБО приведены в табл.3.

Таблица 6 Исходные данные для задания 1 по вариантам

Но	Номер варианта и соответствующая страна или город									
1	2	3	4	5	6					
Вена	Лондон	Брюссель	Мадрид	Оттава	Амстердам					
7	8	9	10	11	12					
Париж	Берн	Вашингтон	Токио	Москва	С.Петербург					
13	14	15	16	17	18					
Владивосток	Лондон	Вашингтон	Мадрид	Токио	Москва					

Задание 2. Рассчитать элементный состав горючей массы ТБО и его максимальную ($Q^r_{oбщ}$) теплоту сгорания. Определите, на сколько изменяются значения теплот сгорания исходного ТБО ($Q^p_{oбщ}$) и его горючей массы ($Q^r_{oбщ}$). $Q^p_{oбщ}$ проверьте расчетом по формуле Менделеева. Данные по морфологическому составу рабочей массы ТБО по вариантам приведены в таблице 7.

Задание 3. Рассчитать удельные теплоты сгорания 100%-ого ТБО и комбинированных топлив в пересчете на рабочую и горючую массы. Морфологический состав рабочей массы ТБО и соотношение «ТБО: природное топливо» по вариантам приведены в табл. 8. Значения удельных теплот сгорания для низкокалорийных природных топлив приведены в табл. 4. Сравните полученные результаты. Какое из топлив рационально использовать в промышленности?

Таблица 7 Исходные данные морфологического состава рабочей массы ТБО

Наименование				Н	[омер в	арианта	ı			
исходных данных					· -					1 40
	1	2	3	4	5	6	7	8	9	10
- Состав ТБО:										
пищевые отходы	46,4	59,0	61,2	44,5	38,9	55,0	39,7	72,1	38,8	56,4
бумага, картон	12,5	10,7	7,8	19,3	21,5	12,0	19,3	2,6	20,5	16,6
древесина	3,5	2,1	8,0	7,7	17,4	2,6	7,0	0,6	7,9	7,3
кожа, резина	2,6	0,7	0,5	2,4	2,2	2,6	-	-	0,8	2,0
пластмасса	5,7	2,4	6,3	4,4	17,0	16,0	2,0	0,9	_	_
текстиль	24,5	12,2	6,6	19,0	-	7,4	2,1	9,2	15,4	_
отсев (<16 мм)	4,8	12,9	9,6	2,7	3,0	4,4	29,9	14,6	16,6	17,7
	11	12	13	14	15	16	17	18	19	20
- Состав ТБО:										
пищевые отходы	66,2	23,7	56,6	47,9	63,5	46,7	49,2	33,9	14,5	25,8
бумага, картон	12,4	34,7	12,0	21,0	18,7	25,6	27,2	24,8	20,0	15,7
древесина	2,7	3,9	-	4,0	-	4,0	3,2	-	4,8	4,0
кожа, резина	3,8	4,6	-	7,0	7,0	-	12,0	12,8	_	_
пластмасса	4,4	12,4	5,2	4,0	3,2	2,8	2,0	4,0	7,0	7,7
текстиль	2,8	0,9	5,5	5,3	1,1	16,2	0,2	1,9	32,3	26,5
отсев (<16 мм)	6,9	14,9	16,7	7,3	2,8	4,7	6,2	18,3	16,2	13,3
металл	0,2	2,3	-	0,5	0,7	-	-	1,1	2,0	3,0
стекло, камни	0,6	2,6	4,0	3,0	3,0	-	-	3,2	3,2	4,0

Таблица 8 Исходные данные морфологического состава рабочей массы ТБО и соотношение «ТБО : природное топливо» в комбинированном топливе

Наименование исходных данных				Ном	ер вари	анта			
	1	2	3	4	5	6	7	8	9
- Состав ТБО:									
пищевые отходы;	46,4	59,0	61,2	44,5	38,9	55,0	39,7	72,1	38,8
бумага, картон;	12,5	20,0	20,1	20,8	21,2	30,0	23,5	2,6	24,0
древесина;	3,5	1,5	2,0	3,0	1,5	4,0	-	0,6	2,0
кожа, резина;	2,6	-	-	4,0	3,0	-	-	-	2,5
пластмасса;	5,7	1,5	2,0	2,0	1,5	1,6	1,8	0,9	5,0
текстиль;	24,5	4,7	4,8	4,9	5,0	0,6	8,0	9,2	11,0
камни, стекло;	-	0,7	1,2	12,0	10,4	7,2	6,0	5,0	14,0
отсев (<16 мм).	4,8	12,6	11,0	8,8	18,5	1,6	21,0	9,6	2,7
- соотношение ТБО:топливо:									
ТБО:бур.уголь	12:88	80:20	10:90	70:30	ı	65:35	ı	60:40	-
ТБО:торф	-	-	60:40	-	20:80	ı	80:20	ı	70:30
ТБО: опилки	10:90	50:50	ı	60:40	60:40	70:30	90:10	75:25	60:40
	10	11	12	13	14	15	16	17	18
- Состав ТБО:									
пищевые отходы;	66,2	23,7	56,6	47,9	63,5	46,7	49,2	33,9	14,5
бумага, картон;	12,4	34,7	20,0	22,8	28,0	27,0	24,0	24,4	27,2
древесина;	2,7	3,9	-	2,5	4,0	4,0	3,5	0,5	2,5
кожа, резина;	3,8	4,6	1,0	1,5	-	1,6	1,7	2,5	4,0
пластмасса;	4,4	12,4	1,2	4,2	3,0	3,3	2,7	1,8	5,6
текстиль;	2,8	0,9	7,2	8,4	0,2	2,4	6,6	8,9	12,6

Продолжение табл.8

Наименование исходных данных		Номер варианта								
	10	10 11 12 13 14 15 16 17 18								
камни, стекло;	-	3,2	4,0	4,0	-	7,0	6,0	15,6	18,9	
отсев (<16мм)	7,7	16,6	10,0	8,7	1,3	8,0	6,3	12,4	14,7	
- соотношениеТБО:топливо										
ТБО:бур.уголь	50:50	-	65:35	70:30	70:30	90:10	85:15	-	95:5	
ТБО:торф	20:80	60:40	50:50	-	-	55:45	50:50	55:45	75:25	
ТБО: опилки	-	70:30	-	95:5	55:45	_	-	85:15	_	

Контрольные вопросы

- 1 Требования для практического применения ТБО в виде топлива.
 - 2 Параметры, характеризующие топливо.
 - 3 Морфологический состав ТБО.

Список рекомендуемой литературы

- 1. Инженерная защита окружающей среды: учебное пособие /под ред.О. Г. Воробьева. СПб.: Издательство «Лань», 2002.
- 2. Лакокрасочные покрытия в машиностроении: справочник / под ред.М. М. Гольдберга. М.: Машиностроение, 1974.
- 3. Каралюнец А. В. Основы инженерной экологии. Термические методы обращения с отходами: У чебное пособие./ А. В. Каралюнец, Т. Н. Маслова, В. Т. Медведев. М.: Издательство МЭИ, 2000