Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 30.09.2023 16:59:39

МИНОБРНАУКИ РОССИИ

Уникальный программный какоч: 0b817ca911e6668abb13a50426639e деральное государственное бюджетное образовательное

учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра машиностроительных технологий и оборудования

УТВЕРЖДАЮ
Проректор по учебной работем
УНИВЕРСИТЕТЬ

О.Г. Ноктионова

« 16 »

АДДИТИВНЫЕ ТЕХНОЛОГИИ

Методические указания по выполнению практических работ для студентов направления подготовки 15.04.01 «Машиностроение»

Курск 2023

УДК 621.791

Составители: А.В. Олешицкий, А.Н. Гречухин

Рецензент

Кандидат технических наук, доцент С.А. Чевычелов

Аддитивные технологии: методические указания по выполнению практических работ для студентов направления подготовки 15.04.01 «Машиностроение» / Юго-Зап. гос. ун-т; сост.: А.В. Олешицкий, А.Н. Гречухин. – Курск, 2023. – 50 с.: ил. 26., табл. 14. – Библиогр.: с. 50.

Изложены методические рекомендации по выполнению практических работ по дисциплине «Аддитивные технологии». Указывается содержание теоретической части, порядок выполнения работы, методика обработки результатов и оформления практических работ.

Методические указания соответствуют требованиям ФГОС ВО направления подготовки 15.04.01 «Машиностроение».

Предназначены для студентов очной и заочной формы обучения.

Текст печатается в авторской редакции

Подписано в печать 04.09.2023 г. Формат 60х84 1/16 Усл. печ. л. 1,4. Уч.-изд. л. 1,2 Тираж 100 экз. Заказ 300. Бесплатно.

Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

Оглавление

Общие методические рекомендации	4
Содержание отчета	4
Практическая работа №1 «Изучение функциональных блоков	
оборудования для аддитивного производства»	5
Практическая работа №2 «Написание управляющих	
программ оборудования для аддитивного производства»	10
Практическая работа №3 «Изучение технологии FDM/FFF»	18
Практическая работа №4 «Изучение технологии DLP/LCD»	30
Практическая работа №5 «Изучение технологии	
DED/WAAM»	40
Библиографический список	50

Общие методические рекомендации

Перед выполнением практических работ студенты должны пройти инструктаж по технике безопасности, получить у лаборанта техническую документацию материалы и инструмент. Перед началом опытов каждый студент должен ознакомиться со схемой и устройством опытной установки и характеристиками приборов. До начала эксперимента необходимо подготовить таблицы для записи показаний приборов, изменений и результатов расчетов. После окончания работы рабочее место, оборудование и аппаратура приводятся в порядок и сдаются лаборанту

Для более полного ответа на контрольные вопросы во время практических работ необходимо пользоваться учебной литературой и конспектом лекций.

Содержание отчета

Отчёт составляется после выполнения студентом практической работы и должен включать:

- 1. Титульный лист с названием работы;
- 2. Цель практической работы;
- 3. Оборудование, ПО, использовавшиеся при выполнении практической работы;
- 4. Пошаговое выполнение (включая эскизы и схемы, необходимые расчетные формулы и расчеты, экспериментальные данные в виде таблиц, обработку результатов опытов);
 - 5. Заключение;
 - 6. Ответы на контрольные вопросы.

После подготовки отчёта и проверки его преподавателем, студент может быть допущен к его защите. Студенты, не предоставившие отчёт или выполнившие его неверно, не могу быть допущены к защите.

Практическая работа №1 «Изучение функциональных блоков оборудования для аддитивного производства»

1. Цель работы

Изучение функциональных блоков оборудования для аддитивного производства.

2. Общие положения

2.1 Краткие теоретические сведения

Аддитивное производство (АП) (аддитивный технологический процесс) (additive manufacturing) – процесс изготовления деталей, который основан на создании физического объекта по электронной геометрической модели путем добавления материала, как правило, слой за слоем, в отличие от вычитающего (субтрактивного) производства (механической обработки) и традиционного формообразующего производства (литья, штамповки) [1].

Оборудование для аддитивного производства — станок с числовым программным управлением, реализующий только аддитивные операции, то есть добавляющий порции материала к заготовке.

Таблица 1 — Классификация функциональных блоков оборудования для аддитивного производства

Блок /параметр	Тип / значение			
	Аппаратная часть			
Рама	Цельная			
	Сборная			
Корпус	Открытый			
	Закрытый			
Компоновка	Горизонтальная			
	Вертикальная			
	Наклонная			
Кинематика	Картезианская – основаны на декартовой системе координат, оси X, Y и Z («Prusa», консольный принтер, H-bot, Core-XY, «Makerbot», «Ultimaker», Core-XYZ, IDEX, конвейерный тип)			
	Параллельная — все оси одновременно отвечают за положение печатающей рабочего инструмента в пространстве (дельта роботы, гексаподы)			
	Полярная – отличие в замене декартовых координат на полярные в горизонтальной плоскости			

	Роботизированные манипуляторы
	SCARA – основана на перемещение рабочего инструмента в
	горизонтальной плоскости (Х и У) за счет сочленения рычажного
	механизма. Перемещение рабочего инструмента вдоль оси Z вместе
	с этим механизмом происходит по вертикальной направляющей
	Гибридная – сочетает два и более вида кинематики
Количество осей	3 оси
Количество осеи	
	4 оси
	5 осей
TT	6 и более осей
Направляющие	Качения (роликовые, шариковые)
	Скольжения (гидростатические, гидродинамические,
	аэростатические, аэродинамические)
3.6	Комбинированные
Механическая	Вращательная (зубчатая, планетарная, волновая, цепная, ременная,
передача	фрикционная, циклоидальная, карданная, муфты)
	Прямолинейная (реечная, передача винт-гайка)
	Гальванометрические сканаторы (для лазеров)
Двигатели	Шаговые двигатели (ШД)
	Серводвигатели
Рабочий стол	Неподвижный
	Подвижный
Рабочий	Устройство подачи материала (экструдер, форсунки, устройство
инструмент	подачи проволоки, порошка)
	Устройство передачи энергии материалу (нагреватель, электрод,
	лазер, электронно-лучевая пушка, УФ-излучатель)
Устройства	Концевые выключатели (оптические, индуктивные, механические)
обратной связи	Энкодеры вращательные и линейные, накапливающие
	(инкрементные) и абсолютные (позиционные) (оптические,
	резистивные, магнитные, индуктивные, механические)
	Терморезисторы, термопары
	Видеокамеры, лидары
Устройства	Контроллер
управления	Устройство ручного ввода информации
	Реле
	Драйверы двигателей
Устройства	Постоянного тока
питания	Переменного тока
	Комбинированное питание
	Цельное
	Раздельное
Вспомогательные	Системы нагрева (электронагреватели, термокамера)
системы	Системы охлаждения (вентиляторы, водяное охлаждение, элементы
	Пельтье)
	Системы коммуникации (провода, подача газов, жидкостей)
	Программная часть
Программное	Для формирования и реализации управляющей программы
обеспечение (ПО)	
	Технические характеристики
Производитель	Наименование
Модель	Наименование

Страна	Наименование
Материал печати	Тип
Технология	Тип
печати	
Область	XxYxZ mm
построения	
Скорость	мм/с; мм/мин; мм/ч
построения	
Электропитание	V, Hz
Габариты товара	XxYxZ mm
Вес нетто	КГ

перемещений для наиболее Расчет часто используемых передач оборудовании механических В ДЛЯ аддитивного производства:

– расчет количества шагов на 1 оборот ШД

$$x = \frac{360}{\alpha \cdot y} [\text{шаг./об.}],$$

где α – величина шага ШД;

у – разрешение микрошага;

— расчет количества шагов зубчатой передачи $s = \frac{x}{m \cdot z} \, [\text{шаг./мм.}],$

$$s = \frac{x}{m \cdot z} \left[\text{mar./mm.} \right],$$

где т – модуль зубчатого колеса, мм;

z – количество зубьев зубчатого колеса;

- расчет количества шагов реечной передачи

$$s = \frac{1}{m \cdot z} [\text{mar./mm.}],$$

где т – модуль зубчатого колеса, мм;

z – количество зубьев зубчатого колеса;

- расчет количества шагов ременной передачи

$$s = \frac{x}{t \cdot z} [\text{mar./mm.}],$$

где t – шаг ремня, мм;

z – количество зубьев шкива;

- расчет количества шагов передачи винт-гайка

$$s = \frac{x}{t \cdot z} [\text{mar./mm.}],$$

где t – шаг резьбы, мм;

z – количество заходов резьбы.

2.2 Описание лабораторного стенда

Рисунок 1 – 3D принтер ЛенГрупп NEO

Рисунок 2 – 3D принтер Anycubic Photon M3

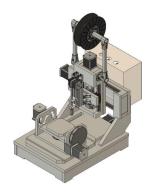


Рисунок 3 – 3D принтер ЮЗГУ WAAM

3. Порядок выполнения работы

- 3.1 Ознакомиться с техникой безопасности и правилами поведения в лаборатории;
- 3.2 Выполнить расчеты в соответствии с заданием преподавателя;
- 3.3 Внимательно изучить устройство и правила эксплуатации 3D принтера;
 - 3.4 Внимательно изучить ПО;

3.5 Выполнить классификацию функциональных блоков оборудования для аддитивного производства (Таблица 2);

Таблица 2 – Форма таблицы классификации

Блок / параметр	Тип / значение				
Аппарат	ная часть				
Программ	иная часть				
Технические х	Технические характеристики				

3.6 Оформить отчёт о выполнении практической работы.

4. Контрольные вопросы

- 4.1 Дайте определение аддитивному производству (АП) (аддитивный технологический процесс) (additive manufacturing);
- 4.2 Дайте определение оборудованию для аддитивного производства;
- 4.3 Какие существуют функциональные блоки оборудования для аддитивного производства?

Практическая работа №2 «Изучение языка программирования G-code оборудования для аддитивного производства»

1. Цель работы

Изучение языка программирования G-code оборудования для аддитивного производства.

2. Общие положения

2.1 Краткие теоретические сведения

G-код (G-code) – условное именование языка программирования устройств с числовым программным управлением (ЧПУ). Был создан компанией Electronic Industries Alliance в начале 1960-х. Окончательная доработка была одобрена в феврале 1980 года как стандарт RS274D. Комитет ISO утвердил G-код как стандарт ISO 6983-1:2009, Госкомитет по стандартам СССР – как ГОСТ 20999-83. В советской технической литературе G-код обозначается как код ИСО 7-бит (ISO 7-bit), это вызвано тем, что G-код кодировали на 8-дорожечную перфоленту в коде ISO 7-bit (разработан для представления информации УЧПУ в виде машинного кода так же, как и коды AEG и PC8C), восьмая дорожка использовалась для контроля чётности.

Производители систем УЧПУ (CNC), как правило, используют ПО управления станком, для которого написана (оператором) программа обработки в качестве осмысленных команд управления, используется G-код в качестве базового подмножества языка программирования, расширяя его по своему усмотрению.

G-code — это также стандартный язык, используемый многими моделями 3D-принтеров для управления процессом печати. Файлы GCODE могут быть открыты с помощью различных программ 3D-печати, например, Simplify3D, GCode Viewer, а также с помощью текстового редактора, поскольку их содержимое представляет собой обычный текст.

Отличие G-code оборудования для аддитивного производства от классического G-code часто состоит лишь в наличии уникальных команд для того или иного типа устройств.

Таблица 3 – Основные команды G-code

	лица 5 — Основные команды				
Команда	Описание	G :		менени	
		G-code	Mach3	grbl	Marlin
	Основные ко				
G00	Ускоренное перемещение	Да	Да	Да	Да
	инструмента (холостой ход)				
G01	Линейная интерполяция	Да	Да	Да	Да
G02	Круговая интерполяция по часовой стрелке	Да	Да	Да	Да
G03	Круговая интерполяция против часовой стрелки	Да	Да	Да	Да
G04	Задержка выполнения программы	Да	Да	Да	Да
G10	Переключение абсолютной	Да	Да	Да	Да
	системы координат				(Откат пластика)
G11	Подача пластика	Нет	Нет	Нет	Да
G12	Круглый карман по часовой	Нет	Да	Нет	Да
	стрелке				(Очистка сопла)
G13	Круглый карман против часовой стрелки	Нет	Да	Нет	Нет
G15	Переход в полярную (цилиндрическую) систему координат	Да	Да	Нет	Нет
G16	Отмена полярной системы координат	Да	Да	Нет	Нет
G17	Выбор рабочей плоскости Х-Ү	Да	Да	Да	Да
G18	Выбор рабочей плоскости Z-X	Да	Да	Да	Да
G19	Выбор рабочей плоскости Ү-Х	Да	Да	Да	Да
G20	Режим работы в дюймовой системе	Да	Да	Да	Да
G21	Режим работы в метрической системе	Да	Да	Да	Да
G22	Активировать установленный предел перемещений	Да	Нет	Нет	Нет
G28	Вернуться на референтную точку	Да	Да	Да	Да
G28.1	Базовые оси	Нет	Да	Да	Нет
G29	Создание сетки кривизны стола	Нет	Нет	Нет	Да
G30	Поднятие по оси Z на точку смены	Да	Да	Да	Да
	инструмента		, ,	, ,	(одиночный Z-щуп)
G30.1	Установка заранее определенной позиции	Нет	Нет	Да	Нет
G31	Перемещение осей в заданную позицию	Нет	Да	Нет	Да (док-сани)
G38.2	Проба в направлении рабочего стола, остановка при контакте, ошибка в случае неудачи	Нет	Нет	Да	Да
G38.3	Проба в направлении рабочего стола, остановка при контакте	Нет	Нет	Да	Да

G38.4	Проба в направлении от рабочего	Нет	Нет	Да	Да
	стола, остановка при разрыве				
	контакта, ошибка в случае неудачи				
G38.5	Проба в направлении от рабочего	Нет	Нет	Да	Да
	стола, остановка при разрыве				
G 10	контакта				**
G40	Отмена компенсации радиуса инструмента	Да	Да	Да	Нет
G41	Компенсировать радиус	Да	Да	Нет	Нет
	инструмента слева от траектории				
G42	Компенсировать радиус	Да	Да	Нет	Да
	инструмента справа от траектории				(Переход к
					координатам
G 10	Y4		**	**	сетки)
G43	Компенсировать длину	Да	Нет	Нет	Нет
	инструмента в положительную				
C 42 1	сторону	T.T.	7.7	17	11
G43.1	Смещение длины инструмента	Нет	Нет	Да	Нет
G44	Компенсировать длину	Да	Нет	Нет	Нет
	инструмента в отрицательную				
G49	сторону	По	По	По	Нет
U49	Отмена компенсации длины	Да	Да	Да	пег
G50	инструмента Сброс всех масштабирующих	Да	Да	Нет	Нет
030	коэффициентов в 1,0	да	да	1101	1101
G51	Назначение масштабов	Да	Да	Нет	Нет
G53	Переход в систему координат	<u>Да</u>	Да	Да	Да
	станка	Α	7	7"	7
G54-	Переключиться на заданную	Да	Да	Да	Да
G59	оператором систему координат	, ,	, ,	, ,	, ,
G61-	Переключение режимов Точный	Да	Да	Нет	Да
G64	Стоп/Постоянная скорость				(Сохранить
	-				текущую
					позицию /
					Возврат в
					сохраненную
					позицию)
G68	Поворот координат на нужный	Да	Нет	Нет	Нет
G70	угол Цикл продольного чистового	Да	Нет	Нет	Нет
070	точения	да		1101	1101
G71	Цикл многопроходного	Да	Нет	Нет	Нет
	продольного чернового точения	r 1			
G80	Отмена циклов сверления,	Да	Да	Да	Да
	растачивания, нарезания резьбы				(Отмена
	метчиком и т. д.				текущего
					режима
					движения)
G81	Цикл сверления	Да	Да	Нет	Нет
G82	Цикл сверления с задержкой	Да	Да	Нет	Нет
G83	Цикл прерывистого сверления	Да	Да	Нет	Нет

G84	Цикл нарезания резьбы	Да	Да	Нет	Нет
G85	Стандартный цикл развёртывания	Нет	Да	Нет	Нет
G86	Предполагаемый постоянный цикл	Нет	Да	Нет	Нет
	растачивания				
G87	Предполагаемый постоянный цикл	Нет	Да	Нет	Нет
	обратного растачивания				
G88	Предполагаемый постоянный цикл	Нет	Да	Нет	Нет
	растачивания				
G89	Постоянный цикл растачивания	Нет	Да	Нет	Нет
G90	Задание абсолютных координат	Да	Да	Да	Да
	опорных точек траектории				
G91	Задание координат	Да	Да	Да	Да
	инкрементально относительно				
	координат последней введённой				
	опорной точки				
G91.1	Режимы расстояния Arc IJK	Нет	Нет	Да	Нет
G92	Координаты смещения и заданные	Да	Да	Да	Да
	параметры				
G92.1	Отмена G92 и параметров	Нет	Да	Да	Нет
G92.2	Отмена G92 с сохранением	Нет	Да	Нет	Нет
	параметров				
G92.3	Отмена параметров	Нет	Да	Нет	Нет
G93	Обратный режим подачи времени	Нет	Да	Да	Нет
G94	F (подача) – в формате мм/мин	Да	Да	Да	Нет
G95	F (подача) – в формате мм/об	Да	Да	Нет	Нет
G98	Возврат к исходному уровню	Нет	Да	Нет	Нет
	после постоянных циклов		, ,		
G99	После каждого цикла не отходить	Да	Да	Нет	Нет
	на <проходную точку>				
	Технологически	е команді	Ы		
M00	Приостановить работу станка до	Да	Да	Да	Да
	нажатия кнопки <старт> на пульте				
	управления, так называемая				
	<безусловная технологическая				
	остановка>				
M01	Приостановить работу станка до	Да	Да	Да	Да
	нажатия кнопки <старт>, если				
	включён режим подтверждения				
	остановки				
M02	Конец программы, без сброса	Да	Да	Да	Да
	модальных функций				
M03	Начать вращение шпинделя по	Да	Да	Да	Да
	часовой стрелке	_			
M04	Начать вращение шпинделя	Да	Да	Да	Да
7 -0 :	против часовой стрелки				
M05	Остановить вращение шпинделя	Да	Да	Да	Да
M06	Сменить инструмент	Да	Да	Нет	Нет
M07	Включить дополнительное	Да	Да	Да	Да
	охлаждение	_			
M08	Включить основное охлаждение	Да	Да	Да	Да
M09	Выключить охлаждение	Да	Да	Да	Да

M13	Включить одновременно охлаждение и вращение шпинделя	Да	Нет	Нет	Нет
	по часовой стрелке				
M14	Включить одновременно	Да	Нет	Нет	Нет
	охлаждение и вращение шпинделя				
	против часовой стрелки				
M17	Возврат из подпрограммы или из	Да	Нет	Нет	Да
	макроса (действие аналогично				(Включить/П
	M99)				одать питание
					на все
					шаговые
M10	VEnant not a new many (- ×	II.	Ham	Ham	двигатели)
M18	Убрать ток с двигателей (действие	Нет	Нет	Нет	Да
M20	аналогично М84) Список файлов на SD карте	Нет	Нет	Нет	По
M21	Инициализация SD карты	Нет	Нет	Нет	Да Да
M22	Освобождение SD карты	Нет	Нет	Нет	Да
M23	Выбор файла на SD карте	Нет	Нет	Нет	Да
M24	Начало/продолжение печати с SD	Нет	Нет	Нет	Да
17124	карты	1101	1101	1101	Да
M25	Замена инструмента вручную	Да	Нет	Нет	Да
14123	Samena mierpywenia bpy myte	Ди	1101		(Пауза печати
					с SD карты)
M28	Начать запись на SD карту	Нет	Нет	Нет	Да
M29	Остановить запись на SD карту	Нет	Нет	Нет	Да
M30	Конец программы, со сбросом	Да	Да	Да	Да
	модальных функций и изменением	, ,	, ,		(Удалить
	указателя номера кадра на начало				файл с SD
	программы				карты)
M32	Выбрать файл и начать печать с	Нет	Нет	Нет	Да
	SD карты				
M47	Повторить программу с первой	Нет	Да	Нет	Нет
	строки				
M48	Разрешить переопределять	Да	Да	Нет	Да
	скорость подачи				(Проверка
					повторяемост
N/40	2	П	п	TT	и зонда)
M49	Запретить переопределение	Да	Да	Нет	Нет
M80	скорости подачи Включить блок питания ATX	Нет	Нет	Нет	По
M81	Выключить блок питания АТХ	Нет	Нет	Нет	Да Да
M82		Нет	Нет	Нет	Да
14102	Установить экструдер в абсолютный режим	1101	1101	1101	Да
M83	Установить экструдер в	Нет	Нет	Нет	Да
1,105	относительный режим	1101			<u> </u>
M84	Перевести моторы в режим	Нет	Нет	Нет	Да
	ожидания				
M92	Установить количество шагов по	Нет	Нет	Нет	Да
	осям на единицу	_			
M97	Запуск подпрограммы,	Да	Нет	Нет	Нет
	находящейся в той же программе			<u> </u>	
	* *				

				1 1	
M98	Запуск подпрограммы,	Да	Да	Нет	Нет
	находящейся отдельно от				
	основной программы				
M99	Конец подпрограммы и переход в	Да	Да	Нет	Нет
	вызвавшую программу				
M104	Установить температуру	Нет	Нет	Нет	Да
	экструдера и НЕ ждать				
M105	Получить температуру экструдера	Нет	Нет	Нет	Да
M106	Включить вентилятор обдува	Нет	Нет	Нет	Да
	детали				
M107	Выключить вентилятор	Нет	Нет	Нет	Да
M108	Отменить нагрев	Нет	Нет	Нет	Да
M109	Установить температуру	Нет	Нет	Нет	Да
	экструдера и ждать				
M110	Установить номер текущей строки	Нет	Нет	Нет	Да
M112	Экстренная остановка	Нет	Нет	Нет	Да
M114	Получение текущих позиций	Нет	Нет	Нет	Да
M115	Получить версию прошивки	Нет	Нет	Нет	Да
M119	Получить статус концевиков	Нет	Нет	Нет	Да Да
M140	Установить температуру стола и	Нет	Нет	Нет	
W1140	Установить температуру стола и НЕ ждать	1101	1101	1101	Да
M190	Установить температуру стола и	Нет	Нет	Нет	Да
WII)	ждать	1101	1101	1101	да
M200	Установить РЕАЛЬНЫЙ диаметр	Нет	Нет	Нет	Да
W1200	прутка филамента.	1101	1101	1101	Да
M201	Установка максимальных	Нет	Нет	Нет	Да
W1201	ускорений (в мм/c ²)	1101	1101	1101	Да
M202	Установка максимального	Нет	Нет	Нет	Да
101202	ускорения для	1101	1101	1101	Да
	простого(холостого) перемещения				
M203	Установка максимальной скорости	Нет	Нет	Нет	По
W1203	(в мм/с)	1101	1101	1101	Да
M204	Установка ускорений (в мм/с ²)	Нет	Нет	Нет	По
h +	• • • • • • • • • • • • • • • • • • • •				Да
M205	Установка максимальных рывков	Нет	Нет	Нет	Да
14206	(jerk) (мм/сек)	TT	TT	TT	т
M206	Установка смещений	Нет	Нет	Нет	Да
14207	относительно концевиков (ноля)	TT	7.7	11	П
M207	Установка параметров ретракта	Нет	Нет	Нет	Да
14200	(втягивание прутка)	T.T.	7.7	11	П
M208	Параметры восстановления подачи	Нет	Нет	Нет	Да
3.5000	прутка после ретракта	**	**	17	
M209	Вкл/выкл автоматического	Нет	Нет	Нет	Да
3.5040	ретракта	7.7	**	17	-
M218	Установка смещения головы	Нет	Нет	Нет	Да
M301	Записать PID параметры хотэнда	Нет	Нет	Нет	Да
M302	Разрешить выдавливание при	Нет	Нет	Нет	Да
	температуре Snnn и выше				
M303	Запустить процесс PID калибровки	Нет	Нет	Нет	Да
					, ,
M304	для стола/хотэнда Записать PID параметры стола	Нет	Нет	Нет	Да

M404	Установка номинальной толщины филамента 1,75 или 3	Нет	Нет	Нет	Да
M420	Вкл/выкл использования сетки компенсации кривизны стола (MESH_BED_LEVELING)	Нет	Нет	Нет	Да
M500	Сохранение данных в EEPROM	Нет	Нет	Нет	Да
M504	Чтение данных из EEPROM	Нет	Нет	Нет	Да
M600	Команда для автоматической	Нет	Нет	Нет	Да
	смены филамента				
	Параметры і	команд			
X	Перемещение инструмента в	Да	Да	Да	Да
	заданную точку с заданной				
	координатой по оси Х				
Y	Аналогично Х по оси Ү	Да	Да	Да	Да
Z	Аналогично Х по оси Z	Да	Да	Да	Да
A	Аналогично X по оси А	Да	Да	Да	Да
В	Аналогично X по оси В	Да	Да	Да	Да
С	Аналогично X по оси С	Да	Да	Да	Да
Е	Аналогично X по оси Е	Нет	Нет	Нет	Да
P	Время задержки в миллисекундах	Да	Да	Да	Да
О	Метка подпрограммы с указанным	Да	Да	Нет	Да
	номером	, ,	, ,		, ,
F	Линейная скорость перемещения инструмента	Да	Да	Да	Да
S	Частота вращения шпинделя в	Да	Да	Да	Да
T	оборотах в минуту	Π.	Па	Па	П.
1	Указание номера инструмента в	Да	Да	Да	Да
R	команде смены инструмента	По	По	По	По
K	Расстояние отвода инструмента в повторяющихся циклах обработки	Да	Да	Да	Да
D	1 1	Да	Да	Нет	Да
	Параметр коррекции радиуса выбранного инструмента	да	да	1101	Да
L	Число вызовов подпрограммы,	Да	Да	Да	Да
	число вызовов подпрограммы,	да	Да	да	да
	количество циклов в				
	повторяющихся операциях				
I	Указание смещения по оси Х	Да	Да	Да	Да
	координаты центра дуги при	Α"	7"	Α"	Α"
	круговой интерполяции				
	перемещения инструмента (см				
	G02, G03)				
J	Аналогично параметру I для оси Y	Да	Да	Да	Да
K	Аналогично параметру I для оси Z	Да	Да	Да	Да
N	Номер кадра	Да	Да	Да	Да

2.2 Описание лабораторного стенда

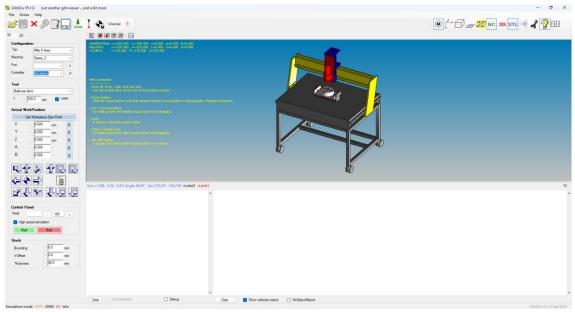


Рисунок 4 – ПО GrblGru v5.1.0

3. Порядок выполнения работы

- 3.1 Ознакомиться с техникой безопасности и правилами поведения в лаборатории;
- 3.2 Составить управляющую программу в соответствии с заданием преподавателя;
- 3.3 Внимательно изучить устройство и правила эксплуатации 3D принтера;
 - 3.4 Внимательно изучить ПО;
- 3.5 Выполнить симуляцию составленной управляющей программы, при необходимости внести коррективы (Таблица 2);

Таблица 3 – Форма отчетной таблицы

Задание	G-code

3.6 Оформить отчёт о выполнении практической работы.

4. Контрольные вопросы

- 4.1 Дайте определение G-code;
- 4.2 Какие существуют виды команд в G-code?
- 4.3 Какие существуют параметры команд в G-code?

Практическая работа №3 «Изучение технологии FDM/FFF»

1. Цель работы

Изучение технологии FDM/FFF.

2. Общие положения

2.1 Краткие теоретические сведения

Экструзия материала (material extrusion) — процесс АП, в котором материал выборочно подается через сопло или жиклер [1]. Процесс экструзии материала приведен на рисунке 5.

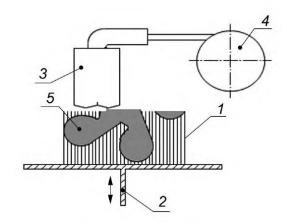


Рисунок 5 — Схема процесса экструзии материала: 1 — поддерживающая структура; 2 — строительная платформа и подъемник; 3 — подогреваемое сопло; 4 — поставка сырья; 5 — получаемый продукт

Для данного процесса необходимо следующее оборудование: строительная платформа и подъемник, подогреваемое сопло [2].

Сырье: волокно или пасты, как правило, термопласты и структурная керамика.

Механизм связи: химическая и/или термическая реакция связывания.

Источник активации: тепло, ультразвук или химическая реакция между компонентами.

Вторичная обработка: удаление поддерживающей структуры [3].

(Fused Deposition Modeling) – метод послойного FDM наплавления с использованием пластиковой нити или гранул. Принцип работы основан на изготовлении объекта послойного нанесения предварительно расплавленного гранулированного пластика или расплавленной пластиковой нити. Другое название этой технологии – FFF (Fused Filament Fabrication) [4].

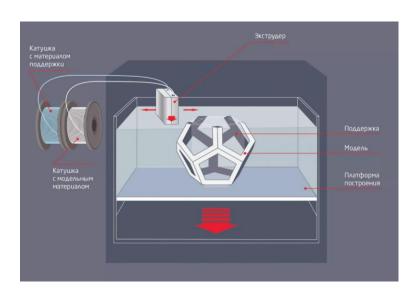


Рисунок 6 – Схема процесса FDM/FFF

Технология FDM/FFF — наиболее распространенная форма 3Dпечати потребительского уровня, чему способствовало распространение любительских 3D-принтеров.

Технология FDM/FFF хорошо подходит для изготовления базовых экспериментальных моделей, а также для быстрого и недорогого создания прототипов простых изделий, например, деталей, которые обычно подвергаются механической обработке.

Технология FDM/FFF потребительского класса имеет самое низкое разрешение и точность по сравнению другими процессами 3D-печати из пластмасс, из-за чего она не подходит для печати сложных конструкций или моделей с замысловатыми элементами. Повысить качество поверхности моделей, напечатанных по этой технологии, можно с помощью химических и механических процессов полировки. Решить эти проблемы могут промышленные 3D-принтеры на базе технологии FDM/FFF, которые предлагают более широкий ассортимент инженерных термопластов, но и стоят значительно дороже.

Каждый слой формируется термопластичной нитью. Иногда, если слои не полностью прилегают друг к другу, между ними могут остаться пустоты. В результате получаются *анизотропные* модели, что важно учитывать при проектировании изделий, которые должны выдерживать нагрузку и быть устойчивыми к натяжению [5].

Таблица 4 – Материалы технологии FDM/FFF

	CONTRACTOR TO THE TENT	
Материалы	Характеристики	Применение
ABS (акрилонитрил-бутадиен-	Прочный и долговечный	Функциональные прототипы
стирол)	Термостойкий и	
	ударопрочный	
	Потребность в	
	подогреваемой платформе	
	для печати	
	Потребность в вентиляции	
PLA (полимолочная кислота)	Самый простой материал	Концептуальные модели
	для печати по технологии	Реалистичные прототипы
	FDM	
	Прочный, жесткий, но	
	хрупкий	
	Менее устойчивый к	
	воздействию температуры и	
	химических веществ	
	Биоразлагаемый	
	Не имеет запаха	
PETG	Совместим с низкими	Применение для
(полиэтилентерефталатгликоль)		обеспечения
	ускоренного производства	водонепроницаемости
	Устойчивый к воздействию	Компоненты с
	влаги и химических веществ	соединениями на защелках
	Высокая прозрачность	
	Может быть совместим с	
	пищевыми продуктами	
Nylon (нейлон)	Жесткий, долговечный и	Функциональные прототипы
	легкий	Износостойкие модели
	Прочный и частично гибкий	
	Термостойкий и	
	ударопрочный	
	Сложный для печати по	
	технологии FDM	
TPU (термополиуретан)	Гибкий и поддающийся	Гибкие прототипы
	растяжению	
	Ударопрочный	
	Превосходно гасит	
	вибрации	
PVA (поливиниловый спирт)	Материал для создания	Материал для
	растворимых	поддерживающих структур
	поддерживающих структур	
	Растворяется в воде	
·		

HIPS (Ударопрочный	Материал для создания	Материал для
полистирол)	растворимых	поддерживающих структур
	поддерживающих структур,	
	наиболее часто	
	используемый с АБС	
	Растворяется в D-лимонене	
Композитные материалы	Прочный, жесткий и	Функциональные прототипы
(углеродное волокно, кевлар,	невероятно твердый	Зажимные и крепежные
оптоволокно)	Совместим только с	приспособления,
	некоторыми дорогими	инструментальная оснастка
	промышленными 3D-	
	принтерами на базе	
	технологии FDM	

Филамент — это необходимое сырье для FDM/FFF 3D принтеров и на сегодняшний день существуют тысячи различных филаментов, каждый из которых изготавливается с использованием различных материалов и добавок. Но всех их объединяет один способ изготовления: с помощью экструдера.

В данном случае экструдеры для производства филаментов — это не то же самое, что экструдер в FDM/FFF 3D принтерах. Это устройства, которые расплавляют гранулы пластика и проталкивают расплавленный пластик через сопло, создавая нитевидную форму филамента для 3D-печати.

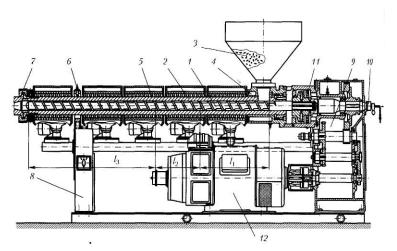


Рисунок 7 — Принципиальное устройство одношнекового экструдера: 1 — шнек, 2 — материальный цилиндр, 3 — бункер, 4 — каналы, 5 — зонные кольцевые нагреватели, 6 — термопары, 7 — формующая головка, 8 — массивный корпус, 9 — механическая передача, 10 — патрубок для отвода охлаждающей воды, 11 — подшипниковый узел, 12 — электродвигатель

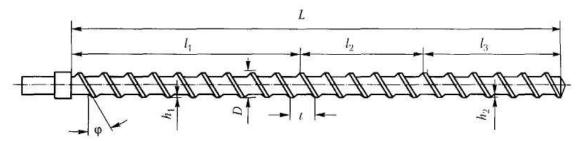


Рисунок 8 – Шнек экструдера однозаходный

D, мм – диаметр шнека с гребнем;

L, мм – длина шнека

z, мм – радиальный зазор между гребнями шнека и рабочим цилиндром;

 $h_1 = h_2 = h_3$, мм – глубина винтового канала шнека (постоянная);

 δ , мм – толщина гребня шнека;

t, мм – шаг винтовой нарезки шнека;

 ϕ , $^{\circ}$ – угол винтовой нарезки;

і – число заходов винтовой нарезки;

 n, c^{-1} — частота вращения шнека;

L/D – отношение длины шнека к его диаметру;

 1_1 – питающая зона шнека, м;

 l_2 – зона сжатия шнека, м;

13 – зона нагнетания (дозирования) шнека, м.

Расчёт формующей головки экструдера

Экструзионная головка экструдера филамента состоит из трёх участков по ходу движения расплава полимера:

- цилиндрический участок L₁,
- конический участок L₂,
- цилиндрический участок L_3 .

Сопротивление канала формующей головки течению расплава определим как:

$$W = \frac{1}{k} \left[c M^3 \right],$$

где k — коэффициент геометрической формы канала, который рассчитывается для каждого участка канала, а затем вычисляется суммарный коэффициент:

$$K_{\rm r} = \frac{1}{\frac{1}{k_1} + \frac{1}{k_2} + \dots + \frac{1}{k_i}},$$

Коэффициент геометрической формы первого (цилиндрического) участка канала вычислим по формуле:

Коэффициент геометрической формы первого (конического) участка канала вычислим по формуле:

$$k_1 = \frac{\pi d^4}{128L} [\text{cm}^3],$$

где d_1 – диаметр первого (цилиндрического) участка канала, см; L_1 – длина первого (цилиндрического) участка канала, см.

Коэффициент геометрической формы третьего (цилиндрического) участка канала вычислим по формуле:

$$k_2 = \frac{3\pi D^3 d^3}{128L(D^2 + Dd + d^2)} [\text{cm}^3],$$

где D_2 и d_2 диаметры конуса на входе и выходе расплава, см; L_2 – длина второго участка канала, см.

Коэффициент геометрической формы третьего (сужающегося) участка канала вычислим по формуле:

$$k_3 = \frac{\pi d^4}{128L} [\text{cm}^3],$$

где d_3 – диаметр первого (цилиндрического) участка канала, см; L_3 – длина третьего (цилиндрического) участка канала, см.

Рассчитав значения коэффициентов геометрической формы для всех участков, определим общий коэффициент геометрической формы канала, а затем вычислим сопротивление канала течению расплава.

Расчёт производительности экструдера

На производительность экструдера оказывают влияние следующие факторы:

- длина дозирующей зоны шнека;
- геометрические параметры шнека;
- число оборотов шнека;
- конструкция (сопротивление) формующей головки.

Ha основе гидродинамического подхода К анализу экструдера взаимодействия перерабатываемым элементов c дозирующей зоне экструдера различают материалом в три компонента потока движения расплава:

- прямой (вынужденный) поток, движущийся по межвитковому пространству в направлении от зоны загрузки к зоне дозирования вдоль оси шнека и возникающий вследствие вращения шнека относительно цилиндра;
- обратный поток расплава, движущийся в противоположном направлении и вызванный перепадом давления по длине шнека;

 поток утечек расплава, движущийся в зазоре между наружной поверхностью витков шнека и внутренней поверхностью материального цилиндра в направлении от зоны дозирования.

С учетом вышесказанного, объёмную производительность экструдера определим как:

$$Q = \frac{\alpha kn}{k+\beta+\gamma} \left[M^3/c \right],$$

где k – коэффициент геометрической формы канала формующей головки;

n — частота вращения шнека, c^{-1} ;

 α – константа прямого потока, м³;

 β – константа обратного потока, м³;

 γ – константа потока утечек, м³.

Константы прямого и обратного потоков расплавов, а также константу потока утечек определим, соответственно, по формулам: $\alpha = \frac{m D h(t-i\delta) \cos \varphi}{2} [M^3];$

$$\alpha = \frac{\pi Dh(t - i\delta)\cos\varphi}{2} [M^3];$$

$$\beta = \frac{h^2(t - i\delta)\cos 2\varphi}{24l_3} [M^3];$$

$$\gamma = \frac{\pi^2 D^2 z^2 \tan\varphi\sin\varphi}{10L\delta} [M^3],$$

где t – шаг винтовой нарезки шнека, м;

h – глубина винтового канала, м;

і – число заходов винтовой нарезки;

 δ – толщина гребня шнека, м;

z = 0,001 м — радиальный зазор между гребнем шнека и рабочим цилиндром;

D – диаметр шнека, м;

13 – длина зоны нагнетания (дозирования), м;

L – длина шнека, определяемая из отношения L/D, м;

 ϕ — угол винтовой нарезки шнека, °, который определим по формуле:

 $\varphi = \arctan\left(\frac{t}{\pi D}\right)[\circ],$

где t – шаг винтовой нарезки шнека, мм.

Завершив расчеты констант α , β и γ , определим объёмную производительность экструдера с размерностью м³/с, а затем ту же характеристику с размерностью кг/ч по формуле:

$$Q' = 3600 \cdot Q\rho \left[\kappa \epsilon / 4 \right],$$

где $\rho = 780~{\rm kr/m^3} - {\rm плотность}$ расплава полипропилена при температуре 200 °C [6].

Объёмная производительность экструдера FDM/FFF 3D принтера является параметром, специфичным для каждого хотэнда, и варьируется в зависимости от используемого материала.

Объёмная производительность экструдера FDM/FFF 3D принтера связана с тремя переменными:

- диаметр сопла;
- высота слоя;
- максимальная скорость печати.

В простейшем виде объем измеряется длиной, шириной и высотой линии (рисунок 1).

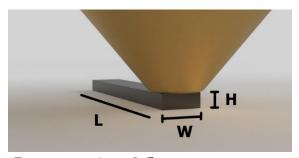


Рисунок 9 – Объем материала

Однако на самом деле нить не выдавливается таким образом и не является прямоугольной линией, как показано выше. Более точный способ представления линии изображен на рисунке 2 (обратите внимание на закругленные края линии).

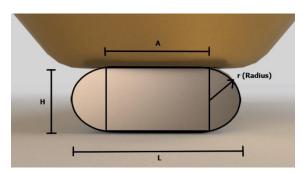


Рисунок 10 – Формула «стадиона»

Таким образом, более точная формула, учитывающая закругленный край выдавленной линии — это так называемая формула «стадиона»:

$$S = \pi \cdot r^2 + 2 \cdot r \cdot a \text{ [mm}^2\text{]},$$

где a — длина прямой стороны, мм; r — радиус скругления, мм.

С учетом вышесказанного, объёмную производительность экструдера определим как:

$$Q = S \cdot V [MM^3/c],$$

где V – скорость печати, мм/с.

Соответственно, максимальная скорость печати ограничивается максимальной объемной скоростью, характерной для его экструдера.

Например, наиболее распространенная максимальная объемная производительность настольного принтера при печати ABS составляет около 10 мм³/с, что означает, что теоретическая максимальная скорость, с которой можно успешно печатать ABS, используя стандартную конфигурацию, основанную на высоте слоя 0,2 мм и сопле. 0,4 мм будет всего 125 мм/с. Если мы также используем другую распространенную конфигурацию, например сопло 0,6 мм и высоту слоя 0,3 мм, максимальная скорость печати упадет до 55 мм/с. Использование более высоких скоростей повлечет за собой высокий риск пропуска экструзии и расслоения слоев.

2.2 Описание лабораторного стенда

Рисунок 11 – 3D принтер ЛенГрупп NEO

Таблица 5 – Технические характеристики 3D принтера ЛенГрупп NEO

Jichi pyilli NLO		
Общие		
Производитель	ЛенГрупп	
Модель	NEO	
Страна	Россия	

T—		
Пластиковая нить		
FDM/FFF		
Открытый		
1,75 мм		
1 шт.		
до 260 °C		
до 150 °C		
210х210х180 мм		
до 150 мм/с		
от 20 мкм		
Да		
0,4 мм		
PLA, PETG, ABS, SBS, HIPS, Nylon, TPU		
STL, OBJ		
Windows		
Ultimaker Cura, Repetier-Host		
Дополнительная информация		
USB (Флеш-накопитель), USB (Кабель)		
220V, 50Hz		
510х440х395мм		
7.5 кг		

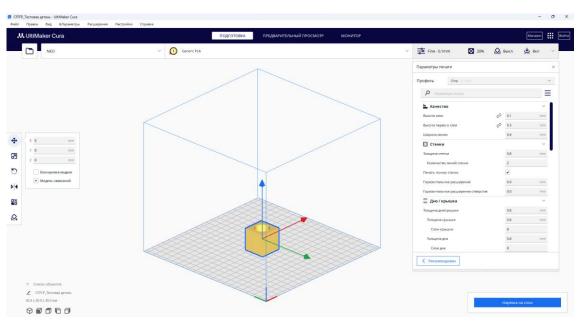


Рисунок 12 – ПО UltiMaker Cura 5.4.0

Рисунок 13 – Штангенциркуль ШЦ-1-125 0,1

3. Порядок выполнения работы

- 3.1 Ознакомиться с техникой безопасности и правилами поведения в лаборатории;
- 3.2 Выполнить расчеты в соответствии с заданием преподавателя;
- 3.3 Внимательно изучить устройство и правила эксплуатации 3D принтера;
 - 3.4 Внимательно изучить ПО;
- 3.5 Выполнить 3D модель тестовой детали в соответствии с заданием преподавателя;
- 3.6 Подготовить 3D модель тестовой детали к 3D печати с помощью ПО в соответствии с заданием преподавателя;
 - 3.7 Выполнить 3D печать тестовой детали;
- 3.8 Выполнить измерения тестовой детали с помощью штангенциркуля;
- 3.9 Сравнить расчетные и экспериментальные данные (размеры, время печати) (Таблица 6);

Таблица 6 – Форма сравнительной таблицы

Параметр	Расчетные данные	Экспериментальные	Вывод
		данные	
Размеры			
Время печати			

3.10 Оформить отчёт о выполнении практической работы.

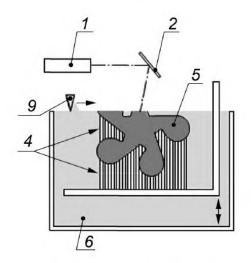
4. Контрольные вопросы

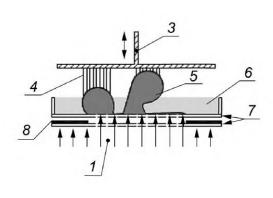
- 4.1 Дайте определение технологии экструзии материала (material extrusion);
 - 4.2 Какое оборудование используется для данного процесса?
 - 4.3 Какое сырье используется для данного процесса?
 - 4.4 Какой механизм связи используется для данного процесса?

- 4.5 Какой источник активации используется для данного процесса?
- 4.6 Какая вторичная обработка используется для данного процесса?

Практическая работа №4 «Изучение технологии DLP/LCD»

1. Цель работы


Изучение технологии DLP/LCD.


2. Общие положения

2.1 Краткие теоретические сведения

Фотополимеризация в ванне (vat photopolymerization) – процесс АП, в котором жидкий фотополимер выборочно отверждается (полимеризуется) в ванне световым излучением [1].

Процесс фотополимеризации в ванне приведен на рисунке 14.

а) Фотополимеризация в ванне с помощью лазера

б) Фотополимеризация в ванне с помощью управляемого источника ультрафиолетового излучения

Рисунок 14 — Схема двух альтернативных принципов для фотополимеризации в ванне: 1 — источник света; 2 — установленное под углом зеркало, фокусирующее падающий на него свет; 3 — строительная платформа и подъемник; 4 — поддерживающая структура; 5 — получаемый продукт; 6 — ванна, заполненная фотополимеризующимся составом; 7 — прозрачные пластины; 8 — фотошаблон; 9 — перекрытие и механизм выравнивания поверхности

Для данного процесса необходимо следующее оборудование: источник света; установленное под углом зеркало, фокусирующее падающий на него свет; строительная платформа и подъемник; ванна, заполненная фотополимеризующимся составом; прозрачные пластины; перекрытие и механизм выравнивания поверхности [2].

Сырье: жидкое или пастообразное: фотореакционноспособная смола с наполнителем или без него.

Механизм связи: химическая реакция.

Источник активации: ультрафиолетовое излучение от лазеров или ламп.

Вторичная обработка: чистка, поддержка удаленного материала после отверждения путем дальнейшего воздействия ультрафиолетового излучения [3].

DLP (Digital Light Processing) – ОДИН из методов стереолитографической 3D-печати, который использует цифровые от SLA-установок, проекторы. В отличие светодиодные сканирующих поверхность материала одним или несколькими лазерными головками, DLP-принтеры проецируют изображение целого слоя до затвердевания фотополимерной смолы, после чего наносится новый слой материала и проецируется изображение нового слоя цифровой модели.

Также на рынке представлены 3D-принтеры с технологиями LCD/LSL (Liquid Crystal Display / LED Screen Light), в основе которых также лежит фотополимеризация. Засветка фотополимерной смолы осуществляется светодиодной ультрафиолетовой матрицей через маску ЖК-экрана (см. схему), а не УФ-проектора, как в технологии DLP. [7].

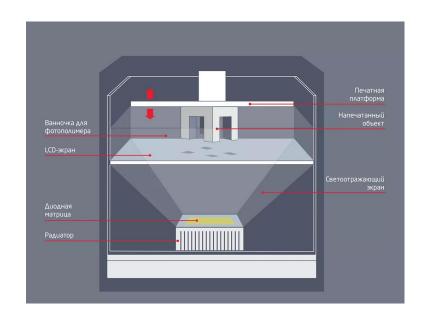


Рисунок 15 – Схема процесса DLP/LCD

Модели, напечатанные на стерелитографических принтерах, имеют самое высокое разрешение и точность, самую четкую детализацию и самую гладкую поверхность по сравнению с другими технологиями 3D-печати из пластмасс. 3D-печать с использованием полимеров отличный ДЛЯ вариант изготовления требующих высокодетализированных прототипов, допусков и гладких поверхностей, таких как пресс-формы, шаблоны и функциональные модели. Модели, напечатанные по технологии DLP/LCD, легко поддаются полировке и (или) покраске после печати, в результате чего можно получить готовые изделия с высокой детализацией.

3D-принтерах Модели, напечатанные на ПО технологии DLP/LCD, как правило, *изотронны*: их прочность более или менее постоянна и не зависит от ориентации, поскольку химические связи возникают между каждым слоем. Это позволяет получить модели с механическими характеристиками, критически предсказуемыми важными для таких целей, как производство крепежных и зажимных готовых изделий, приспособлений, также функциональных a прототипов [5].

Таблица 7 – Материалы технологии DLP/LCD

Материалы	Характеристики	Применение
Стандартные полимеры	Высокое разрешение Гладкая, матовая	Концептуальные модели Реалистичные прототипы
	поверхность	

Clear Resin	Единственный по-	Модели, которые должны
Clear Resili	настоящему прозрачный	быть оптически прозрачными
	материал для 3D-печати из	Миллифлюидные устройства
	пластмасс	типынфиондные устронеты
	Можно отполировать	
	практически до полной	
	оптической прозрачности	
Draft Resin	Один из самых «быстрых»	Исходные прототипы
	материалов для 3D-печати	Быстрые итерации
	Печать происходит в 4 раза	
	быстрее по сравнению со	
	стандартными полимерами и	
	в 10 раз быстрее по	
	сравнению с технологией	
	FDM	
Tough Resin и Durable Resin	Жесткие, прочные,	Корпуса и кожухи
	функциональные и	Зажимные и крепежные
	динамичные материалы	приспособления
	Способны выдерживать	Соединительные устройства
	сжатие, растяжение, сгибание	Износостойкие прототипы
	и удары, не разрушаясь	
	Различные материалы со свойствами, схожими с АБС	
	и ПЭ	
Полимеры Rigid	Высоконаполненный,	Зажимные и крепежные
	жесткий и прочный материал,	
	устойчивый к сгибанию	инструментальная оснастка
	Устойчивый к воздействию	Турбины и лопасти
	температуры и химических	вентиляторов
	веществ	Компоненты для подачи
	Сохраняет размер под	жидкости/воздуха
	нагрузкой	Электрические кожухи и
		корпуса, используемые в
		автомобильной
History D.	V	промышленности
High Temp Resin	Устойчивый к воздействию	Компоненты для подачи
	высокой температуры Высокая точность	горячего воздуха, газа и
	Высокая точность	жидкости Термостойкие крепления,
		корпуса и крепежные
		приспособления
		Пресс-формы и вставки
Flexible Resin и Elastic Resin	Гибкость резины, ТПУ или	Прототипы потребительских
	силикона	товаров
	Устойчивый к сгибанию и	Сгибаемые структуры для
	сжатию	робототехники
	Выдерживает множество	Медицинские устройства и
	последовательных циклов, не	анатомические модели
	изнашиваясь	Реквизит и модели для
		спецэффектов

Медицинские и	Широкий спектр	Стоматологические и
стоматологические полимеры	биосовместимых полимеров	медицинские изделия, в том
	для изготовления	числе хирургические
	медицинских и	шаблоны, зубные протезы и
	стоматологических изделий	протезы конечностей
Ювелирные полимеры	Материалы для литья по	Изделия для примерки
	выплавляемым моделям и с	Модели для многоразовых
	помощью вулканизированной	пресс-форм
	резины	Ювелирные украшения на
	Легко поддается литью,	заказ
	позволяя создавать	
	замысловатые элементы, и	
	хорошо сохраняет форму	
Ceramic Resin	Поверхность, похожая на	Технические изыскания
	текстуру камня	Уникальные предметы
	Возможность обжига для	искусства
	создания настоящего	
	керамического изделия	

Радикальная полимеризация является очень распространенным методом получения полимеров в промышленности.

При радикальной полимеризации активным центром является свободный радикал. Его возникновение в реакционной системе возможно различными способами (нагреванием, облучением, химическими добавками и др.).

Инициирование — это реакция, в результате которой возникает радикал.

Возникновение свободного радикала всегда связано с затратой значительного количества энергии, которое должно быть сообщено молекуле. В зависимости от способа образования радикалов, начинающих реакционную цепь, различают:

- чисто термическое инициирование;
- фотохимическое;
- радиационное;
- механохимическое;
- химическое (под действием специально добавленных веществинициаторов).

Фотохимическое инициирование — процесс образования свободных радикалов из мономерных молекул при действии света определенной длины.

Молекула мономера поглощает квант световой энергии и переходит в возбужденное (триплетное) состояние. После чего происходит гомолитический распад возбужденной молекулы мономера на радикалы.

$$M \xrightarrow{hv} M^*;$$

$$M^* \longrightarrow R_1^* + R_2^*$$

Фотоинициирование без добавления специальных веществ возможно для тех мономеров, которые имеют основную полосу поглощения в ультрафиолетовой области (стирол и его производные, метилметакрилат).

Из электронного спектра поглощения (рисунок 1) видно, что стирол имеет основную полосу поглощения при длине волны 250 нм, следовательно, для фотоинициирования стирола необходима лампа жесткого ультрафиолета (УФ).

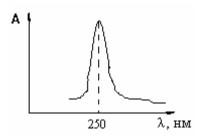


Рисунок 16 – Электронный спектр поглощения стирола

Распад молекулы стирола после поглощения квантов света на радикалы происходит следующим образом:

$$CH_2 = CH \xrightarrow{hv} CH_2 = CH^* \xrightarrow{CH_2 = CH + C_6H_5} CH_2 = CH + C_6H_5$$

Эффективность фотоинициирования зависит от различных факторов: длины волны ультрафиолетового излучения, строения мономера, наличия растворителей и т.д.

Энергия активации при фотоинициировании (E_a обычно менее 17 кДж/моль) значительно ниже, чем при термическом инициировании, поэтому скорость её не зависит от температуры, она растет с увеличением интенсивности облучения.

Скорость фотохимического инициирования:

$$V_{\text{\tiny M}} = f \cdot I_a$$
,

где I_a — интенсивность поглощенного света, т.е. число квантов света, поглощенных в единицу времени на единицу объема;

f — число пар радикалов, образовавшихся при поглощении одного кванта света (таблица 1).

Таблица 8 — Эффективность фотоинициирования (квантовый выход) некоторых мономеров

Мономер	Эффективность инициирования	Эффективность инициирования
	при λ = 310 нм	при других λ
метилметакрилат	0,1	0,01 (260 нм)
метилакрилат	0,1	_
винилацетат	0,01	_
стирол	0,001	0,08 (365 нм)
изопрен	_	10 ⁻⁴ –10 ⁻⁵ (290–365 нм)

Величина f зависит от длины волны и природы мономера.

$$I_a = \epsilon{\cdot}I_o{\cdot}[M],$$

где ε – молярный коэффициент поглощения (коэффициент экстинции);

I_o – интенсивность света, падающего на мономер;

[M] – концентрация мономера в системе, где [M] = cl.

$$V_{\text{\tiny M}} = f \cdot \epsilon \cdot I_{\text{\tiny O}} \cdot [M],$$

из уравнения видно, что $V_{\text{и}} \sim [M]$.

Если мономер не поглощает свет с данной длиной волны, в этом случае нужно использовать специальные вещества — фотосенсибилизаторы (Z), которые увеличивают чувствительность мономера к свету:

$$Z + hv \longrightarrow Z^*;$$

 $Z^* + M \longrightarrow Z + M^*,$

М* – далее разлагается с образованием радикалов.

В качестве фотосенсибилизаторов часто используются

Применение в качестве фотосенсибилизаторов красителей позволяет использовать для фотоинициирования видимую область света.

В практических целях фотополимеризация обычно проводится в присутствии фотоинициаторов - веществ, распадающихся в требуемой области УФ-спектра с достаточно высоким квантовым выходом. В качестве фотоинициаторов могут быть использованы некоторые термические инициаторы, например, пероксиды или азосоединения, а также другие соединения. Наиболее эффективными фотоинициаторами являются ароматические кетоны и их производные, благодаря достаточно широкой области поглощения УФ-спектра и высокому квантовому выходу радикалов. В промышленности в качестве фотоинициаторов используют бензоин, бензилкеталь и их многочисленные производные.

Фотополимеризация используется для нанесения полимерных покрытий непрерывным способом на металл, дерево, керамику, световоды, в стоматологии для отверждения композиций зубных пломб. Особенно следует отметить применение фотополимеризации в фотолитографии, с помощью которой изготавливают большие интегральные схемы в микроэлектронике, а также печатные платы (матрицы) в современной технологии фотонабора, позволяющей исключить использование свинца.

Существенным недостатком фотоинициирования является быстрое падение его эффективности с увеличением толщины облучаемого слоя вследствие поглощения излучения. По этой причине фотохимическое инициирование эффективно при возбуждении полимеризации в достаточно тонких слоях, порядка нескольких миллиметров.

2.2 Описание лабораторного стенда

Рисунок 17 – 3D принтер Anycubic Photon M3

Таблица 9 – Технические характеристики 3D принтера Anycubic Photon M3

1 10 001 1/12		
Общие		
Производитель	Anycubic	
Модель	Photon M3	
Страна	Китай	
Основные		
Материал печати	Фотополимерная смола	
Технология печати	LCD/LED	

Область печати	180x163,9x102,4	
Скорость печати / выращивания	50 мм/ч	
Диагональ матрицы	7.6 дюйма	
Тип матрицы	LCD Mono	
Разрешение матрицы	4K+, (4098x2400) px	
Длина УФ-волны	405 нм	
Поддерживаемые материалы	фотополимерные смолы	
Программное обеспечение		
Поддерживаемые форматы файлов	STL, OBJ	
Совместимые ОС	Windows, Mac OS, Linux	
Программное обеспечение	Anycubic Photon Workshop, ChituBox	
Дополнительная информация		
Интерфейс подключения	USB (Кабель), Wi-Fi	
Электропитание	220V, 50Hz	
Габаритные и вес		
Габариты товара	269х256х425 мм	
Вес нетто	7 кг	

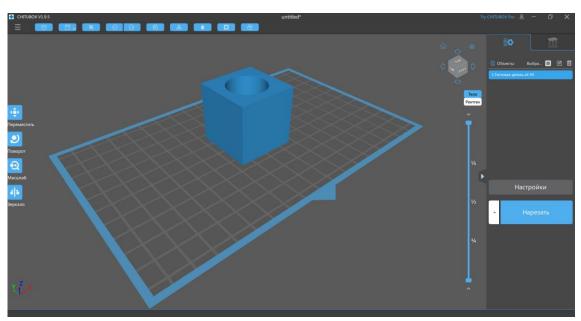


Рисунок 18 – ПО CHITUBOX 1.9.5

Рисунок 19 — Штангенциркуль ШЦ-1-125 0,1

3. Порядок выполнения работы

- 3.1 Ознакомиться с техникой безопасности и правилами поведения в лаборатории;
- 3.2 Выполнить расчеты в соответствии с заданием преподавателя;
- 3.3 Внимательно изучить устройство и правила эксплуатации 3D принтера;
 - 3.4 Внимательно изучить ПО;
- 3.5 Выполнить 3D модель тестовой детали в соответствии с заданием преподавателя;
- 3.6 Подготовить 3D модель тестовой детали к 3D печати с помощью ПО в соответствии с заданием преподавателя;
 - 3.7 Выполнить 3D печать тестовой детали;
- 3.8 Выполнить измерения тестовой детали с помощью штангенциркуля;
- 3.9 Сравнить расчетные и экспериментальные данные (размеры, время печати) (Таблица 10);

Таблица 10 – Форма сравнительной таблицы

Параметр	Расчетные данные	Экспериментальные	Вывод
		данные	
Размеры			
Время печати			

3.10 Оформить отчёт о выполнении практической работы.

4. Контрольные вопросы

- 4.1 Дайте определение технологии фотополимеризации в ванне (vat photopolymerization);
 - 4.2 Какое оборудование используется для данного процесса?
 - 4.3 Какое сырье используется для данного процесса?
 - 4.4 Какой механизм связи используется для данного процесса?
- 4.5 Какой источник активации используется для данного процесса?
- 4.6 Какая вторичная обработка используется для данного процесса?

Практическая работа №5 «Изучение технологии DED/WAAM»

1. Цель работы

Изучение технологии DED/WAAM.

2. Общие положения

2.1 Краткие теоретические сведения

Прямой подвод энергии и материала (directed energy deposition) — процесс АП, в котором энергия от внешнего источника используется для соединения материалов путем их сплавления в процессе нанесения.

Примечание – Источник энергии (например, лазер, электронный луч, плазма и др.) используют для полного или неполного расплавления наносимых материалов [1].

Процесс прямого подвода энергии и материала приведен на рисунке 20.

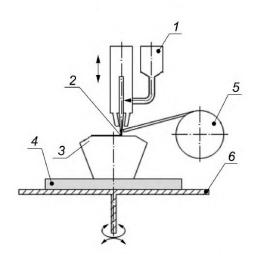


Рисунок 20 — Схема процесса прямого подвода энергии и материала: 1 — бункер с порошком; 2 — направленный луч энергии, например, лазер, электронный или плазменно-дуговой пучок; 3 — получаемый продукт; 4 — подложка; 5 — проволока (нить) катушки; 6 — строительный стол

Для данного процесса необходимо следующее оборудование: бункер с порошком, подложка, строительный стол [2].

Примечания:

- 1) Перемещение в системе координат (обычно оси 3-6) достигается путем перемещения сопла и строительного стола.
- 2) Альтернативные системы подачи материала, например: порошок подается через энергетический луч, порошок подается в координату энергии, нити накала (проволоки), подаваемой в координату энергии.

Сырье: порошок или проволока, как правило, из металла; для определенных применений к основному веществу могут быть добавлены керамические частицы.

Механизм связи: термическая реакция связывания – плавление и застывание.

Источник активации: лазер, электронный луч или плазма.

Вторичная обработка: улучшение состояния поверхности, например: механическая обработка, микровзрывные работы, лазерное оплавление, шлифовка или полировка и улучшение свойств материала (например, термообработка) [3].

Технология DED-W/WAAM/3DMP (Wire Direct Energy Deposition/Wire Arc Additive Manufacturing/3D Metal Print) — это печать металлической проволокой, при которой используется метод дуговой сварки. Техпроцесс начинается с подготовки CAD-данных и передачи геометрии модели в программное обеспечение для создания управляющей программы. Далее она приводит в движение блок с горелкой, расплавляется проволока. Наплавка происходит в среде инертного/активного газа или в многокомпонентных газовых смесях в зависимости от типа наплавляемого материала: аргона, аргон-гелиевой смеси, смеси на основе аргона и двуокиси углерода и др. [9].

Рисунок 21 – Схема процесса WAAM

Технология большой WAAM имеет потенциал крупномасштабном промышленном производстве из-за низкой стоимости и высокой эффективности. Есть литературные данные о при использовании электродугового стоимости снижении 20-79% выращивания на ПО сравнению технологиями, использующими лазерный и электронный лучи. Сопоставление же стоимости электродугового выращивания с фрезерной обработкой целесообразно при BTF>5 (buy to fly – соотношение массы заготовки начальной К массе уже ГОТОВОГО изделия). Соответственно, чем больше ВТГ, тем больше экономический эффект от применения электродугового выращивания.

Таблица 11 – Материалы технологии DED/WAAM

Tuoninga 11 Marephanin Texnonorum DED/WIN					
Материалы	Характеристики	Применение			
Св-08	HB 120160	Оси, шпиндели, валы,			
Св-10Г2	HB 180210	опорные ролики			
Св-08ГС	HB 180200				
Св-12ГС	HV 190220				
Св-08Г2С	HV 180210				
Св-18ХГС	HV 240300	Опорные ролики, натяжные			
		колеса гусеничных			
		тракторов, цапфы, оси катков			
Св-20Х13	HRC 4248	Уплотнительные			
Св-10Х17Т	HRC 3038	поверхности			
		общепромышленной			
		арматуры, работающей при			
		температурах до 450 °C			
Св-06Х19Н9Т	HB 160 190	Уплотнительные			
Св-08Х19Н9Ф2С2	HB 200230	поверхности запорной			
		арматуры для пара и воды			
Нп-25, Нп-30, Нп-35	HB 160220	Детали, работающие в			
Нп-40, Нп-45	HB 170230	условиях трения металла по			
Нп-50	HB 180240	металлу (оси, валы,			
Нп-65	HB 220300	шпиндели)			
Нп-80	HB 260340				
Нπ-40Г	HB 180240				
Нπ-50Г	HB 200270	Натяжные колеса и опорные			
Нπ-65Г	HB 230310	ролики гусеничных машин,			
Нп-40Х13	HRC 45 52	крановые колеса, оси			
		опорных роликов			
Нπ-40Х2Г2М	HRC 5456	Детали машин, работающие с			
Нп-50ХФА	после закалки HRC 4350	динамическими нагрузками			
		(шлицевые и коленчатые			
		валы, поворотные кулаки и т.			
		п.)			

Нп-30ХГСА	HB 200300	Прокатные валки и кузнечно-
Нп-30Х5	HRC 3742	прессовый инструмент
Нп-50ХНМ	HRC 4050	
Нп-50Х6ФМС	HRC 4248	
Нп-105Х	HRC 3238	
Нп-45Х2В8Г	HRC 4046	
Нп-60Х3В10Ф	HRC 4250	
Нп-45X4B3ГФ	HRC 3845	
Н п-40Х3Г2МФ	HRC 3844	Детали, испытывающие
		удары и абразивное
		изнашивание
Нп-Г13А	HB 220280	Детали из сталей типа
		110Г13Л
Нп-20Х14	HRC 3238	Уплотнительные
		поверхности задвижек для
		пара и поды
Нп-30Х13	HRC 3845	Плунжеры гидропрессов,
		шейки коленчатых валов,
		штампы
Нп-30X10Г10Т	HB 200220	Лопасти гидротурбин,
		гребные винты, гребные валы
		морских судов
Нп-Х15Н60	HB 180220	Детали печей и реторт,
		работающие при высокой
		температуре
Нп-Х20Н80Т	HB 180220	Выхлопные клапаны
		автомобильных двигателей
Нп-03Х15Н35Г7М6Б	-	Корпуса сосудов в атомно-
		энергетическом и
		химическом машиностроении

При сварке и наплавке в среде защитных газов в зону горения дуги под небольшим давлением подается газ, который вытесняет воздух из этой зоны и защищает сварочную ванну от кислорода и азота воздуха.

В зависимости от применяемого газа сварка разделяется на сварку в активных (CO_2 , H_2 , O_2 , и др.) и инертных (He, Ar, Ar+He и др.) газах. Сварку (наплавку) можно осуществлять как плавящимся, так и неплавящимся электродами.

Наибольшее распространение при восстановлении деталей подвижного состава получили сварка и наплавка в среде углекислого газа (CO₂) – сварка плавящимся электродом (проволокой) с защитой сварочной ванны от воздуха углекислым газом. Такой способ является самым дешевым при сварке углеродистых и низколегированных сталей. Поэтому по объему производства он занимает одно из первых мест среди механизированных способов сварки плавлением.

При сварке (наплавке) в среде углекислого газа (рисунок 22) из сопла горелки 2, охватывающей поступающую в зону горения дуги электродную проволоку 4, вытекает струя защитного газа 6, оттесняет воздух из сварочной ванны.

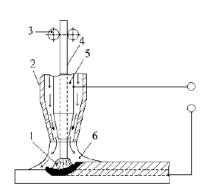


Рисунок 22 — Дуговая сварка в защитном газе плавящимся электродом: 1 — электрическая дуга; 2 — газовое сопло; 3— подающие ролики; 4 — электродная проволока; 5 — токоподводящий мундштук; 6 — защитный газ

Однако в процессе сварки углекислый газ под действием высоких температур диссоциирует: $2CO_2 \leftrightarrow 2CO+O_2$. Поэтому сварка идет не в чистом углекислом газе, а в смеси газов CO_2 , CO и O_2 . В этом случае обеспечивается практически полная защита расплавленного металла от азота воздуха, но сохраняется почти такой же окислительный характер газовой смеси, каким он был бы при сварке голой проволокой без защиты от атмосферы воздуха.

Следовательно, при сварке и наплавке в среде CO₂ необходимо предусматривать меры по раскислению наплавляемого металла.

Эта задача решается использованием сварочных проволок диаметром 0.8..2 мм, в состав которых входят элементы раскислители. Чаще всего это кремний (0.6..1,0%) и марганец (1..2%).

Образующиеся в процессе раскисления окислы кремния и марганца всплывают на поверхность сварочной ванны и после кристаллизации металла удаляются.

Наибольшее распространение при сварке в среде CO_2 нашли электродные проволоки $CB-08\Gamma C$, $CB-08\Gamma 2C$, $CB-10\Gamma C$, $CB-18X\Gamma C$ и др.

Кроме проволок сплошного сечения, часто используются порошковые проволоки типа $\Pi\Pi$ -AH4, $\Pi\Pi$ -AH5, $\Pi\Pi$ -AH8, $\Pi\Pi$ -3X2B8T и др.

Сварка в среде СО2 имеет целый ряд преимуществ:

- минимальную зону структурных изменений металла при высокой степени концентрации дуги и плотности тока;
- большую степень защиты сварочной ванны от воздействия внешней среды; существенную производительность;
- возможность наблюдения за формированием шва;
- возможность сваривать металл различной толщины (от десятых долей до десятков миллиметров), производить сварку в различных пространственных положениях, механизировать, автоматизировать технологический процесс;
- незначительную чувствительность к ржавчине и другим загрязнителям основного металла.

Однако при выборе данного способа сварки и наплавки необходимо иметь ввиду и его недостатки:

- сильное разбрызгивание металла при токе больше 500 A, что требует постоянной защиты и очистки сопла горелки;
- интенсивное излучение открытой мощной дуги, требующее защиты сварщика;
- необходимость охлаждения горелки при значительных токах;
- осуществление сварки практически только на постоянном токе;
- наличие специальной проволоки [10].

Расчет сварочного тока, А, при сварке проволокой сплошного сечения производится по формуле:

$$I_{CB} = \frac{\pi d_3^2 a}{4},$$

где а — плотность тока в электродной проволоке, A/mm^2 (при сварке в CO_2 а = 110..130 A/mm^2);

d_э – диаметр электродной проволоки, мм.

Напряжение дуги и расход углекислого газа, В, выбираются в зависимости от силы сварочного тока по таблице 12.

Таблица 12 — Зависимость напряжения и расхода углекислого газа от силы сварочного тока

Сила сварочного	5060	90100	150160	220240	280300	360380	430450
тока, А							
Напряжение	1718	1920	2122	2527	2830	3032	3234
дуги, В							
Расход СО2,	810	810	910	1516	1516	1820	1820
л/мин							

При сварочном токе 200..250 А длина дуги должна быть в пределах 1,5..4,0 мм. Вылет электродной проволоки составляет 8..15 мм (уменьшается с повышением сварочного тока).

Скорость подачи электродной проволоки, *м/ч*, рассчитывается по формуле:

$$V_{\text{NP}} = \frac{4 \cdot \alpha_{\text{p}} \cdot I_{\text{CB}}}{\pi \cdot d_{\text{a}}^2 \cdot \rho}$$

где α_p – коэффициент расплавления проволоки, г/A·ч;

Ісв – сварочный ток, А;

d_э – диаметр электродной проволоки, мм;

 ρ – плотность металла проволоки (для стали $j = 7.8 \text{ г/см}^3$).

Значение α_р рассчитывается по формуле:

$$\alpha_{\rm p} = 3.0 + 0.08 \frac{I_{\rm CB}}{d_{\rm p}}$$

или выбирается по графику зависимости α_p от диаметра электродной проволоки и режима сварки в углекислом газе (рисунок 23).

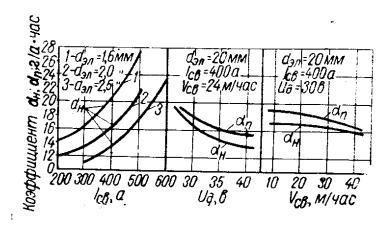


Рисунок 23 — Зависимость коэффициентов расплавления (α_p) и наплавки (α_H) от диаметра электродной проволоки и режима сварки в углекислом газе

Скорость сварки (наплавки), м/ч, рассчитывается по формуле:

$$V_{\text{CB}} = \frac{\alpha_{\text{x}} I_{\text{CB}}}{100 F_{\text{B}} \rho},$$

где $\alpha_{\rm H}$ — коэффициент наплавки, г/А·ч, $\alpha_{\rm H}$ = $\alpha_{\rm p}$ ·(1- ψ), где ψ — коэффициент потерь металла на угар и разбрызгивание. При сварке в ${\rm CO}_2=0,1..0,15$;

 $F_{\text{в}}$ – площадь поперечного сечения одного валика, см 2 . При наплавке в CO_2 принимается равным 0,3..0,7 см 2 .

2.2 Описание лабораторного стенда

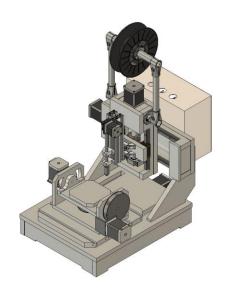


Рисунок 24 – 3D принтер ЮЗГУ WAAM

Таблица 13 – Технические характеристики 3D принтера ЮЗГУ WAAM

ЮЗГУ	
WAAM	
Россия	
Сварочная, наплавочная проволока	
WAAM	
Сварочный полуавтомат КЕДР MIG-160 GDM	
0,8-1,2 мм	
1 шт.	
смесь аргон-углекислый газ, аргон, углекислый газ, гелий	
до 150 °C	
100х100х100 мм	
до 300 мм/мин	
от 2 мм	
5	
14-22 мм	

Поддерживаемые материалы	Св-08Г2С			
Программное обеспечение				
Поддерживаемые форматы файлов	STL, OBJ			
Совместимые ОС	Windows			
Программное обеспечение	Grbl Gru			
Дополнительная информация				
Интерфейс подключения	USB (Кабель)			
Электропитание	220V, 50Hz			
Габаритные и вес				
Габариты товара	510х440х395мм			
Вес нетто	7.5 кг			

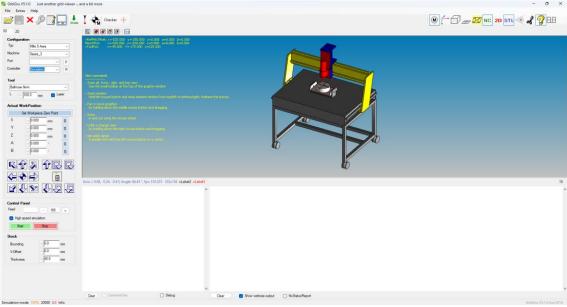


Рисунок 25 – ПО GrblGru v5.1.0

Рисунок 26 – Штангенциркуль ШЦ-1-125 0,1

3. Порядок выполнения работы

3.1 Ознакомиться с техникой безопасности и правилами поведения в лаборатории;

- 3.2 Выполнить расчеты в соответствии с заданием преподавателя;
- 3.3 Внимательно изучить устройство и правила эксплуатации 3D принтера;
 - 3.4 Внимательно изучить ПО;
- 3.5 Выполнить 3D модель тестовой детали в соответствии с заданием преподавателя;
- 3.6 Подготовить 3D модель тестовой детали к 3D печати с помощью ПО в соответствии с заданием преподавателя;
 - 3.7 Выполнить 3D печать тестовой детали;
- 3.8 Выполнить измерения тестовой детали с помощью штангенциркуля;
- 3.9 Сравнить расчетные и экспериментальные данные (размеры, время печати) (Таблица 14);

Таблица 14 – Форма сравнительной таблицы

Параметр	Расчетные данные	Экспериментальные	Вывод
		данные	
Размеры			
Время печати			

3.10 Оформить отчёт о выполнении практической работы.

4. Контрольные вопросы

- 4.1 Дайте определение технологии прямого подвода энергии и материала (directed energy deposition);
 - 4.2 Какое оборудование используется для данного процесса?
 - 4.3 Какое сырье используется для данного процесса?
 - 4.4 Какой механизм связи используется для данного процесса?
- 4.5 Какой источник активации используется для данного процесса?
- 4.6 Какая вторичная обработка используется для данного процесса?

Библиографический список

- 1. ГОСТ Р 57558-2017. Аддитивные технологические процессы. Базовые принципы. Часть 1. Термины и определения;
- 2. ГОСТ Р 57588-2017. Оборудования для аддитивных технологических процессов. Общие требования;
- 3. ГОСТ Р 57589-2017. Аддитивные технологические процессы. Базовые принципы. Часть 2. Материалы для аддитивных технологических процессов. Общие требования;
- 4. Метод послойного наплавления материала (FDM) [Электронный ресурс] : https://iqb.ru/materials-and-technologies/fdm/ (дата обращения: 10.07.2023);
- 5. Руководство по материалам для 3D-печати: типы, способы применения и свойства [Электронный ресурс] : https://formlabs.com/ru/blog/3d-printing-materials/ (дата обращения: 10.07.2023);
- 6. Крыжановский, В. К. Производство изделий из полимерных материалов [Текст] : учебное пособие / В. К. Крыжановский, М. Л. Кербер, В. В. Бурлов, А.Д. Паниматченко. СПб.: Профессия, 2004. 464 с.;
- 7. DLP/LCD-стереолитография [Электронный ресурс] : https://iqb.ru/materials-and-technologies/technologies/lcd/ (дата обращения: 10.07.2023);
- 8. Осипова, Г.В. Химия и физика полимеров: ч. 1 [Текст] : учебное пособие / Г.В. Осипова, Г.Н. Беспалова; Иван. гос. хим.-технол. ун-т. Иваново, 2010. 132 с.;
- 9. Технология 3DMP/WAAM [Электронный ресурс] : https://www.ddmlab.ru/technology/waam_technology/ (дата обращения: 10.07.2023);
- 10. Бабенко, Э.Г. Технологические процессы сварки, наплавки, обработки сплавов резанием и давлением [Текст] : учебное пособие / Э.Г. Бабенко. Хабаровск: Изд-во ДВГУПС, 2011. 105 с.