Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 02.06.2022 12:48:42

Федеральное государственное бюджетное

МИНОБРНАУКИ РОССИИ

уникальный программный ключ: Образовательное учреждение высшего образования 9ba7d3e34c012eba476ffd2d064cf2781935be730d12374d16f3c0ce536f0fcf

«Юго-Западный государственный университет»

 $(HO3L\lambda)$

Кафедра экспертизы и управления недвижимостью, горного дела

ВЕРЖДАЮ: Проректор по учестви работе

ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Методические указания по выполнению практических работ для студентов специальности 21.05.04 Горное дело Специализаций «Обогащение полезных ископаемых» «Открытые горные работы»

Составитель: Л.А. Семенова

Рецензент Кандидат географических наук, доцент Р.А. Попков

Обогащение полезных ископаемых: Методические указания по выполнению практических работ для студентов специальности 21.05.04 Горное дело специализаций «Обогащение полезных ископаемых», «Открытые горные работы» / Юго-Зап. гос. ун-т; сост.: Л.А. Семенова.- Курск, 2022.- 12с.: рис. 2.- Библиогр.: с. 12.

Содержит основные сведения о правилах выполнения и оформления практических работ по дисциплине «Обогащение полезных ископаемых». В работе даны рекомендации по выбору и расчету качественно-количественной и водно-шламовой схем обогащения.

Методические указания соответствуют требованиям программы, утвержденной на заседании кафедры Э и УН, ГД протокол № 1 от «30» 08 2021 года.

Предназначены для студентов направления подготовки (специальности) 21.05.04 Горное дело для специализации «Обогащение полезных ископаемых», «Открытые горные работы».

Текст печатается в авторской редакции

Подписано в печать формат 60х84 1/16 Усл. Печ. Лист 0,69 Уч.-изд.л. 0,63 Тираж 100экз. Заказ Бесплатно 1043 Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное Образовательное учреждение высшего образования «Юго-Западный государственный университет»

(ЮЗГУ)

Кафедра экспертизы и управления недвижимостью, горного дела

		УТВЕРЖДАЮ:
Проре	ектор і	по учебной работе
		_ О.Г. Локтионова
~	>>	2022г.

ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Методические указания по выполнению практических работ для студентов специальности 21.05.04 Горное дело Специализаций «Обогащение полезных ископаемых» «Открытые горные работы»

Составитель: Л.А. Семенова

Рецензент Кандидат географических наук, доцент Р.А. Попков

Обогащение полезных ископаемых: Методические указания по выполнению практических работ для студентов специальности 21.05.04 Горное дело специализаций «Обогащение полезных ископаемых», «Открытые горные работы» / Юго-Зап. гос. ун-т; сост.: Л.А. Семенова.- Курск, 2022.- 12с.: рис. 2.- Библиогр.: с. 12.

Содержит основные сведения о правилах выполнения и оформления практических работ по дисциплине «Обогащение полезных ископаемых». В работе даны рекомендации по выбору и расчету качественно-количественной и водно-шламовой схем обогащения.

Методические указания соответствуют требованиям программы, утвержденной на заседании кафедры Э и УН, ГД протокол № 1 от «30» 08 2021 года.

Предназначены для студентов направления подготовки (специальности) 21.05.04 Горное дело для специализации «Обогащение полезных ископаемых», «Открытые горные работы».

Текст печатается в авторской редакции Подписано в печать формат 60х84 1/16 Усл. Печ. Лист 0,69 Уч.-изд.л. 0,63Тираж 100экз. Заказ Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

Содержание

Список литературы

1	Практическое	занятие	№ 1.	Методы	расчета	4
	качественно-кол	пичественны	ых и во,	дно-шламов	вых схем	
	обогащения					
2	Практическое з	анятие №2.	Опред	еление обог	гатимости	10
	железной руды	методом ма	гнитног	о анализа		

12

Практическое занятие №1

Тема: Методы расчета качественно-количественных и водно- шламовых схем обогащения

1. Общие сведения

%;

При расчете качественно-количественных схем обогащения определяют для всех продуктов схемы численные значения основных технологических показателей.

Качественно-количественная схема включает относительные и абсолют- ные технологические показатели:

Относительными технологическими показателями в схемах являются:

 γ_n - выход продукта переработки от исходного продукта схемы, %; β_n - массовая доля полезного компонента в продукте переработки,

 α , или β_1 - массовая доля полезного компонента в исходной руде, %;

 $\varepsilon_{\rm n}$ - извлечение полезного компонента в продукт переработки, %. *Абсолютными* технологическими показателями в схемах являются:

Q_n - масса продукта переработки в каждой точке схемы, m/час;

 $\ \ \, P_{n}$ - масса полезного компонента в продукте переработке ($P_{n},$ m/час).

Формулы, связывающие относительные и абсолютные технологические показатели, следуют из определений:

Выход продукта переработки – это отношению массы продукта переработки к массе исходного продукта, умноженному на 100%:

$$\gamma_{\rm n} = \frac{Q_{\rm n}}{Q_{\rm ucx}} \cdot 100\% \, ;$$

Массовая доля полезного компонента в продукте переработки — это отношение массы полезного компонента в продукте переработки к массе всего этого продукта, умноженному на 100%:

$$\beta_n = \frac{P_n}{Q_n} \cdot 100\%;$$

Извлечение полезного компонента в продукт переработки — это отношение массы полезного компонента в этом продукте переработки к массе полезного компонента в исходном продукте, умноженному на 100%:

$$\varepsilon_{\rm n} = \frac{P_{\rm n}}{P_{\rm ucx}} \cdot 100\%$$

Уравнения, связывающие все относительные показатели:

$$\gamma_n \beta_n = \epsilon_n \alpha$$
;

2.Порядок расчета качественно-количественной схемы

Расчет качественно-количественной схемы обогащения подробно изложен в «Проектировании обогатительных фабрик» К.А. Разумова и сводится к определению относительных и абсолютных показателей технологической схемы.

Расчет качественно-количественной схемы рекомендуется производить вначале в относительных, затем в абсолютных показателях в следующей последовательности:

1). Определить число исходных показателей, необходимых и достаточных для расчета схемы в относительных показателях:

$$N=c\cdot(1+n_p-a_p)-1;$$
 $N_n=c\cdot(n_p-a_p);$

где N – общее число исходных показателей, *необходимых и* достаточных для расчета схемы относительных показателях;

c- число расчетных компонентов (для монометаллической руды c=2; для двухкомпонентной c=3 и т.д.);

n_p- число продуктов разделения в схеме;

 $a_{\rm p}$ - число операций разделения в схеме;

 $N_{\rm n}$ - число исходных относительных показателей, относящихся только к продуктам обработки.

2). Общее число численных значений (N), принятых в качестве исходных, состоит из значений выхода продукта (N_{γ}), массовой доли полезного компонента в продукте (N_{β}) и извлечения полезного компонента в продукт (N_{ϵ}), принятых в качестве исходных, и составляет:

$$N = N_{\gamma} + N_{\beta} + N_{\epsilon}$$

В качестве исходных обычно принимаются показатели массовой доли и извлечения (N_{β} ; N_{ϵ}) в концентратах основных, перечистных и контрольных операций. Показатели выхода (N_{γ}) как правило, в качестве исходных не принимаются, т. е. N_{γ} = 0. Подставляя значение N_{γ} в формулу, получим:

$$N = 0 + N_{\beta} + N_{\epsilon} \; ; \qquad N = N_{\beta} + N_{\epsilon} \; ; \label{eq:N_beta}$$

3). Максимальное число показателей извлечения ($N_{\epsilon \, max}$), которое может быть принято в качестве исходного, составляет:

$$N_{\epsilon \max} = n_p - a_p$$
;

4). Число показателей массовой доли при этом составит:

$$N_{\beta} = N - N_{\epsilon max}$$

- 5).На основании данных исследований или опыта работы действующей фабрики, перерабатывающей аналогичное сырье, устанавливают численные значения показателей массовой доли (β_n) и извлечения (ϵ_n) , принятых в качестве исходных. Массовая доля полезного компонента в исходной руде (β_1) обычно дается в задании.
- **3.3адание:** Определить число необходимых и достаточных исходных показателей для расчета схемы и расчитать искомые относительные и

абсолютные показатели *принципиальной* схемы флотации хвостов мокрой магнитной сепарации (MMC) железной руды (рис.1).

Определяем число необходимых и достаточных исходных показателей для расчета схемы в относительных показателях:

$$N=c\cdot(1+n_p-a_p)-1=2x(1+2-1)-1=3$$
;

Максимальное число показателей извлечения, принятых в качестве исходных: $N_{\epsilon \max} = n_p - a_p = 2 - 1 = 1$;

Число показателей массовой доли при этом составит:

$$N_{\beta} = N - N_{\epsilon \max} = 3 - 1 = 2;$$

Студенты принимают исходные показатели для расчета схемы исходя из базовых показателей: Q_1 = 200 т/ч; α =25-27%; β_2 = 56-58%; ϵ_2 = 55-57 % и порядкового номера фамилии в списке.

К базовому показателю производительности (Q_1 =200 т/ч) последовательно по номерам прибавляется 10 т/ч., значения относительных показателей принимаются самостоятельно в пределах базовых дробными числами (конечные целые числа не принимать).

Таблица 1- Варианты заданий для выполнения практических занятий

Фамилия студента	Производи тельность Q,т/ч	Массовая д	Извлечение	
		(в п	полезного ком-	
		в исх. руде	в концентрате	понента, %
		(α)	(β)	(3)
1.	200+10	25-27	56-58	55-57
2.	200+20			
3.	200+30			
4.	200+40			

И так далее

Расчет неизвестных (искомых) относительных показателей для всех продуктов схемы производится исходя из уравнения, *связывающего относительные показатели*:

$$\gamma_n \beta_n = \varepsilon_n \alpha$$
,

где: γ_n , β_n , ϵ_n - соответственно выход продукта, массовая доля полезного компонента в продукте и извлечение полезного компонента в продукт, %;

 α - массовая доля полезного компонента в исходном продукте (β_1), %.

По формуле $\gamma_n = \frac{\varepsilon_n \alpha}{\beta_n}$ определяются значения выходов для продуктов схемы с известными значениями массовой доли полезного компонента

Из уравнения баланса выходов ($\gamma_{\text{к-т}}+ \gamma_{\text{хв}} = \gamma_{\text{исх}}$) определяются недостающие значения выходов:

$$\gamma_{XB} = \gamma_{UCX} - \gamma_{K-T};$$

Аналогично по формуле $\varepsilon_n = \frac{\gamma_n \beta_n}{\alpha}$ определяются значения извлечений для продуктов с известными показателями массовой доли и выхода.

Из уравнения баланса извлечений ($\epsilon_{\text{к-т}} + \epsilon_{\text{хв}} = \epsilon_{\text{исх}}$) определяются недостающие значения извлечений:

$$\varepsilon_{xB} = \varepsilon_{\mu cx} - \varepsilon_{\kappa-T}$$

По формуле $\beta_n = \frac{\mathcal{E}_n \alpha}{\gamma_n}$ определяются неизвестные значения массовой доли полезного компонента в продуктах переработки.

При расчете схемы могут быть использованы частные выходы $\binom{\gamma_n^l}{n}$ и частные извлечения (E_n) , которые определяются по отношению к отдельным операциям схемы, имея в виду, что исходным в таком случае является продукт, поступающий в данную операцию.

Проверка правильности расчета схемы производится по балансовым уравнениям конечных продуктов обогащения:

$$\gamma_{\text{к-т}} + \gamma_{\text{xB}} = 100\%$$
 - баланс выходов; $\epsilon_{\text{к-т}} + \epsilon_{\text{xB}} = 100\%$ - баланс извлечений; $\gamma_{\text{к-т}} \, \beta_{\text{к-т}} + \gamma_{\text{xB}} \, \beta_{\text{xB}} = 100\alpha$ - баланс металла.

Расчет схемы в абсолютных показателях производится на основании рассчитанной схемы в относительных показателях, для чего необходимо знать массу какого-нибудь одного продукта схемы, обычно исходного.

При расчете схемы пользуются формулами:

$$Q_{n} = \frac{\gamma_{n} \cdot Q_{ucx}}{100}, m/uac; \qquad P_{ucx} = \frac{\alpha \cdot Q_{ucx}}{100}, m/uac; \qquad P_{n} = \frac{\varepsilon_{n} \cdot P_{ucx}}{100}, m/uac.$$

Исходный продукт (хвосты СМС) $1 \quad \alpha = 27,0\%$ $\gamma_1 = 100\%$ $\epsilon_1 = 100\%$ $\mathbf{Q_1} = \mathbf{200} \, \mathbf{T/Y}$ $P_1 = 54 \, \mathbf{T/Y}$

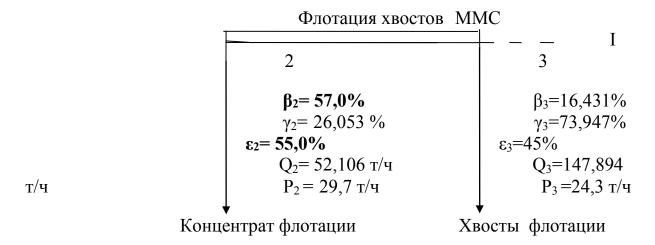


Рис. 1 Принципиальная схема флотации хвостов мокрой магнитной сепарации.

Проверка по балансу металла:

$$\begin{array}{c} \gamma_{\text{K-T}} \; \beta_{\text{K-T}} + \gamma_{\text{XB}} \; \beta_{\text{XB}} \! = \! 100 \; \alpha; \\ 26,053 \; x \; 57 + 73,947 \; x \; 16,431 = 100 \; x \; 27; \\ 1485,021 + 1215,023 = 2700; \\ 2700,0 = 2700,0 \end{array}$$

Результаты расчета качественно-количественной схемы наносятся на технологическую схему обогащения (рисунок 1) и заносятся в таблицу 1.

Таблица 1- Форма записи результатов расчета принципиальной качественно-количественной схемы флотации (по данным базового

варианта)

No No	Наименование операций и	Q,	γ,	α	ε,	P,
операц.	продуктов	т/час	%	(β),	%	т/час
и прод.				%		
1	2	3	4	5	6	7
I	Основная флотация					
	Поступает:					
1	Исх. продукт (хв. ММС)	200	100	27,0	100	54,0
	Всего поступает:	200	100	27,0	100	54,0
	Выходит:					
2	Концентрат флотации	52,106	26,053	57,0	55,0	29,7
2 3	Хвосты флотации	147,894	73,947	16,431	45,0	24,3
	Всего выходит:	200	100	27,0	100	54,0

Практическое занятие №2

Tema: Определение обогатимости железной руды методом магнитного анализа

1. Теоретические сведения

Сущность магнитного метода обогащения заключается в воздействии на зерна руды магнитной и механической сил, в результате которого зерна с различными свойствами приобретают различные траектории движения. Перемещаясь по своим траекториям, магнитные и немагнитные зерна выводятся из магнитного поля в виде отдельных продуктов, отличающихся не только по магнитным свойствам, но и по вещественному составу.

Магнитный анализ применяется для определения содержания магнитных минералов в продуктах обогащения и позволяет выявить обогатимость руды и эффективность работы магнитных сепараторов.

По результатам геолого-технологического картирования неокисленные железистые кварциты Михайловского месторождения разделены на три сорта:

- легкообогатимый (ЛО), Fe_{obm} в лабораторном концентрате > 66 %;
- среднеобогатимый (CO), Fe_{обш} в лабораторном концентрате 66-64 %;
- труднообогатимый (TO), Fe_{обш} в лабораторном концентрате < 64 %.

По результатам детальных исследований в качестве основного критерия принята массовая доля железа в лабораторном концентрате,полученного при проектной крупности помола 98 % класса минус 50 мкм.

Магнитный анализ сильномагнитных руд крупностью менее 1 мм проводят сухим или мокрым способом, как правило, в трубчатом магнитном анализаторе. В этом анализаторе между полюсами электромагнита помещена стеклянная трубка, снабженная механизмом сообщения ей возвратно-поступательного движения, необходимого для улучшения отмывки немагнитных частиц от магнитных.

Для наглядности изобразим схему магнитного анализа (рис.1)

Рис.1 Технологическая схема анализа

Для расчета показателей приняты обозначения:

 α — массовая доля железа в исходном продукте, %; β — массовая доля железа в магнитном продукте (концентрате), %; ν — массовая доля железа в немагнитном продукте (хвостах). % γ — выход продукта, %; ϵ — извлечение полезного компонента в продукт, %

Рассчитываем выход магнитного продукта (концентрата) по формуле:

$$\gamma_{\kappa-m} = \frac{\alpha - \nu}{\beta - \nu} \cdot 100\% \tag{1}$$

Из уравнения баланса выходов продуктов определяем выход хвостов:

$$\gamma_{xe} = 100 - \gamma_{\kappa - m} \tag{2}$$

Из уравнения, связующего относительные показатели $\gamma_n \beta_n = \varepsilon_n \alpha$ определяем извлечение железа в концентрат:

$$\varepsilon_{\kappa-m} = \frac{\gamma_{\kappa-m} \cdot \beta_{\kappa-m}}{\alpha}, \% \quad (3)$$

Из уравнения баланса извлечений определяем извлечение железа в хвосты.

$$\varepsilon_{x_{\theta}} = 100 - \varepsilon_{\kappa - m} \tag{4}$$

Результаты расчета показателей качества магнитного анализа заносим в таблицу и делаем выводы о категории обогатимости (принадлежности к технологическому сорту — легко-, средне- и труднообогатимому).

Контрольные вопросы

В чем сущность магнитного метода обогащения.

Назначение магнитного анализа.

Устройство магнитного анализатора.

Порядок выполнения магнитного анализа.

Обработка результатов, расчетные формулы.

Что является критерием обогатимости.

Список литературы

- 1. Мелик-Гайказян В.И., Емельянова Н.П.; Юшина Т.И. Методы решения задач теории и практики флотации [Текст]: учебник для вузов М.: Издательство МГГУ «Горная книга», 2013 г.— 363 с.
- 2. Федотов К.В., Никольская Н.И. Проектирование обогатительных фабрик: [Текст] учебник для вузов М.: Издательство МГГУ «Горная книга», 2012 г. 536 с.
- 3. Авдохин В.М. Обогащение углей: [Электронный ресурс] учебник для вузов: В 2 т. М.: Издательство «Горная книга», 2012 г. Т. 2. Технологии. 475 с. // Университетская библиотека ONLINE http: //biblioclub.ru/
- 4. Абрамов А. А. Переработка, обогащение и комплексное использование твердых полезных ископаемых. Технология обогащения полезных ископаемых : Учебник для студентов вузов. (Высшее горное образование). Т.ІІ. 2004. 509 с.
- 5. Разумов К. А. Проектирование обогатительных фабрик [Текст] : учебник для вузов / К. А. Разумов, В. А. Перов. Недра, 1982. 518 с.