Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

МИНОБРНАУКИ РОССИИ Должность: проректор по учебной работе

Дата подписания: 16.11 Федеральное государственное бюджетное образовательное

Уникальный программный ключ:
 Орватисьный программный ключ.
 учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра космического приборостроения и систем связи

УТВЕРЖДАЮ ектор по учебной работе О.Г. Локтионова 2016 г. uapaa

ПЕРВОНАЧАЛЬНАЯ НАСТРОЙКА СЕТЕВЫХ УСТРОЙСТВ **CISCO SYSTEMS**

Методические указания по выполнению лабораторной работы для студентов, обучающихся по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» по курсу «Методы и средства моделирования телекоммуникационных систем и устройств», а также для студентов других направлений подготовки в области информационных технологий

УДК 654:004.7 (075.8)

Составители: преподаватель кафедры И.Г. Бабанин

преподаватель кафедры Н.П. Павлюченков

младший научный сотрудник Т.М. Петрияненко

Рецензент

Кандидат технических наук, старший научный сотрудник, профессор кафедры А.М. Потапенко

Первоначальная настройка сетевых устройств Cisco Systems: методические указания по выполнению лабораторной работы / Юго-Зап. гос. ун-т; сост.: И.Г.Бабанин, Н.П.Павлюченков, Т.М. Петрияненко. Курск, 2016. 15 с.: ил. 3.

Методические указания по выполнению лабораторной работы содержат краткие теоретические сведения о первоначальной настройке сетевых устройств компании Cisco, задания по выполнению работы, а также перечень вопросов для самопроверки изучаемого материала.

Полученные знания в результате выполнения работы дадут возможность сформировать целостную картину информационного взаимодействия в современных сетях, что является фундаментом для изучения остальных дисциплин профессионального цикла учебного плана, а также могут быть использованы в будущей профессиональной деятельности выпускника, связанной с сетевыми технологиями.

Предназначены для студентов, обучающихся по направлению подготовки 11.03.02 «Инфокоммуникационные технологии и системы связи» по курсу «Методы и средства моделирования телекоммуникационных систем и устройств», а также для студентов других направлений подготовки в области информационных технологий в системе высшего образования.

Текст печатается в авторской редакции

Подписано печать . Формат 60х841/16. Усл. печ. л.. Уч.-изд. 0,9 л. Тираж 100 экз. Заказ. 235 Бесплатно Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

1 Цель работы

- изучение первоначальных настроек сетевых устройств в эмуляторе Cisco Packet Tracer.
 - 2 Краткие теоретические сведения
 - 2.1 Способы подключения к сетевым устройствам

Сетевые устройства, как правило, настраиваются в командной строке ОС Cisco IOS. Подсоединение к ним осуществляется по протоколу Telnet на IP-адрес любого из его сетевых интерфейсов или с помощью любой терминальной программы через последовательный порт компьютера, связанный с консольным портом устройства (рисунок 1).

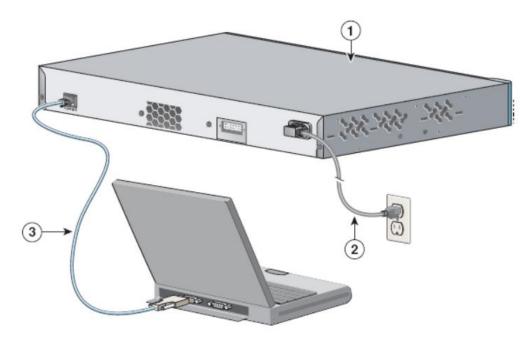


Рисунок 1 — Подключение по консольному кабелю

изображена Ha рисунке 1 схема подключения ПО тыльной **(1)** консольному порту: на стороне коммутатора расположены силовой разъем для подключения шнура питания (2) и консольный порт (3), обеспечивающий подключение к СОМпорту компьютера администратора посредством кабеля RJ-45-to-DB-9.

Последний способ предпочтительнее, потому что в процессе настройки оборудования могут измениться параметры физического

порта или административного IP-интерфейса, что приведет к потере соединения, установленного по протоколу Telnet.

Следует иметь в виду, что аварийное отключение консоли не регистрируется оборудованием, и сеанс остается в том состоянии, в котором находился на момент отключения. При повторном подключении пользователь окажется в том же контексте (если только не сработал автоматический выход в контекст пользователя по таймеру неактивности). Напротив, при разрыве Telnet-соединения коммутатор закрывает сеанс работы [1].

Для конфигурирования сетевых устройств в консольном режиме может использоваться программа HyperTerminal, входящая в состав стандартных программ ОС Windows XP, или сторонние программы, например, Putty, если используется ОС Windows более поздних версий или другая операционная система. Синтаксис команд, вводимых для конфигурирования, несколько различается у различных производителей, однако общий смысл их остается неизменным [2].

2.2 Контексты командной строки

В операционной системе Cisco IOS имеются два основных администрирования пользовательских режима ДЛЯ несколько других режимов, коммутатора и позволяющих контролировать конфигурацию устройства. В дополнение к программное обеспечение Cisco IOS различным режимам обеспечивает такие функции, интерактивная как справка командной строки, редактирование которые позволяют взаимодействовать с коммутатором в административных целях.

1) Пользовательский EXEC-режим. Switch>

Пользователям предоставляется возможность подключаться к коммутатору посредством консольного порта или Telnet-ceahca.

Стандартно при первоначальном доступе к коммутатору пользователь входит в пользовательский EXEC-режим (user EXEC), в котором предоставляется ограниченный набор команд. При подключении к коммутатору может потребоваться пароль пользовательского уровня.

2) Привилегированный ЕХЕС-режим.

Switch> enable

Switch#

После получает ΤΟΓΟ как пользователь доступ К пользователькому EXEC-режиму, можно применить команду enable для входа в привилегированный EXEC-режим (privileged EXEC), который предоставляет полный доступ ко всем командам ОС. Для привилегированный того чтобы покинуть ЕХЕС-режим, используется команда disable (возврат в пользовательский режим) или exit.

3) Конфигурационный режим.

Switch#configure terminal

Switch(config)#

Войти в конфигурационный режим можно из привилегированного EXEC-режима. В режиме конфигурации можно вводить любые команды для настройки функций коммутатора, которые доступны в программном образе операционной системы IOS. Любая команда конфигурации вступает в действие немедленно после ввода (а не после возврата в контекст администратора).

режим организован Конфигурационный иерархически. Режим глобальной конфигурации (global configuration содержит команды, которые влияют на коммутатор в целом. В режиме конфигурирования интерфейса (interface configuration mode) администратору предоставляются команды, позволяющие настраивать интерфейсы коммутатора В зависимости OTнастраиваемого ресурса.

Для перехода со специфического уровня конфигурирования наболее общий вводится команда exit. Для того чтобы покинуть режим глобальной конфигурации и вернуться в привилегированный EXEC-режим необходимо ввести команду exit. Для того чтобы покинуть любой конфигурационный режим и вернуться в привилегированный EXEC-режим, применяется команда end или комбинация клавиш [Ctrl]+[z].

Вид приглашения командной строки в контекстах конфигурирования, которые будут встречаться наиболее часто:

Switch(config)# – глобальный;

Switch(config-if)# – интерфейса;

Switch(config-line)# – терминальной линии.

4) Режим конфигурирования базы данных VLAN-сетей (устаревший, использовать не рекомендуется).

Switch# vlan database

Switch(vlan)#

Перейти в указанный режим можно из привилегированного EXEC-режима. После ввода команды появится приглашение режима конфигурирования базы данных VLAN-сетей (vlan database mode). В данном режиме с помощью команд vlan (и/или vtp) конфигурируются и модифицируются VLAN- и VTP-параметры.

После внесения изменений в базу данных VLAN они не вступят в действие до тех пор, пока не будет введена команда apply для активизации изменений в базе данных или команда exit, которая позволяет активизировать изменения и покинуть режим. Команда abort отменяет какие-либо сделанные изменения в базе данных и позволяет покинуть рассматриваемый режим конфигурирования.

Кроме того, существует возможность просмотреть текущее состояние базы данных и предполагаемые изменения, используя команды группы show.

Необходимо запомнить вид приглашений командной строки (изображены в прямоугольнках) во всех вышеуказанных контекстах и команды перехода из контекста в контекст (изображены над стрелками), это поможет при настройке коммутатора (рисунок 2) [1].

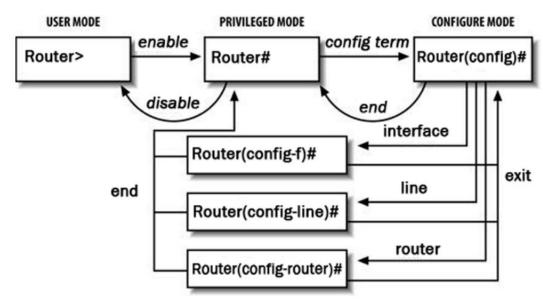


Рисунок 2 – Схема контекстов Cisco IOS (пример для маршрутизаторов)

2.3 Конфигурирование паролей на подключение к устройству

Пароли обеспечивают некоторый уровень защиты коммутатора, предотвращающий неавторизованное подключение к нему. Коммутаторы Catalyst стандартно имеют два уровня парольной защиты: пользовательский и привилегированный. Для обеспечения защиты устройства следует применять аутентификацию пользователя с использованием локальной базы коммутатора и шифрование паролей.

Пароль уровня пользователя предотвращает доступ неавторзованных лиц к интерфейсу командной строки (CLI) из Telnet- или консольного сеанса. Он настраивается для каждой линии подключения отдельно с помощью команд password, параметром которой является устанавливаемый пароль, и login без параметров.

Команда login обеспечивает процесс аутентификации пользователя и является обязательной для линий подключения IOS-коммутаторов. До тех пор, пока пароль не будет установлен или в конфигурации линии будет отсутствовать команда login, подключение по Telnet невозможно. Выбор той или иной линии для ее конфигурирования осуществляется с помощью команды режима глобального конфигурирования:

Switch(config)#line con 0 – для консольной линии,

Switch(config)#line vty 0 4 — для линий виртуального терминала в диапазоне номеров с 0 по 4.

Пароль привилегированного режима предотвращает доступ неавторизованных лиц к соответствующему режиму, в котором могут вноситься изменения в конфигурацию коммутатора осуществляться другие функции администрирования. задается с помощью команды enable secret, обеспечивающей его шифрование, устаревшая команда enable password не шифрует совместимости программным пароль оставлена ДЛЯ обеспечением ранних версий, причем во второй команде пароль должен отличаться от устанавливаемого в первой.

Для того чтобы пароли не хранились в файле конфигурации в открытом виде, можно использовать встроенную службу шифрования, но учтите, что она не обеспечивает их шифрование, а

призвана лишь усложнить чтение паролей с экрана. Указанная служба запускается командой:

service password-encryption.

Как упоминалось ранее, предпочтительнее применять аутентификацию пользователя с использованием локальной базы данных коммутатора, для чего сначала создаются записи локальной базы пользователей с помощью команды:

Switch(config)#username <имя> privilege <уровень> secret <пароль>.

Затем для каждой линии подключения к коммутатору указывается команда login с параметром локальной аутентификации [1]:

Switch(config-line)#login local.

2.4 Настройка интерфейсов

Для перехода в режим настройки необходимого интерфейса следует, находясь в глобальном режиме, выполнить команду:

lab1(config)#interface <имя интерфейса>.

По умолчанию все интерфейсы маршрутизатора выключены. **Интерфейс включается** командой:

lab1(config-if)#no shutdown.

Работоспособность настроек физического и канального уровней можно проверить командой в контексте администратора:

lab1#show interface <имя_интерфейса>.

Сообщения об изменении состояния физического и канального уровней любого интерфейса выводятся маршрутизатором на консоль. Команда show interface также выводит сведения об используемом протоколе канального уровня, IP-адресе и статистику отправленных и полученных данных и ошибок.

Настройка IP-адреса интерфейса производится командой:

lab1(config-if)#ip address <адрес> <маска>.

Подробная информация о параметрах протокола IP доступна в контексте администратора по команде:

lab1#show ip interface <имя_интерфейса>.

Краткая сводная таблица состояний IP-интерфейсов[1]: lab1#show ip interface brief.

- 3 Перечень ресурсов, необходимых для выполнения работы
- персональный компьютер с конфигурацией не ниже Pentium IV, ОЗУ 256 Мб;
 - сетевой эмулятор Cisco Packet Tracer.
 - 4 Задание на лабораторную работу
 - 1) Запустить Cisco Packet Tracer.
 - 2) Собераит схему в соответствии с рисунком 3.

Рисунок 3 – Подключение по консольному кабелю

- 3) На компьютере Laptop 0 в закладке Desktop запустить приложение Terminal с параметрами по умолчанию. Нажмите [Enter] для входа в пользовательский режим.
 - 4) Перейти в привилегированный режим.
- 5) Перейти в режим глобального конфигурирования и обратно в привилегированный.
- 6) Осуществить переход в представленные контексты Cisco IOS.
- 7) Просмотреть список команд каждого контекста с помощью команды?.
- 8) Выполнить в привилегированном EXEC-режиме несколько команд группы show, используя сокращенную запись команд.

- 9) Выполнить в режиме глобального конфигурирования несколько команд группы show, используя команду do.
- 10) В текущей конфигурации найти команды, устанавливающие пароли на линии con и vty.
 - 11) Установить пароль console для линии con0.
- 12) Выйти из сеанса консоли с помощью команды logout и войти в новый сеанс, используя введенные данные аутентификации.
- 13) В текущей конфигурации найти команды, устанавливающие пароль для входа в привилегированный режим.
- 14) Запустить службу шифрования паролей и в текущей конфигурации найти команды, устанавливающие пароли.
- 15) Создать запись в локальной базе данных аутентификации о пользователе admin с уровнем привилегий 0 и секретным паролем cisco.
- 16) Настроить линии con0 и vty0 vty4 на использование локальной аутентификации. Для отмены старых паролей можно использовать команду: Switch(config-line)#no password.
- 17) Выйти из сеанса консоли и войти в новый сеанс, используя введенные данные аутентификации.
- 18) В текущей конфигурации найти команды, устанавливающие действующие на коммутаторе пароли.
 - 19) Сохранить текущую конфигурацию.

Примечание: каждая итерация должна сопровождаться скриншотом (-ами).

5 Требования к оформлению отчёта по выполнению лабораторной работы

Отчёт должен быть оформлен с помощью редактора MS Word, версии 97 и выше (.doc, .rtf).

Параметры страницы:

- верхнее поле- 2 см;
- нижнее поле- 2 см;
- левое поле- 3 см;
- правое поле- 1 см;
- переплет- 0 см;
- размер бумаги А4;

- различать колонтитулы первой страницы.

Шрифт текста Times New Roman, 14 пунктов, через 1,5 интервала, выравнивание по ширине, первая строка с отступом 1,5 см. Номер страницы внизу, по центру, 14 пунктов.

Несложные формулы должны быть набраны с клавиатуры и с использованием команды «Вставка→Символ». Сложные формулы должны быть набраны в редакторе MathType 6.0 Equation.

Отчёт по лабораторной работе должен содержать:

- название предмета, номер и название лабораторной работы;
- фамилию и инициалы автора, номер группы;
- фамилию и инициалы преподавателя;
- цель работы;
- перечень используемого оборудования;
- последовательность действий проведения исследований;
- вывод о проделанной работе;
- ответы на вопросы п. б;
- дату выполнения и личную подпись.

Результаты различных измерений необходимо представить в виде нескольких самостоятельных таблиц и графиков. Каждая таблица и каждый график должны иметь свой заголовок и исходные данные эксперимента.

При выполнении численных расчетов надо записать формулу определяемой величины, сделать соответственную численную подстановку и произвести вычисления.

Пример оформления отчёта представлен в приложении 1.

- 6 Примерный перечень вопросов для защиты лабораторной работы
- 1) Какие существуют способы подключения к сетевому оборудованию для управления им?
- 2) Какие существуют контексты командной строки IOS и каковы возможности администрирования каждого из них?
- 3) Какой командой выводится сводная таблица состояний IP- интерфейсов?
- 4) Какова последовательность ввода команд в сетевых устройствах Cisco Systems для настройки IP-адреса на интерфейсе?

- 5) Какую команду предпочтительней использовать при создании пароля на коммутаторах?
- 6) Какие программные средства используется на OC Windows для доступа к сетевому устройству по протоколу Telnet?
- 7) Какой процесс запускает команда login на сетевых устройствах?

7 Список использованных источников

- 1) Андрончик А.Н., Коллеров А.С., Синадский А.С., Щербаков М.Ю. Сетевая защита на базе технологий фирмы Cisco Systems. Практический курс: учеб. пособие; под общ. ред. Синадского Н.И.- Екатеринбург: изд-во Урал. ун-та, 2014. 180 с.
- 2) Соболь Б.В., Манин А.А., Герасименко М.С. Сети и телекоммуникации : учеб. пособие. Ростов н/Д : Феникс, 2015. 191 с.

Приложение 1 Пример оформления отчёта по лабораторной работе

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра космического приборостроения и систем связи

Отчёт по выполнению лабораторной работы по курсу «Радиопередающие и радиоприёмные устройства» на тему «Изучение принципа работы супергетеродинного приёмника»

Выполнил:		студент группы ИТ-11б			
		Иванов И.И.			
	(подпись)	«»2012			
Проверил:		д.т.н., профессор кафедры			
		Петров П.П.			
	(полпись)	«»2012			

1 Цель работы

Ознакомиться ...

2 Структурная схема макета и перечень используемого оборудования

Структурная схема лабораторного макета для проведения исследований спектров сигналов представлена на рисунке 2.1.

Рисунок 2.1 – Структурная схема лабораторного макета

Перечень используемого оборудования:

- лабораторный стенд «Радиоприёмные устройства» (1 к-т);
- сменный блок «Изучение принципа работы супергетеродинного радиоприёмника АМ сигналов» (1 к-т);
 - осциллограф типа С1-96 (1 к-т);
 - милливольтметр переменного напряжения типа DT-820B (1 к-т).
- 3 Последовательность проведения и результаты лабораторных исследований
 - 3.1 Снятие амплитудно-частотной характеристики входной цепи

Результаты снятия зависимости напряжения на выходе входной цепи от частоты генератора, при фиксированном напряжении на входе, представлены в таблице 1.

Таблица 1 – AЧХ входной цепи

Частота генератора, кГц			
Напряжение на выходе входной цепи Uвых,			
мВ при $U_{BX} = 500 \text{ мВ}$			

Продолжение таблицы 1

Нормированное напряжение	на	выходе		
входной цепи, $U_{BыX}/U_{BыX,MAKC}$				

4 Ответы на контрольные вопросы

Вопрос №1. Какие основные функции радиоприёмных устройств? Ответ:

Вопрос №2. Перечислите основные электрические характеристики радиоприемников.

Ответ:

5 Вывод о проделанной работе

В ходе выполнения лабораторной работы ознакомился с ...