Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

МИНОБРНАУКИ РОССИИ

Должность: проректор по учебной работе Дата подписания: Федеральное государственное бюджетное образовательное Уникальный программный ключ:

0b817ca911e6668abb13a5d426d39e5f1c1Yearon 3e-45d14a4851fda56d08) ero образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра электроснабжения

УТВЕРЖДАЮ
Проректор по учебной работе
О.Г. Локтионова
« 16 » 04 2019 г.

ИССЛЕДОВАНИЕ RC-ЦЕПЕЙ

Методические указания по выполнению лабораторной работы по электротехнике и электронике

УДК 621.3 (076.1)

Составитель: А.С. Романченко

Рецензент Доктор технических наук, профессор A.B. Филонович

Исследование RC-цепей: методические указания по выполнению лабораторной работы по дисциплине «Электротехника и электроника» / Юго-Зап. гос. ун-т; сост.: А.С. Романченко. Курск, 2019. 13 с.: ил. 4, табл. 3. Библиогр.: с. 13.

Методические указания содержат сведения по исследованию линейного пассивного четырехполюсника, представляющего собой простейшую RC-цепь. Указывается порядок выполнения лабораторной работы, правила оформления отчета. Лабораторная работа охватывает материал по следующим темам: четырехполюсники, частотно-зависимые цепи и электрические фильтры, передаточные функции и частотные характеристики.

Методические указания соответствуют требованиям рабочей программы дисциплины «Электротехника и электроника».

Предназначены для студентов технических специальностей и направлений подготовки при проведении лабораторных занятий.

Текст печатается в авторской редакции

Подписано в печать **16.04.19.** Формат 60х84 1/16. Бумага офсетная. Усл. печ. л. 0,7. Уч.-изд.л. 0,6. Тираж 50 экз. Заказ 336. Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94

1. ЦЕЛЬ РАБОТЫ

- 1.1. Снятие и построение амплитудно-частотной характеристики простейших RC-цепей: интегрирующей и дифференцирующей цепей.
- 1.2. Получение опыта работы с электронными измерительными приборами: электронным осциллографом и генератором звуковых частот при измерении параметров RC-цепей.

2. ПОДГОТОВКА К ИССЛЕДОВАНИЯМ

- 2.1. Изучить по конспекту лекций и рекомендованному учебнику разделы «Четырехполюсники», «Частотно-зависимые цепи и электрические фильтры», «Передаточные функции и частотные характеристики».
- 2.2. Освоить методику выполнения лабораторной работы по настоящему пособию.
- 2.3. Заготовить отчёт со схемами экспериментальной установки, таблицами для экспериментальных данных.

3. ПРЕДВАРИТЕЛЬНЫЕ СВЕДЕНИЯ

При рассмотрении электрических и электронных цепей, как правило, можно выделить два вывода, на которые подается входной сигнал, и два вывода, с которых снимается выходной сигнал.

Четырехполюсником называется электрическая (электронная) цепь или электротехническое (электронное) устройство, имеющие две пары внешних выводов (полюсов, зажимов).

Выводы четырёхполюсника делятся на входные (вход) и выходные (выход). Четырёхполюсники могут быть классифицированы по различным признакам. По признаку линейности элементов, входящих в них, разделяют линейные и нелинейные ЧП. По схеме внутренних соединений различают четырёхполюсники мостовые и лестничные: Гобразные (рис. 3.1), Тобразные, Побразные. По присутствию в них источника электроэнергии или его отсутствию различают активные и пассивные четырёхполюсники. Если замена входных зажимов на выходные при подаче входного сигнала не меняет выходного сигнала, то четырехполюсник будет симметричным; в противном случае будет несимметричный четырехполюсник. Четырехполюсник часто используют как передаточное звено для различных сигналов и как схему за-

мещения для различных электротехнических и электронных устройств.

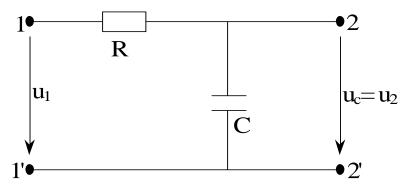


Рис. 3.1. RC-цепь как четырехполюсник

Схема четырехполюсника может состоять из различных элементов: как правило, это резисторы (активные сопротивления), индуктивности и емкости. Как известно, сопротивления индуктивных катушек и конденсаторов зависят от частоты: индуктивное сопротивление пропорционально частоте, а емкостное сопротивление обратно частоте. Поэтому характеристики четырехполюсника, составленного из этих элементов, зависят от частоты. В этом случае говорят о частотных характеристиках четырехполюсника.

Частотные характеристики описывают передаточные свойства элементов, цепей, устройств и систем в режиме установившихся гармонических колебаний, вызванных внешним гармоническим воздействием. Зная частотную характеристику цепи, можно определить её реакцию на гармоническое воздействие любой частоты, а также на сумму гармонических воздействий различных частот. В последнем случае можно воспользоваться принципом суперпозиции. Это позволяет ограничиться изучением линейных систем только с одним входом. Частотные характеристики широко используются в теории цепей, радиотехнике, теории и практике автоматического управления, и их можно определить экспериментальным путём.

Если на зажимы 1-1' цепи на рис. 3.1 подано внешнее воздействие (входной сигнал — напряжение или ток) x(t), а на зажимах 2-2' наблюдаем отклик цепи (выходной сигнал — напряжение или ток) y(t), то комплексной частотной характеристикой (КЧХ) цепи называется отношение комплексных изображений отклика и воздействия:

$$H(j\omega) = \frac{\underline{Y}_m}{\underline{X}_m} = \frac{\underline{Y}}{\underline{X}}, \tag{3.1}$$

где \underline{Y}_m и $\underline{Y} = \underline{Y}_m / \sqrt{2}$ - комплексные амплитуда и действующее значение реакции цепи; \underline{X}_m и $\underline{X} = \underline{X}_m / \sqrt{2}$ - комплексные амплитуда и действующее значение внешнего воздействия.

Размерность КЧХ равна отношению размерностей отклика и внешнего воздействия. Она может иметь размерность сопротивления, проводимости или быть безразмерной. В общем виде

$$H(j\omega) = H(\omega)\exp[j\psi(\omega)] = H'(\omega) + jH''(\omega), \qquad (3.2)$$

где модуль $H(\omega)$ и фаза $\psi(\omega)$ или активная (вещественная) $H'(\omega)$ и реактивная (мнимая) $H''(\omega)$ составляющие являются функциями вещественной частоты и могут быть изображены в виде графиков. Эти функции называются *частотными характеристиками цепи*. Зависимость модуля KYX от частоты называют амплитудной, а зависимость фазы KYX от частоты — фазовой частотными характеристиками (соответственно AYX и ΦYX). Следовательно, KYX сочетает в себе AYX и ΦYX .

При графическом представлении КЧХ цепи обычно строят либо отдельно АЧХ и ФЧХ, либо изображают вещественную и мнимую частотные характеристики.

КЧХ делятся на входные и передаточные. Если отклик и внешнее воздействие рассматриваются на одних и тех же зажимах цепи, то КЧХ называется входной. Если отклик и внешнее воздействие задаются на разных зажимах, то КЧХ называется передаточной. Различают два вида входных и четыре вида передаточных характеристик, среди которых чаще всего используют:

- комплексное входное сопротивление: $H_{11}(j\omega) = Z_{11}(j\omega) = U_1/I_1$;
- комплексный коэффициент передачи по напряжению:

$$K_{21}(j\omega) = U_2/U_1$$
.

Вид КЧХ будет зависеть не только от структуры цепи, но и от нагрузки. Поэтому часто рассматриваются частотные характеристики для режимов холостого хода и короткого замыкания. В частности, для RC-цепи на рис. 3.1 при холостом ходе на выходных зажимах 2-2' (I_2 =0) комплексное входное сопротивление равно:

$$Z_{1x}(j\omega) = \underline{U}_1 / \underline{I}_1 = R - j \frac{1}{\omega C}. \tag{3.3}$$

Комплексный коэффициент передачи по напряжению RC-цепи на рис. 3.1 при холостом ходе на выходных зажимах 2-2' равен:

$$K_{21}(j\omega) = \frac{\underline{U}_{2x}}{\underline{U}_{1x}} = \frac{\underline{I}_{1x} \cdot 1/j\omega C}{\underline{U}_{1x}} = \frac{\underline{I}_{1x} \cdot 1/j\omega C}{\underline{I}_{1x}(R + 1/j\omega C)} = \frac{1}{1 + j\omega CR}. \quad (3.4)$$

При этом АЧХ данного коэффициента определяется выражением (с учетом $\omega = 2\pi f$):

$$K_{21}(f) = \sqrt{\frac{1}{1 + (2\pi f CR)^2}} . ag{3.5}$$

Так как четырехполюсник часто используют как передаточное звено, то, как правило, говоря об AЧX цепи в виде четырехполюсника, имеют в виду AЧX коэффициента передачи по напряжению.

К линейным электрическим цепям, являющимся передаточным звеном, относят частотно-избирательные цепи, называемые электрическими фильтрами, которые служат для выделения полезных сигналов на фоне различных помех и используются при обработке информации.

Электрический фильтр — это четырёхполюсник, пропускающий некоторую полосу частот с малым затуханием (ослаблением); вне этой полосы частот затухание велико.

Полоса частот, в которой ослабление мало, называется полосой пропускания фильтра. Полоса частот, в которой ослабление велико, называется полосой задерживания (затухания) фильтра. Между этими полосами находится переходная область. Граничную частоту ω_c (или f_c) между полосой пропускания и полосой задерживания называют частотой среза.

По расположению полосы пропускания на шкале частот различают следующие виды фильтров:

- фильтры нижних частот (ФНЧ), пропускающие сигналы в частотном диапазоне $0 < \omega < \omega_c$;
- фильтры верхних частот (ФВЧ), пропускающие сигналы в частотном диапазоне $\omega_c < \omega < \infty$;
- полосовые фильтры, пропускающие сигналы в частотном диапазоне $\omega_{c1} < \omega < \omega_{c2}$;
- заграждающие (режекторные) фильтры, пропускающие сигналы в частотном диапазоне $0<\omega<\omega_{c1},\ \omega_{c2}<\omega<\infty,\ где\ \omega_{c2}>\omega_{c1};$

Простейшая электрическая цепь, состоящая из резистора и конденсатора, может создавать на выходе несинусоидальное напряжение, значительно отличающееся от входного несинусоидального напряжения. При определённых соотношениях R и C выходное напряжение может быть пропорционально производной по времени от входного напряжения. Действительно, для цепи на рис. 3.2 запишем уравнение:

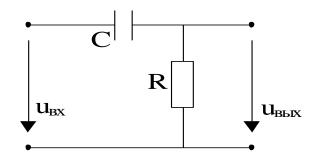


Рис. 3.2. Дифференцирующая RC-цепь

$$u_C + Ri = u_{BX}$$

$$u_C + R \cdot C \cdot \frac{du_C}{dt} = u_{BX}$$

Если $\tau = RC << T$, где T — период несинусоидального входного напряжения $u_{\scriptscriptstyle BX}$, то:

$$u_{\text{BMX}} = \text{Ri} = \text{RC} \frac{du}{dt} \ll u_{\text{C}},$$

Т.е. $u_C \approx u_{BX}$. Тогда ток в цепи и выходное напряжение равны:

$$i = C \frac{du_C}{dt} \approx C \frac{du_{BX}}{dt}, \quad u_{BMX} = Ri \approx RC \frac{du_{BX}}{dt}.$$
 (3.6)

Степень точности, с которой выполняется это равенство, зависит от соотношения параметров дифференцирующей цепи на рис. 3.2. Чем точнее RC-цепь производит дифференцирование, тем меньше получается напряжение на выходе цепи. Изменение формы сигнала тем больше, чем меньше постоянная времени цепи τ =RC. Дифференцирующую цепь можно рассматривать как фильтр, пропускающий высокочастотные составляющие сигнала и подавляющий низкочастотные составляющие, т.е. как ФВЧ.

Если поменять местами элементы в схеме на рис. 3.2, то получим интегрирующую цепь (рис. 3.1).

В частности, в цепи на рис 3.1 для выполнения равенства $u_{\text{вых}} \approx k \int u_{\text{вх}} dt$

необходимо, чтобы τ =RC>>T, где T — период входного напряжения. При этом основное падение напряжения будет на резисторе R, а выходное напряжение окажется малым. Поэтому Ri \approx u_{вх} или i \approx $\frac{u_{вx}}{R}$, следовательно:

$$u_{\text{вых}} = \frac{1}{C} \int i dt \approx \frac{1}{RC} \int u_{\text{вх}} dt$$
 (3.7)

Таким образом, при достаточно большой постоянной времени τ =RC выходное напряжение будет почти пропорционально интегралу от входного напряжения. Чем больше постоянная времени, тем сильнее форма выходного сигнала отличается от формы входного сигнала.

АЧХ коэффициента передачи по напряжению RC-цепи на рис. 3.2 при холостом ходе на выходных зажимах будет определяться формулой:

$$K_{21}(f) = 2\pi f CR \sqrt{\frac{1}{1 + (2\pi f CR)^2}}$$
 (3.8)

Схемы на рис. 3.1 и рис. 3.2 используются для изменения формы подводимого сигнала.

Интегрирующую цепь можно также рассматривать как фильтр, пропускающий низкочастотные составляющие сигнала и подавляющий составляющие более высоких частот, т.е. как ФНЧ.

4. ОБОРУДОВАНИЕ И ПРИБОРЫ

При выполнении лабораторной работы используются генератор ГЗ-33 и осциллограф С1-70. Для формирования исследуемого четы-рехполюсника (интегрирующей и дифференцирующей RC-цепей) используются конденсатор емкостью 0,022 мкФ и постоянный резистор с сопротивлением 1,5 кОм.

Осциллограф – электронный прибор, предназначенный для отображения на экране формы сигналов: тока, напряжения – в функции времени.

Развертка электрических сигналов во времени осуществляется благодаря наличию в трубке осциллографа отклоняющих пластин. На горизонтальные отклоняющие пластины подают пилообразное напряжение развертки, а на вертикальные — исследуемый сигнал. В результате на экране появляется «картинка», показывающая изменение амплитуды сигнала во времени.

При равенстве частоты развертки и частоты сигнала на экране появляется один период колебания. При неравенстве этих частот число периодов, отображаемых на экране, определяется их отношением.

Для управления параметрами изображения «картинки» осциллограф содержит органы управления: регулятор чувствительности (ам-

плитуды) сигнала и регулятор частоты развертки. Позиции регулятора чувствительности маркированы показателями, имеющими размерность «В/дел». Например, если размах сигнала по оси «Y» укладывается в три деления, а ручка чувствительности стоит на $0.5 \, \text{В/дел}$, то амплитуда сигнала равна: $0.5 \times 3 = 1.5 \, \text{B}$.

Позиции регулятора частоты развертки имеют размерность t/дел, при этом время t приводится в «с» (секундах), «мс» (миллисекундах), «мкс» (микросекундах), отражающих длительность периода сигнала.

Для перевода длительности периода в частоту и наоборот используют формулу f=1/T, где f — частота колебаний сигнала, а T — длительность одного колебания (период). Если частота выражена в герцах, то длительность получает размерность секунд; если частота в к Γ ц, то длительность измеряется в милисекундах (мс); если частота в мегагерцах (М Γ ц), то длительность — в микросекундах (мкс).

Например, периоду в 50 мс соответствует частота: 1/0,05=20 Гц.

5. ПОРЯДОК ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

5.1. Перед выполнением измерений определить область частот (разную для дифференцирующей и интегрирующей цепей), где коэффициент передачи четырехполюсника, как отношение его выходного напряжения к входному напряжению (к напряжению на выходе генератора), максимален и равен 1. Установить ручками регулятора чувствительности «В/Дел» и регулятора частоты развертки «Время/Дел» осциллографа в этой области частот такое значение выходного напряжения генератора, при котором полный размах колебания на экране составляет 5 больших делений.

Для экспериментального определения амплитудно-частотной характеристики (AЧX) изменять частоту f выходного напряжения генератора дискретно и равномерно в логарифмическом масштабе, т.е. увеличивая или уменьшая в одинаковое число раз, например, в 2 раза (октавами): ...250, 500, 1000 (Гц), и измеряя на каждой частоте размах колебания по вертикали.

- 5.2. Снять АЧХ интегрирующей RC-цепи. Для этого:
- 1) подключить к выходу генератора Г3-33 интегрирующую RCцепь и вход синхронизации осциллографа, как показано на рис. 5.1;
 - 2) установить режим внешней синхронизации осциллографа;
- 3) дискретно меняя частоту выходного сигнала генератора f_{Γ} и попеременно подключая вход осциллографа к выходу генератора и к

выходу RC-цепи, измерить для каждой частоты амплитуду напряжения на конденсаторе U_C и амплитуду выходного напряжения генератора U_Γ . Результаты измерений занести в таблицу 5.1.

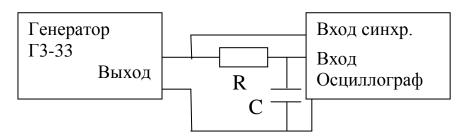


Рис. 5.1. Схема для исследования интегрирующей RC-цепи

Таблица 5.1 - Данные для построения AЧX интегрирующей RC-цепи

Частота f_{Γ} , Γ ц	100	1000	2000	4000	8000
U_C , B					
U_{Γ} , B					
$K = U_{C}/U_{\Gamma}$					

- 5.3. Снять АЧХ дифференцирующей RC-цепи. Для этого:
- 1) подключить к выходу генератора Г3-33 дифференцирующую RC-цепь и вход синхронизации осциллографа, как показано на рис. 5.2;

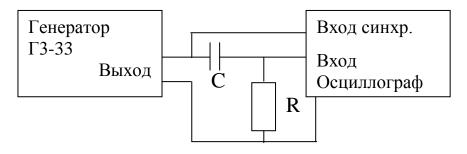


Рис. 5.2. Схема для исследования дифференцирующей RC-цепи

- 2) установить режим внешней синхронизации осциллографа;
- 3) дискретно меняя частоту выходного сигнала генератора f_{Γ} и попеременно подключая вход осциллографа к выходу генератора и к выходу RC-цепи, измерить для каждой частоты амплитуду напряжения на резисторе U_R и амплитуду выходного напряжения генератора U_{Γ} . Результаты измерений занести в таблицу 5.2.

Таблица 5.2 - Данные для построения АЧХ дифференцирующей RC-цепи

Частота f_{Γ} , Гц	100	1000	2000	4000	8000
U_R , B					
U_{Γ} , B					
$K = U_R / U_\Gamma$					

6. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ И СОДЕРЖАНИЕ ОТЧЕТА

- 6.1. По полученным экспериментальным данным подсчитать значения модуля коэффициента передачи K:
 - для интегрирующей RC-цепи по формуле $K = U_C/U_\Gamma$;
- для дифференцирующей RC-цепи по формуле $K = U_R/U_\Gamma$ и внести их соответственно в таблицы 5.1 и 5.2.
- 6.2. На основании данных таблиц 5.1 и 5.2 построить отдельно амплитудно-частотные характеристики интегрирующей RC-цепи и дифференцирующей RC-цепи как зависимость коэффициента передачи K от частоты f (значения частоты f откладываются по горизонтальной оси, значения коэффициента передачи K откладываются по вертикальной оси). При построении графиков AЧX точки следует располагать на частотной оси равномерно, через одинаковые промежутки.

На построенных графиках отметить «частоты среза» АЧХ, для которых коэффициент передачи *К* снижается до уровня 0,71.

6.3. Рассчитать для значений частоты, использованных при эксперименте, теоретические АЧХ интегрирующей RC-цепи по формуле (3.5) и дифференцирующей RC-цепи по формуле (3.8) при C=0,022 мк Φ и R=1,5 кOм и занести результаты расчета в таблицу 6.1.

Таблица 6.1 - Данные для построения расчетных АЧХ интегрирующей и дифференцирующей RC-цепей

Частота f_{Γ} , Гц	100	1000	2000	4000	8000
K_{uhm}					
$K_{\partial u \phi}$					

По результатам таблицы 6.1 построить расчетные АЧХ, совместив их с графиками экспериментальных АЧХ интегрирующей и дифференцирующей RC-цепей в одной системе координат.

- 6.4. Отчет должен содержать:
- а) цель работы;
- б) схемы для исследования RC-цепей;
- в) таблицы с экспериментальными и расчетными данными;
- г) графики АЧХ, построенные по экспериментальным и расчетным данным;
 - д) выводы по работе.

7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Назначение и основные узлы электронного осциллографа.
- 2. Как устанавливается необходимый размах амплитуды сигнала на экране осциллографа?
- 3. Как устанавливается необходимая скорость горизонтальной развертки?
- 4. Виды синхронизации, применяемые при измерениях с помощью осциллографа.
- 5. Как выполняются амплитудные измерения сигналов осциллографом?
- 6. Как выполняются измерения временных параметров сигналов с помощью осциллографа?
- 7. Как и при каких условиях определяется коэффициент передачи четырехполюсника?
 - 8. Что такое АЧХ электрической схемы?
- 9. Объяснить вид АЧХ интегрирующей и дифференцирующей цепей.
 - 10. Как зависит от частоты сопротивление конденсатора?
- 11. Почему интегрирующую RC-цепь можно использовать как фильтр нижних частот?
- 12 Почему дифференцирующую RC-цепь можно использовать как фильтр верхних частот?
- 13. Что такое полоса пропускания электрического фильтра? Показать полосу пропускания на построенных АЧХ интегрирующей и дифференцирующей цепей.
- 14. Почему интегрирующую RC-цепь называют интегрирующей и при каком условии?
- 15. Почему дифференцирующую RC-цепь называют дифференцирующей и при каком условии?

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Бессонов, Л.А. Теоретические основы электротехники. Электрические цепи [Текст]: учебник. М.: Гардарики, 2002. 638 с.
- 2. Бакалов, В.П. Основы теории цепей [Текст]: учебник / В.П. Бакалов, В.Ф. Дмитриков, Б.Е. Крук.; Под ред. В.П. Бакалова. М.: Радио и связь, 2000.-592 с.
- 3. Зевеке, Г.В. Основы теории цепей [Текст]: учебник / Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов. М.: Энергия, 1975. 752 с.
- 4. Кореневский, Н.А. Общая электротехника [Текст]: учебное пособие / Н.А. Кореневский, И.С. Некрасов, А.С. Романченко. Курск: Курск. гос. техн. ун-т, 2005. 291 с.