Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

Должность: проректор по учебной работе

Дата подписания: 07.12.2022 15:05:48

МИНОБРНАУКИ РОССИИ

Уникальный программный ключ:

0b817ca911e6668abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра вычислительной техники

**УТВЕРЖДАЮ** 

Проректор по учебной работе

О.Г. Локтионова

# ПРИМЕНЕНИЕ КОНЕЧНЫХ АВТОМАТОВ ДЛЯ ПОИСКА И РАСПОЗНАВАНИЯ ПОДСТРОК

Методические рекомендации к лабораторным работам для студентов направления 09.03.01

УДК 681.3

Составители: И.Е. Чернецкая

Рецензент Кандидат технических наук, доцент *Т.Н. Конаныхина* 

Применение конечных автоматов для поиска и распознавания подстрок: методические рекомендации к лабораторной работе / Юго-Зап. гос. ун-т; сост.: И.Е. Чернецкая. — Курск, 2022. - 24 с.: - ил. 6.— Библиогр.: с. 24

Содержит сведения о способах программной реализации детерминированных конечных автоматов. Рассматриваются приложения теории автоматов к задачам поиска и распознавания подстрок: метод конечных автоматов и метод Кнута-Морриса-Пратта. Каждый из методов подкреплен примером.

Методические рекомендации соответствуют рабочей программе дисциплины «Теория автоматов».

Предназначены для студентов направления 09.03.01 очной и заочной форм обучения.

Текст печатается в авторской редакции

Подписано в печать . Формат 60\*84 1/16. Усл. печ. л.1,4. Уч.-изд. л. 1,26. Тираж 50 экз. Заказ 1902. Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94.

# Оглавление

| Ι.  | Цель работы                                         | 4  |
|-----|-----------------------------------------------------|----|
| 2.  | Основные понятия                                    | 4  |
| 2.1 | Строки и операции над строками                      | 4  |
| 2.2 | Постановка задачи поиска подстрок                   | 5  |
| 2.3 | Постановка задачи распознавания подстрок            | 5  |
| 3.  | Методы поиска подстрок                              | 6  |
| 3.1 | Простейший алгоритм                                 | 6  |
| 3.2 | Поиск подстрок с помощью конечных автоматов         | 6  |
| 3.3 | Распознавание подстрок с помощью конечных автоматов | 10 |
| 3.4 | Программная реализация конечных автоматов           | 15 |
| 3.5 | Алгоритм Кнута-Морриса-Пратта                       | 19 |
| 4.  | Порядок выполнения работы                           | 22 |
| 5.  | Содержание отчета                                   | 23 |
| 6.  | Варианты заданий                                    | 23 |
| 7.  | Контрольные вопросы                                 | 24 |
| Спи | исок литературы                                     | 24 |

# 1. ЦЕЛЬ РАБОТЫ

Освоить программную реализацию конечных автоматов. Научиться наиболее эффективным методам поиска и распознавания подстрок: методу конечных автоматов и алгоритму Кнута-Морриса-Пратта.

#### 2. ОСНОВНЫЕ ПОНЯТИЯ

#### 2.1. Строки и операции над строками

**Строкой** называется последовательность символов, взятых из некоторого алфавита. Длина строки A равна количеству символов в этой строке (обозначается |A|). Особым типом строки является пустая строка  $\varepsilon$  нулевой длины.

Строки A и B равны (A=B), если они имеют равную длину, один и тот же состав символов, и порядок следования символов в строках совпадает.

**Префиксом** строки A называется строка P, полученная удалением нуля или более последних символов строки A (обозначается  $P \sqsubset A$ ).

*Суффиксом* строки A называется строка S, полученная удалением нуля или более первых символов строки A (обозначается  $S \supset A$ ).

**Подстрока** строки A получается удалением префикса и суффикса строки A. Пустая строка  $\varepsilon$  является префиксом, суффиксом и подстрокой любой строки. Отсюда следует, что все префиксы и суффиксы строки A являются ее подстроками. Сама строка A также является своим собственным префиксом и суффиксом.

Над строками определены следующие операции:

- ightharpoonup конкатенация (сложение) строк A и B дописывание символов строки B в конец строки A (обозначается AB). Например, A = под, B = мост, конкатенация AB = подмост.
- **> итерация** (повторение) строки n раз,  $n \ge 0$  (обозначается  $A^n$ ) это конкатенация строки самой с собой n раз.  $A^0 = \varepsilon$  пустая строка. Например,  $A = \mathtt{ma}$ ,  $A^2 = \mathtt{mama}$ .
- **р** обращение (инверсия) строки, обозначается  $A^{R}$ , запись символов строки в обратном порядке. Например, A = тор,  $A^{R} = \text{рот}$ .

## 2.2. Постановка задачи поиска подстрок

Пусть даны "текст" T [1..n] — строка символов длины n и "образец" P [1..m] — строка символов длины m, причем образец короче текста  $(m \le n)$ . Считается, что символы, входящие в T и P, берутся из некоторого конечного алфавита  $\Sigma$  (например, алфавит состоит из латинских букв  $\Sigma = \{a,b,...,z\}$ ).

Говорят, что образец P входит со сдвигом s в текст T, если подстрока текста T длины m, которая начинается с позиции (s+1), совпадает со строкой P (то есть T[s+1..s+m] = P[1..m]). Естественно, сдвиг s не может быть больше n-m. Если P входит со сдвигом s в текст T, то говорят, что s-donycmumый cdвиг. Если подстрока текста T начиная с позиции s+1 не совпадает с образцом  $(T[s+1..s+m] \neq P[1..m])$ , то говорят, что s-hedonycmumый cdвиг. Задача поиска подстрок состоит в нахождении всех допустимых сдвигов для заданных текста T и образца P.

Например, образец P = aba входит в текст T = cabababcaba. с позиций 2, 4 и 9. Соответственно, допустимые сдвиги: 1, 3 и 8.

### 2.3. Постановка задачи распознавания подстрок

Пусть задан текст T и набор образцов  $P_1, P_2, ... P_Z$ . Требуется найти все подстроки текста T, совпадающие с образцами, и установить, с каким именно образцом совпадает найденная подстрока.

Задачи поиска и распознавания подстрок встречаются:

- **в** трансляторах, компиляторах, командных процессорах и других программах, где нужно выделять и распознавать слова из текста;
- ▶ в криптографии при шифровании и дешифровании данных;
- > в программах сжатия информации (архиваторах и им подобных).

# 3. МЕТОДЫ ПОИСКА ПОДСТРОК

## 3.1. Простейший алгоритм

Простейший алгоритм для поиска образца P в тексте T последовательно проверяет равенство  $T\left[s+1..s+m\right]=P\left[1..m\right]$  для каждого из возможных значений сдвига s от 0 до n-m. То есть мы двигаем образец вдоль текста и проверяем все его положения.

Простейший алгоритм самый медленный. Время его работы в худшем случае есть  $\Theta((n-m+1)m)^{-1}$ . Его неэффективность связана с тем, что информация о тексте T, получаемая при проверке очередного сдвига s, никак не используется при проверке последующих сдвигов. Например, образец  $P = \mathbf{aaab}$ , и мы выяснили, что сдвиг s = 0 допустим. Тогда сдвиги s = 0 допустим поскольку s = 0 допустим описанные далее методы поиска подстрок используют эту идею для сокращения числа проверок.

#### 3.2. Поиск подстрок с помощью конечных автоматов

Поиск подстроки с помощью конечного автомата Мура весьма эффективен: каждый символ поступает на вход автомата только единожды, так что общее время работы  $\Theta(n)$ . Однако алгоритм требует предварительной подготовки — построения конечного автомата. Время, затраченное на построение автомата, может быть весьма значительным, особенно если велик алфавит  $\Sigma$ .

Дадим формальное определение конечного автомата. Конечный автомат представляет собой пятерку объектов  $M = (\Sigma, Q, q_0, F, \delta)$ , где:

- $\Sigma$  конечный входной алфавит;
- Q конечное множество состояний;
- $q_0$  начальное состояние автомата;
- F подмножество выходных (допускающих) состояний,  $F \subset Q$ ;
- $\delta$  функция переходов.

<sup>&</sup>lt;sup>1</sup> случай, когда образец и текст состоят из повторений одного символа, например  $P = \mathbf{a}^m$ ,  $T = \mathbf{a}^n$ . Тогда для каждого из n-m+1 значений сдвига (s = 0...n-m) будет выполнено m сравнений символов.

Первоначально автомат находится в начальном состоянии  $q_0$ ; затем он по очереди читает символы входной строки. Находясь в состоянии  $q_i$  и читая символ  $\alpha$ , автомат переходит в состояние  $q_j$ . В какое именно состояние перейдет автомат под действием прочитанного символа, определяется функцией переходов  $\delta$ .

Состояния  $q_p,...q_{p+z}$ , входящие в подмножество выходных состояний F, соответствуют окончанию распознавания образцов  $P_1...P_z$ . Когда автомат находится в выходном состоянии  $q_{p+i}$ , это означает, что найдено вхождение образца  $P_i$  в текст со сдвигом  $s=k-m_i$ , где k — номер последнего считанного символа входной строки,  $m_i$  — длина i-го образца.

Конечный автомат для распознавания единственного образца P[1..m], имеет m+1 состояние  $Q = \{0,1,...m\}$ . Состояние с номером 0 является начальным, с номером m — выходным (допускающим).

Прежде чем перейти к созданию функции переходов, необходимо дать определение суффикс-функции.

Суффикс-функция  $\sigma(x)$  ставит в соответствие строке x длину максимального суффикса x, являющегося префиксом образца P. Суффикс-функция принимает значения целых чисел от 0 до m. Например, для образца P = ab  $\sigma(\epsilon) = 0$ ,  $\sigma(a) = 1$ ,  $\sigma(cda) = 1$ ,  $\sigma(cdab) = 2$ ,  $\sigma(cdabc) = 0$ .

Функция переходов  $\delta(q_i, \alpha)$  показывает номер состояния, в которое перейдет конечный автомат из состояния  $q_i$  под действием символа  $\alpha$ . Она равна

$$\delta(q_i, \alpha) = \sigma(P_i \alpha)$$

здесь  $P_i$   $\alpha$  обозначает конкатенацию префикса P длины i с символом  $\alpha$ .

## Пример 1

Построить конечный автомат для поиска образца  $P = \mathtt{ababaca}$ . Входной алфавит конечного автомата ограничен тремя символами:  $\Sigma = \{\mathtt{a}, \mathtt{b}, \mathtt{c}\}$ . Длина образца |P| = 7, поэтому конечный автомат будет иметь восемь состояний с номерами от 0 до 7. Значения суффиксфункции  $\sigma$  приведены в таблице:

| i | Префикс Р <sub>і</sub> | Значение σ(Р <sub>і</sub> α) для входных символов |   |   |
|---|------------------------|---------------------------------------------------|---|---|
|   |                        | a                                                 | b | С |
| 0 | $P_0 = \varepsilon$    | 1                                                 | 0 | 0 |
| 1 | $P_1 = \mathbf{a}$     | 1                                                 | 2 | 0 |
| 2 | $P_2=$ ab              | 3                                                 | 0 | 0 |
| 3 | P <sub>3</sub> = aba   | 1                                                 | 4 | 0 |
| 4 | P <sub>4</sub> = abab  | 5                                                 | 0 | 0 |
| 5 | P <sub>5</sub> = ababa | 1                                                 | 4 | 6 |
| 6 | $P_6\!\!=\!$ ababac    | 7                                                 | 0 | 0 |
| 7 | $P_7\!=\!$ ababaca     | 1                                                 | 2 | 0 |

Рассмотрим, как вычисляется суффикс-функция на примере 3-й строки таблицы. Префикс образца P длиной 3 равен  $P_3$ =**aba**. Для каждого символа из алфавита  $\Sigma$ ={**a,b,c**} получаем конкатенацию подстроки  $P_3$  с этим символом:

с символом **a**:  $P_3$ **a** = **abaa** с символом **b**:  $P_3$ **b** = **abab** с символом **c**:  $P_3$ **c** = **abac** 

Затем, для каждой конкатенации  $P_3\alpha$  (здесь  $\alpha$  обозначает символ из алфавита) ищем суффикс  $P_3\alpha$  максимальной длины, одновременно являющийся префиксом образца P. Его длина и есть значение суффикс-функции  $\sigma(P_3\alpha)$ .

У строки  $P_3$ а =аbаа и образца P = аbаbаса общая часть — это один символ а (здесь и далее общие части подчеркнуты), следовательно, значение суффикс-функции  $\sigma(P_3$ а)=1.

У строки  $P_3$ **b** =**abab** есть два суффикса, являющиеся префиксами образца P. Это **ab** ( $P_3$ **b** = **abab**, P = **ababaca**) и **abab** ( $P_3$ **b** = **abab**, P = **ababaca**). Выбираем суффикс максимальной длины (4), значение суффикс-функции  $\sigma(P_3$ **b**)=4.

У строки  $P_3$ **с** = **abac** нет суффиксов, совпадающих с префиксами образца P, поэтому суффикс-функция  $\sigma(P_3$ **c**)=0.

Таблица на с.8 является таблицей переходов конечного автомата: i — номер исходного состояния  $q_i$ , а значение суффикс-функции — номер целевого состояния  $q_j$ . Если из этой таблицы исключить столбец  $P_i$ , получим привычную форму записи таблицы переходов автомата:

| i | a | b | С |
|---|---|---|---|
| 0 | 1 | 0 | 0 |
| 1 | 1 | 2 | 0 |
| 2 | 3 | 0 | 0 |
| 3 | 1 | 4 | 0 |
| 4 | 5 | 0 | 0 |
| 5 | 1 | 4 | 6 |
| 6 | 7 | 0 | 0 |
| 7 | 1 | 2 | 0 |

Диаграмма переходов конечного автомата, построенная по таблице, показана на рис.1. Выходное состояние автомата 7 обведено двойным кружком. На диаграмме не показаны стрелки, ведущие в 0-е состояние. Если из состояния i не выходит стрелки, помеченной символом  $\alpha$ , то подразумевается, что  $\delta(i,\alpha) = 0$ .

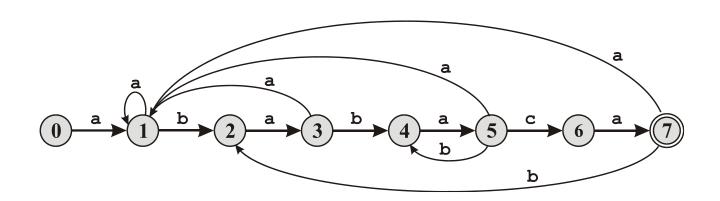


Рис. 1. Диаграмма переходов для конечного автомата, допускающего строки, оканчивающиеся на **ababaca**.

Функцию переходов конечного автомата можно находить вручную, как сделано в примере 1, а можно поручить это ЭВМ, то есть функцию переходов строить автоматически.

Простейший алгоритм автоматического построения суффиксфункции приведен в листинге 1.

```
1 m \leftarrow \text{length}[P]

2 \mathbf{for} q \leftarrow 0 \mathbf{to} m

3 \mathbf{do} \mathbf{for} (AAB) \mathbf{BCEX} \mathbf{CUMBOAOB} \alpha \in \Sigma

4 \mathbf{do} k \leftarrow \min(m+1, q+2)

5 \mathbf{repeat} k \leftarrow k-1

6 \mathbf{until} Pk \square Pq \alpha

7 \delta(\mathbf{q}, \alpha) \leftarrow k

8 \mathbf{return} \delta
```

Листинг 1. Алгоритм автоматического построения суффикс-функции.

Он заключается в переборе всех пар  $(i, \alpha)$ , где i — номер состояния конечного автомата, i = 0, 1, ... т, m — длина образца,  $\alpha$  — символ входного алфавита  $\Sigma$ . Время работы этого алгоритма оценивается как  $\Theta(m3\cdot|\Sigma|)$ , где  $|\Sigma|$  — количество символов в алфавите.

## 3.3. Распознавание подстрок с помощью конечных автоматов

Задача распознавания подстрок состоит в поиске всех вхождений в текст T заданных образцов  $P_1, P_2, ... P_Z$ . Длина образцов может быть различной. Простейший способ решения задачи — построить z конечных автоматов, по одному на каждый образец, и "пропустить" текст последовательно через эти автоматы. Время работы такого распознавателя пропорционально количеству образцов z и длине текста n  $\Theta(z \cdot n)$ . Если учесть время на автоматическое построение функций переходов, то временные затраты весьма значительны.

Если набор строк-образцов таков, что ни один из образцов не является подстрокой другого образца, то можно создать один конечный автомат для распознавания всех образцов. Текст подается на автомат

один раз, и время работы прямо пропорционально длине текста  $\Theta(n)$ . Рассмотрим этапы построения такого автомата.

Конечный автомат для распознавания набора образцов  $P_1, P_2, ... P_Z$  имеет одно начальное состояние и z выходных состояний  $q_1, q_2 ... q_Z$ . Состояние  $q_i$  соответствует окончанию распознавания i-го образца с допустимым сдвигом  $s = k - m_i$ , где k — порядковый номер последнего считанного из текста символа,  $m_i$  — длина i-го образца.

Промежуточные состояния автомата создаются таким образом, что нахождение автомата в этих состояниях соответствует распознаванию какого-либо из префиксов образцов. Каждый символ образца дает новое состояние автомата. Если у нескольких образцов есть общий префикс длиной d символов, то первые d состояний автомата (по длине префикса) у них общие.

Обозначим через  $P^{(j)}$  подстроку, которая распознана в состоянии автомата с номером j. Подстрока  $P^{(j)}$  является префиксом одного или нескольких образцов. Функция перехода  $\delta(j,\alpha)$  из состояния j под действием входного символа  $\alpha$  равна номеру q того состояния, для которого подстрока  $P^{(q)}$  является суффиксом максимальной длины для строки  $P^{(j)}\alpha$ .

Рассмотрим пример построения конечного автомата для распознавания нескольких подстрок.

## Пример 2

Построить конечный автомат для распознавания трех образцов:  $P_1 = \mathtt{aab}$ ,  $P_2 = \mathtt{abc}$ ,  $P_3 = \mathtt{ccba}$ . Условие о том, что ни один образец не является подстрокой другого образца, выполняется. Входной алфавит автомата включает три символа  $\Sigma = \{\mathtt{a,b,c}\}$ .

Первым этапом будет создание каркаса диаграммы переходов конечного автомата (рис.2). Состояние 0 является начальным; три состояния (по числу образцов) являются выходными: состояние 3 соответствует обнаружению подстроки ааb, состояние 5 — подстроки аbc, и состояние 9 — подстроки ссba.

Второй этап – построение таблицы переходов конечного автомата. Сначала в таблице переходов заполняются ячейки, образующие каркас

диаграммы переходов (эти ячейки в таблице на с.14 выделены серым). Для заполнения остальных ячеек нужно искать суффикс-функцию.

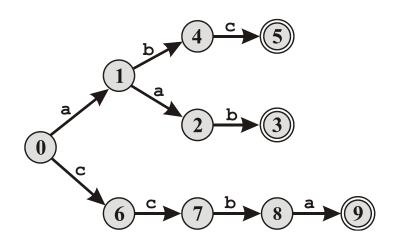


Рис.2. Каркас диаграммы переходов для распознавания подстрок  $P_1$ =aab,  $P_2$ =abc,  $P_3$ =ccba. Каждый переход приближает автомат к выходному состоянию. Образцы  $P_1$  и  $P_2$  имеют общий префикс a, поэтому переход  $0 \rightarrow 1$  для них общий.

Функция переходов  $\delta(q_i,\alpha)$  из состояния q под действием символа  $\alpha$  равна значению суффикс-функции

$$\delta(q_i, \alpha) = \sigma(P^{(j)}\alpha).$$

Строка  $P^{(j)}$  определяется для каждого состояния j автомата. Она получается конкатенацией символов, записанных над стрелками переходов, при движении из начального состояния автомата в состояние с номером j по каркасу диаграммы переходов:

| $P^{(0)} = \varepsilon$ | $P^{(5)}\!\!=\!$ abc               |
|-------------------------|------------------------------------|
| $P^{(1)} = \mathbf{a}$  | $P^{(6)} = c$                      |
| $P^{(2)}\!\!=\!$ aa     | $\mathrm{P}^{(7)}\!\!=\mathtt{cc}$ |
| $P^{(3)}$ = aab         | $P^{(8)}\!\!=\mathtt{ccb}$         |
| $P^{(4)}\!\!=$ ab       | $P^{(9)}\!\!=$ ccba                |

Суффикс-функция  $\sigma(P^{(j)}\alpha)$  равна номеру того состояния q, у которого строка  $P^{(q)}$  является суффиксом максимальной длины для

строки  $P^{(j)}$ а среди всех подстрок  $P^{(i)}$ , i=0,1,2,... Поясним это на примере заполнения 3-й строки таблицы (j=3). Строка  $P^{(3)}$ = aab.

Найдем  $\sigma(P^{(3)}\mathbf{a})$ . Конкатенация символа  $\mathbf{a}$  и  $P^{(3)}$  дает  $P^{(3)}\mathbf{a}=\mathbf{aaba}$ . Ищем строки  $P^{(i)}$ , у которых первые символы совпадают с последними символами  $P^{(3)}\mathbf{a}$ . Такая строка одна — это  $P^{(1)}=\mathbf{a}$  общая часть с  $P^{(3)}\mathbf{a}=\mathbf{aaba}$  подчеркнута, следовательно  $\delta(3,\mathbf{a})=1$ .

Найдем  $\sigma(P^{(3)}\mathbf{b})$ . Конкатенация символа  $\mathbf{b}$  и  $P^{(3)}$  дает  $P^{(3)}\mathbf{b}=\mathbf{aabb}$ . Ищем строки  $P^{(i)}$ , суффикс которых совпадает с префиксом  $P^{(3)}\mathbf{b}$ . Таких строк нет, следовательно  $\delta(3,\mathbf{b})=0$ .

Найдем  $\sigma(P^{(3)}\mathbf{c})$ . Конкатенация символа  $\mathbf{c}$  и  $P^{(3)}$  дает  $P^{(3)}\mathbf{c}=\mathbf{aabc}$ . Есть две строки, у которых первые символы совпадают с последними символами  $P^{(3)}\mathbf{c}$  – это  $P^{(5)}$  и  $P^{(6)}$ :

 $P^{(5)} = \underline{abc} - \text{общая часть длиной 3 } (P^{(3)} c = \underline{abc});$ 

 $P^{(6)}$ =**с** – общая часть длиной 1 ( $P^{(3)}$ **c**=**aabc** ).

Выбираем подстроку с максимальной длиной (3), номер соответствующего состояния 5, следовательно  $\delta(3, \mathbf{c}) = 5$ 

| j  | Строка Р <sup>(j)</sup>      | Значение $\sigma(P^{(j)}\alpha)$ для входных символов |   |   |
|----|------------------------------|-------------------------------------------------------|---|---|
|    |                              | a                                                     | b | C |
| 0  | $P^{(0)} = \varepsilon$      | 1                                                     | 0 | 6 |
| 1  | $P^{(1)} = \mathbf{a}$       | 2                                                     | 4 | 6 |
| 2  | $P^{(2)}\!\!=\mathtt{aa}$    | 2                                                     | 3 | 6 |
| *3 | $P^{(3)}\!\!=\!\mathtt{aab}$ | 1                                                     | 0 | 5 |
| 4  | $P^{(4)}\!\!=$ ab            | 1                                                     | 0 | 5 |
| *5 | $P^{(5)}\!\!=\!\mathtt{abc}$ | 1                                                     | 0 | 7 |
| 6  | $P^{(6)} = c$                | 1                                                     | 0 | 7 |
| 7  | $P^{(7)}$ = cc               | 1                                                     | 8 | 7 |
| 8  | $P^{(8)}$ = ccb              | 9                                                     | 0 | 6 |
| *9 | $P^{(9)}\!\!=$ ccba          | 2                                                     | 4 | 6 |

Эта таблица является таблицей переходов конечного автомата: i номер исходного состояния  $q_i$ , а значение суффикс-функции — номер целевого состояния  $q_i$ . Выходные состояния помечены звездочками.

Диаграмма переходов, построенная по таблице переходов конечного автомата, изображена на рис. 3.

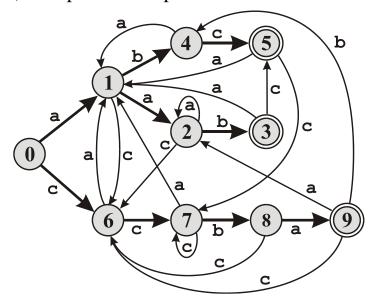


Рис. 3. Диаграмма переходов конечного автомата для распознавания подстрок  $P_1$ =aab,  $P_2$ =abc,  $P_3$ =ccba. На диаграмме не показаны стрелки, ведущие в 0-е состояние.

Результат применения автомата к тексту  $T = \mathtt{aaabccbabc}$  иллюстрирует рис. 4. Под каждым символом T[k] записано состояние автомата после прочтения этого символа. Найдено вхождение образца  $P_1$  со сдвигом 1, образца  $P_2$  со сдвигами 2 и 7, и образца  $P_3$  со сдвигом 4.



Рис. 4. Поиск образцов  $P_1$ =aab,  $P_2$ =abc,  $P_3$ =ccba в тексте T = aaabccbabc с помощью конечного автомата.

#### 3.4. Программная реализация конечных автоматов

Структурный синтез при программной реализации конечных автоматов заключается в кодировании входных символов и состояний.

#### Представление входных символов

В большинстве случаев текст, который будут обрабатывать на конечном автомате, находится в одной из стандартных кодировок: ASCII, ANSI или Unicode. Перед подачей на автомат текст необходимо перекодировать по следующим причинам.

Причина первая — чувствительность автомата к регистру букв. Коды заглавных и строчных букв различны, поэтому конечный автомат будет воспринимать большие и маленькие буквы как разные символы. Чтобы автомат не делал различий между заглавными и строчными буквами, можно:

- 1) перекодировать текст перед подачей на вход автомата, приводя буквы к одному регистру (например, к заглавным). Тогда входной алфавит автомата будет включать только заглавные буквы.
- 2) другой вариант буквы не менять. Входной алфавит будет включать и заглавные, и строчные буквы. Таблица переходов составляется таким образом, чтобы переход по большой и маленькой одноименной букве был одинаков. При этом варианте таблица переходов будет занимать больше места в памяти по сравнению с вариантом 1.

Вторая причина — недопустимые входные символы. Кодировки ASCII и ANSI состоят из 256 различных кодов, Unicode — из 65536. Входной алфавит конечного автомата обычно гораздо меньше. Если на вход автомата может попасть символ, который не известен автомату, для предотвращения неопределенной реакции автомата, можно:

- 1) перед подачей на автомат проверять на "допустимость" каждый символ текста; если найден символ, не входящий в автоматный алфавит, работа программы прекращается;
- 2) добавить в автоматный алфавит новый символ, означающий "прочее", и ввести новое состояние автомата "ошибка", в которое автомат будет переходить под действием этого символа. Перед подачей символов на автомат следует заменять все недопустимые символы текста на код "прочее".

Третья причина связана с программной реализацией выбора переходов автомата. Если переходы делаются методом векторов переходов или таблиц переходов (см. ниже), то код входного символа используется как индекс в массиве. А поскольку коды символов в стандартной кодировке обычно не следуют подряд друг за другом, а "разбросаны" по всей кодовой странице, то использовать их в качестве индекса нельзя, требуется перекодировка.

### Представление состояний

Есть два способа, с помощью которых программа контролирует текущее состояние конечного автомата:

- ▶ номер текущего состояния запоминается в специальной переменной (явный способ);
- ▶ номер состояния не запоминается, а каждому состоянию соответствует свой участок программы (неявный способ). "Переключение" между состояниями выполняется путем перехода на соответствующий участок программы.

## Выбор переходов

При *неявном* способе выбор переходов выполняется командами условного перехода, или *switch*-подобными операторами после анализа кода входного символа.

При явном способе наиболее эффективны два метода:

1. *Метод вектора переходов*. Этот метод выгодно применять там, где в большинстве состояний автомат выполняет какие-либо действия, причем различные <sup>2</sup>. Номер текущего состояния запоминается в специальной переменной. Каждому состоянию соответствует участок программы. Таблица переходов конечного автомата оформляется в программе в виде двумерного массива. Каждая строка массива соответствует номеру состояния, а столбец — входному символу алфавита. В элементах массива записываются адреса меток программы, соответствующих нужному состоянию.

<sup>&</sup>lt;sup>2</sup> конечные автоматы из примеров 1 и 2 действия выполняют только в выходных состояниях: выводят сообщения об успешном распознавании образца или печатают допустимый сдвиг. Поэтому использовать данный метод для примеров 1 и 2 не эффективно (см. листинг 2).

```
1 Procedure encode( in A, out B ) // Подпрограмма перекодировки
2
    switch(A) of
3
       'a': B \leftarrow 0
4
       'b': B \leftarrow 1
       'c': B \leftarrow 2
5
       else: B \leftarrow 3
6
7
    end switch
    return B
// Подпрограммы, представляющие состояния автомата:...
// ...содержат действия, выполняемые автоматом в этом состоянии
9 Procedure state 0 // состояние 0 (действий нет)
10
      s \leftarrow 0
                       // s – номер текущего состояния автомата
11
      return
12 Procedure state_1 // состояние 1 (действий нет)
13
      s \leftarrow 1
14
      return
15 Procedure state_3 // состояние 3 (выходное)
16
      s \leftarrow 3
17
      print "Вхождение образца Р1 со сдвигом" k–length[Р1]
18
... // остальные процедуры state_2, sate_4 ... state_10 аналогично
главная программа:
// таблица векторов перехода, символ & означает взятие адреса
19 jump_vectors : array[0..9, 0..3]= (( &state_1, &state_0, &state_6),
                                    ( &state_2, &state_4, &state_6), и т.д. )
20 n \leftarrow \text{length}[T]
                       // T – входной текст, n – его длина
21 call state 0;
22 for k \leftarrow 1 to n do
23
       call encode(T[k], c) // c – код символа после перекодировки
24
       if c≠3
25
        then call jump\_vectors[s, c] // вызов процедуры по адресу
26
        else call error
27 end for
```

Листинг 2. Алгоритм программной реализации конечного автомата из примера 2 методом векторов перехода.

В листинге 2 номер состояния автомата хранится в глобальной переменной s. Процедура *encode* перекодирует символы текста T перед подачей на автомат:  $\mathbf{a} \rightarrow 0$ ,  $\mathbf{b} \rightarrow 1$ ,  $\mathbf{c} \rightarrow 2$ , прочие символы в код 3. При обнаружении "недопустимого" входного символа с кодом 3 автомат вызывает процедуру *error*.

2. **Метод таблицы переходов**. Этот метод применяется в автоматах, выполняющих однотипные действия в нескольких состояниях. От предыдущего метода отличается тем, что хранит в массиве номера состояний. Каждая строка массива представляет состояние *j*, а столбец – входной символ алфавита. Номер следующего состояния выбирается по координатам (*Номер\_Текущего\_Состояния*, Код\_Символа).

В листинге 3 приведен алгоритм работы конечного автомата из примера 2 методом таблицы переходов. Номер текущего состояния хранится в переменной s. Процедура *encode* перекодирует символы текста T перед подачей на автомат:  $\mathbf{a} \rightarrow 0$ ,  $\mathbf{b} \rightarrow 1$ ,  $\mathbf{c} \rightarrow 2$ , прочие в код 3 (реализацию процедуры *encode* см. в листинге 2, строки 1-8). Вводится новое состояние автомата с номером 10, в которое переходит автомат при поступлении "недопустимого" входного символа с кодом 3. Номера состояний переходов хранятся в таблице  $jump\_table$ .

```
1 jump\_table: array[0..10,0..3] = ((1,0,6,10), (2,4,6,10), (2,3,6,10), (1,0,5,10), (1,0,5,10),
                        (1,0,7,10), (1,0,7,10), (1,8,7,10), (9,0,6,10), (2,4,6,10), (1,0,6,10))
2 n \leftarrow \text{length}[T]
                        // Т – входной текст
3 s \leftarrow 0
                         // s – номер текущего состояния автомата
4 for k \leftarrow 1 to n do
5
       call encode(T[k], c) // c – код символа после перекодировки
       s \leftarrow jump\_table[s, c]
6
// действия выполняются только в выходных состояниях 3,5,9,10
       switch(s) of
          3: print "Вхождение образца P_1 со сдвигом" k-length[P_1]
8
9
          5: print "Вхождение образца P_2 со сдвигом" k-length[P_2]
10
         9: print "Вхождение образца Рз со сдвигом" k–length[Рз]
         10: print "Недопустимый символ" T[k]
11
         end switch
12
13 end for
```

Листинг 3. Алгоритм программной реализации конечного автомата из примера 2 методом таблицы переходов

#### 3.5. Алгоритм Кнута-Морриса-Пратта

Алгоритм Кнута-Морриса-Пратта (КМП), как и метод конечных автоматов, ищет подстроки за время  $\Theta(n)$ , где n- длина текста T. Его преимуществом является значительно меньшие затраты времени на подготовительные операции. Так, на автоматическое построение функции переходов конечного автомата необходимо  $\Theta(m^3 \cdot |\Sigma|)$  единиц времени, а на построение вспомогательной префикс-функции в алгоритме КМП – только  $\Theta(m)$ . Здесь m- длина образца P.

Алгоритм основан на идее: предположим, что при поиске подстрок простейшим алгоритмом для некоторого сдвига s оказалось, что первые q символов образца совпадают с символами текста, а в следующем символе имеется расхождение: то есть  $P\left[1...q\right] = T\left[s+1...s+q\right]$  и  $P\left[q+1\right] \neq T\left[s+q+1\right], \ q < m$  (рис.5-а). Поскольку мы знаем q символов текста, от  $T\left[s+1\right]$  до  $T\left[s+q\right]$ , из этой информации мы можем заключить, что некоторые последующие сдвиги будут заведомо недопустимы. В примере на рис.5-а видно, что сдвиг (s+1) недопустим, поскольку при этом сдвиге первый символ образца (буква а) окажется напротив (s+2)-го символа текста (буквы b). При сдвиге (s+2) первые три символа образца (аba) совпадут с тремя последними из известных нам символов текста (рис.5-б), и есть шанс, что последующие символы текста совпадут с образцом. Дальнейшее сравнение символов образца и текста можно продолжать с (s+q+1)-го символа текста (в примере на рис.4 это буква b).

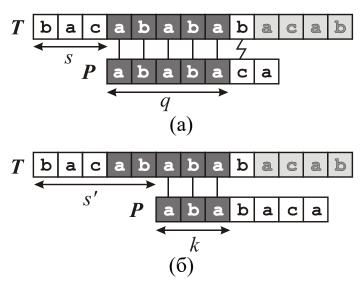


Рис. 5. К понятию префикс-функции. Светло-серым показаны еще не прочитанные символы текста.

Алгоритм КМП заключается в том, что при совпадении первых q символов образца и текста следующий проверяемый сдвиг s' = s + (q - k), где k — длина максимального префикса образца P, который является суффиксом просмотренного участка текста (рис.5-б). Если такого префикса не существует, то поиск подстроки продолжается за границей просмотренного участка (s' = s + q) <sup>3</sup>. Чтобы найти число k, нам не нужно ничего знать о тексте T: достаточно знания образца P и числа q.

Обозначим через  $P_q$  первые q символов образца P. Число k — это длина наибольшего префикса  $P_q$ , являющегося (собственным) суффиксом  $P_q$ . Для примера, если  $P_q$  = ababa, то подстроки а и аba являются одновременно префиксом и суффиксом, максимальная из них имеет длину k = 3. Число k является значением npeфикс-функции  $\pi(q)$ .

Формальное определение префикс-функции звучит так: префиксфункцией, ассоциированной со строкой P [1..m], называется функция  $\pi(q), q=1,2,...m$ , значением которой являются число от 0 до m-1, определенное как длина наибольшего префикса  $P_q$ , являющегося собственным суффиксом  $P_q$ :

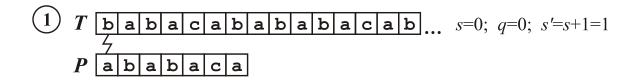
$$\pi(q) = \max\{ k: k < q \text{ и } P_k \sqsupset P_q \}$$

Префикс-функция для образца  $P = \mathtt{ababaca}$  приведена в таблице:

| q | $P_q$                      | Максимальная подстрока $P_k$ | $\pi(q)$ |
|---|----------------------------|------------------------------|----------|
| 1 | $P_1 = \mathbf{a}$         | -                            | 0        |
| 2 | $P_2$ = ab                 | -                            | 0        |
| 3 | P <sub>3</sub> = aba       | a                            | 1        |
| 4 | P <sub>4</sub> = abab      | ab                           | 2        |
| 5 | P <sub>5</sub> = ababa     | aba                          | 3        |
| 6 | $P_6$ = ababac             | _                            | 0        |
| 7 | $P_7\!=\!\mathtt{ababaca}$ | a                            | 1        |

 $<sup>^{3}</sup>$  при несовпадении первого символа образца (q=0), сдвиг s'=s+1.

Алгоритм поиска строки методом КМП приведен в листинге 4. Поэтапная работа алгоритма КМП для образца  $P = \mathtt{ababaca}$  показана на рис.6.



2 T babacabababacab... 
$$s=1; q=3; \pi(q)=1;$$
  $s'=s+(q-\pi(q))=3$ 

(4) 
$$T$$
 babacabababacab...  $s=4$ ;  $q=0$ ;  $s'=s+1=5$ 

$$P$$
 ababaca

5 T babacababacab... 
$$s=5; q=5; \pi(q)=3;$$
  $s'=s+(q-\pi(q))=7$ 

$$oldsymbol{6}$$
  $oldsymbol{T}$   $oldsymbol{b}$  a  $oldsymbol{c}$  a  $oldsymbol{b}$  a  $oldsymbol{c}$  a  $oldsymbol{b}$  a  $oldsymbol{c}$  a  $oldsymbol{b}$  a  $oldsymbol{c}$  a  $oldsymbol{c}$ 

Рис. 6. Поиск образца в тексте алгоритмом Кнута-Морриса-Пратта

```
1 prefix_function : array[1..7] = (0, 0, 1, 2, 3, 0, 1)
2 n \leftarrow \text{length}[T]
                     // T [1...n] – входной текст
                    // P [1...m] – образец
3 m \leftarrow \text{length}[P]
4 for s ← 0 to n–m do // s – номер текущего сдвига
5
                 // q – кол-во совпавших символов образца и текста
6
     while T[s+q+1] = P[q+1] do
8
        q \leftarrow q + 1
        if q = m
9
10
          then print "Вхождение образца P со сдвигом" s
11
        if s+q=n
12
          then exit
                              // текст закончился
13
      end while
14
      if q \neq 0
15
         then s \leftarrow s + q - prefix_function[q]
16 end for
```

Листинг 4. Алгоритм Кнута-Морриса-Пратта для примера из рис.6

## 4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

- 1. Получить вариант задания и значения строк-образцов.
- 2. Изучить теоретическую часть методических указаний.
- 3. Выбрать метод для решения задачи (метод конечных автоматов или Кнута-Морриса-Пратта). При решении задачи методом конечных автоматов:
  - 3.1. Определить входной алфавит автомата.
  - 3.2. Составить каркас диаграммы переходов автомата. По каркасу определить количество состояний автомата.
  - 3.3. Вычислить значения суффикс-функции.
  - 3.4. Найти функцию переходов конечного автомата.
  - 3.5. Разработать систему кодирования входных символов.
  - 3.6. Разработать алгоритм решения задачи.

При решении задачи методом КМП:

- 3.1. Определить входной алфавит автомата.
- 3.2. Рассчитать значения префикс-функции.
- 3.3. Разработать алгоритм решения задачи.
- 4. Разработать программу. Оформить отчет.

#### 5. СОДЕРЖАНИЕ ОТЧЕТА

- 1. Вариант задания.
- 2. Диаграмма переходов конечного автомата и таблица переходов автомата (значения суффикс-функции) если применяется метод конечных автоматов; таблица со значениями префикс-функции если применяется алгоритм Кнута-Морриса-Пратта.
- 3. Алгоритм решения задачи в виде блок-схемы или словесного описания по пунктам.
  - 4. Текст программы.
  - 5. Тестовый пример и результаты работы программы.

## 6. ВАРИАНТЫ ЗАДАНИЙ

- 1. Найти все вхождения образца P в текст.
- 2. Проверить, есть перекрывающиеся вхождения образца P[1..m] в текст (расстояние между соседними допустимыми сдвигами меньше m).
- 3. Найти минимальное расстояние между соседними допустимыми сдвигами, вывести значения сдвигов и расстояние между ними.
- 4. Известно, что все вхождения образца P в текст не перекрываются. Вывести значения допустимых сдвигов и нераспознанные подстроки текста.
- 5. Из текста исключить все вхождения образца P, в том числе перекрывающиеся.
- 6. Задан набор образцов  $P_1...P_Z$ , причем ни один из образцов не является подстрокой другого образца. Найти все вхождения образцов в текст T.
- 7. Задан набор образцов  $P_1...P_Z$ , причем ни один из образцов не является подстрокой другого образца. Известно, что все вхождения образцов в текст не перекрываются. Преобразовать текст: подстроки текста, совпадающие с образцом, заменить на пару чисел (номер образца; допустимый сдвиг), нераспознанные подстроки текста выводить без изменений.
- 8. Задан набор образцов  $P_1...P_Z$ , причем ни один из образцов не является подстрокой другого образца. Проверить, существуют ли в тексте подстроки, не совпадающие ни с одним из образцов.

#### 7. КОНТРОЛЬНЫЕ ВОПРОСЫ

- 1. Дайте определение терминам: строка, суффикс, префикс, подстрока.
- 2. Перечислите основные операции над строками.
- 3. Сформулируйте задачу поиска подстрок.
- 4. Сформулируйте задачу распознавания подстрок.
- 5. Что означает фраза: "вхождение строки А в текст Т со сдвигом 4".
- 6. В чем состоит метод поиска подстроки с помощью конечного автомата?
- 7. Что такое суффикс-функция? Как она вычисляется?
- 8. Этапы построения конечного автомата для распознавания нескольких образцов.
- 9. В чем состоит алгоритм Кнута-Морриса-Пратта?
- 10. Что такое префикс функция? Как она вычисляется?
- 11. Дайте сравнительную оценку трудоемкости поиска строки простейшим алгоритмом, методом конечных автоматов и алгоритмом КМП (при условии, что таблица переходов и префиксфункция построены заранее)?
- 12. Дайте сравнительную оценку трудоемкости поиска строки простейшим алгоритмом, методом конечных автоматов и алгоритмом КМП (при условии, что таблица переходов и префиксфункция заранее не известны и их нужно строить автоматически)?

### БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Чернецкая, И. Е. Теория автоматов [Текст]: учебное пособие / И. Е. Чернецкая; МИНОБРНАУКИ РОССИИ, Юго-Западный государственный университет. Курск: ЮЗГУ, 2011. 143 с.
- 2. Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. М.: МНЦМО, 2001. 960 с.
- 3. Кнут Д. Искусство программирования. В 3-х томах. Т.3. Сортировка и поиск. М: Вильямс, 2003. С.527, с.611
- 4. Вирт H. Алгоритмы и структуры данных. M.: Мир, 1989. 360 с.