Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Таныгин Максим Олегович

Должность: и.о. декана факультета фундаментальной и прикладной информатики

Дата подписания: 21.09.2023 13:00:36 Уникальный программный ключ:

МИНОБРНАУКИ РОССИИ

65ab2aa0d384efe8480Федерфльное государственное бюджетное образовательное

учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра программной инженерии

УТВЕРЖДАЮ
Проректор по учебной работе
О.Г. Локтионова

унициания

2015 г.

ПРИНЯТИЕ РЕШЕНИЙ НА ОСНОВЕ БИНАРНЫХ ОТНОШЕНИЙ

Методические указания по выполнению лабораторной работы по дисциплине «Теория принятия решений» для студентов направления подготовки 09.03.04 «Программная инженерия», 01.03.02 «Прикладная математика и информатика»

Составители: В.В. Апальков, Р.А. Томакова, Ф.А.Старков Рецензент

Кандидат технических наук, доцент кафедры «Информационные системы и технологии» Юго-Западного государственного университета *Т.И. Лапина*

Принятие решений на основе бинарных отношений: методические указания по выполнению лабораторной работы /Юго-Зап. гос. ун-т; сост.: В.В. Апальков, Р.А. Томакова, Ф.А.Старков. Курск, 2015. 8 с. Библиогр.: с. 8.

Излагается цель лабораторной работы, в теоретической части рассматривается язык описания системы предпочтений лица, принимающего решение, на основе бинарных отношений. В практической части приводятся пример выполнения задания на лабораторную работу и вопросы для самопроверки.

Методические указания соответствуют требованиям рабочей программы по направлению подготовки бакалавров 09.03.04 «Программная инженерия».

Предназначены для студентов направления подготовки бакалавров 09.03.04.

Текст печатается в авторской редакции

Подписано в печать. Формат 60×84 1/16. Усл. печ. л. 0,5. Уч.-изд. л. 0,4. Тираж 50 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50 лет Октября, 94. **Цель работы:** познакомиться с формальными моделями задачи принятия решений, изучить язык бинарных отношений — язык описания системы предпочтений лица, принимающего решение (ЛПР).

Теоретическая часть.

Определение 1.

Бинарным отношением на множестве A называется подмножество R декартова произведения $A \times A$ ($R \subseteq A^2$). Элементами множества R являются упорядоченные пары вида (a_i , a_j), где a_i , $a_i \in A$.

Приведем несколько примеров бинарных отношений:

- 1) «х равно у», «х меньше у», «х не больше у» отношения на множестве действительных чисел;
- 2) «m делитель n», «m=n(mod p)» отношения на множестве целых чисел;
- 3) «х и у братья», «х не старше у», «х моложе у» отношения на множестве членов семьи.

Основные свойства бинарных отношений:

- 1) бинарное отношение называется рефлексивным, если для $\forall a_i \in A \ (a_i, a_i) \in R.$
- 2) бинарное отношение антирефлексивно, если для $\forall a_i {\in} A \ (a_i, a_i) \not \in R.$
- 3) бинарное отношение называется симметричным, если из того, что $(a_i,a_i)\in R$ следует $(a_i,a_i)\in R$.
- 4) бинарное отношение антисимметрично, если из того, что $(a_i,a_j)\in R$, следует $(a_j,a_i)\not\in R$.
- 5) бинарное отношение называется транзитивным, если из того, что $(a_i,a_i) \in R$ и $(a_i,a_k) \in R$, следует $(a_i,a_k) \in R$.

Предпочтения ЛПР, описываемые с помощью бинарных отношений можно разделить на три группы:

- бинарное отношение, обладающее свойствами рефлексивности, симметричности и транзитивности, называемое эквивалентностью. Отношение эквивалентности в задаче принятия решений свидетельствует о равноценности или о неопределенной ценности вариантов для ЛПР;
- бинарное отношение, обладающее свойствами рефлексивности, антисимметричности и транзитивности, называемое нестрогим порядком. Отношение нестрогого порядка в задаче принятия решений отражает как различимость, так и одинаковость вариантов для ЛПР;
- бинарное отношение, обладающее свойствами антирефлексивности, антисимметричности и транзитивности, называемое строгим порядком. Отношение строгого порядка в задаче принятия решений интерпретируется как выраженное различие вариантов для ЛПР.

Бинарные отношения позволяют ЛПР сравнивать исходы без введения критериальных функций (показателей качества), когда происходит оценивание каждого исхода.

Пусть A – множество, в котором ЛПР задает свои предпочтения в виде бинарного отношения R.

Роль множества A могут выполнять множество исходов Y, множество альтернатив X в случае наличия детерминированной связи с множеством исходов Y или множество векторных оценок исходов, когда вводятся критериальные функции для оценивания исходов.

Рассмотрим случай, когда число элементов множества A - конечно. Поставим в соответствие каждому элементу множества A точку на плоскости. Соединим точки, соответствующие элементам $a_i,\ a_j$ из множества A, ребром в направлении от a_i к a_j , если $(a_i,a_i)\in R$.

Если $(a_i,a_i) \in R$, то нарисуем петлю в соответствующей точке плоскости. Получим ориентированный граф бинарного отношения R.

Пару <A, R> называют моделью выбора. Дадим ряд определений, необходимых для решения задачи оптимального выбора [3].

Определение 2.

Пусть задана модель < A, R>. Элемент $a^* \in A$ называется наилучшим по R в A, если $(a^*, a) \in R$ при $\forall a \in A \setminus \{a^*\}$.

В графе бинарного отношения наилучшему элементу соответствует вершина, из которой выходят ребра во все остальные вершины графа.

Определение 3.

Элемент $a^0 \in A$ называется максимальным в модели < A, R> или максимальным по R в A, если для $\forall a \in A$ такого, что $(a, a^0) \in R$, следует $(a^0, a) \in R$.

В графе бинарного отношения максимальному элементу соответствует вершина, в которой в случае имеющихся входящих ребер из других вершин графа присутствуют и исходящие ребра в те же вершины.

Очевидно, что наилучший по R в A элемент является одновременно и максимальным.

Определение 4.

Элемент $a^0 \in A$ называется R-оптимальным на A, если для $\forall a \in A$ таких, что $a \neq a^0$, следует $(a, a^0) \notin R$.

В графе бинарного отношения R-оптимальному элементу соответствует вершина, в которой имеются только исходящие ребра.

Определение 5.

Множество максимальных элементов Max_RA называется внешне устойчивым, если для $\forall a \in A \ \backslash Max_RA$ найдется такой $a^0 \in Max_RA$, что справедливо $(a^0, a) \in R$.

Внешне устойчивое множество максимальных элементов называют ядром отношения R в A. Выбор оптимального элемента

необходимо производить в ядре отношения, которое на практике содержит значительно меньшее число элементов, чем множество А. Обычно, такой выбор требует уточнения используемой информации.

Задача принятия решений на основе бинарных отношений — это задача выделения ядра бинарного отношения R в A. При этом ЛПР может устанавливать предпочтительность вариантов выбора как в целом, так и по отдельным их характеристикам.

Практическая часть.

Пусть множество $A = \{a_1, a_2, ..., a_{10}\}$. Элементами множества A являются альтернативы или исходы, или векторные оценки исходов.

 $R = \{(a_1, a_2), (a_2, a_3), (a_4, a_3), (a_3, a_6), (a_6, a_3), (a_3, a_8), (a_8, a_3), (a_1, a_7), (a_4, a_5), (a_4, a_6), (a_4, a_{10}), (a_8, a_4), (a_4, a_8), (a_5, a_6), (a_6, a_7), (a_6, a_{10}), (a_{10}, a_6), (a_8, a_7), (a_8, a_9), (a_9, a_{10}), (a_3, a_{10})\}$ – бинарное отношение на множестве A.

Требуется:

- 1. построить граф бинарного отношения R;
- 2. найти наилучшие по R в A элементы;
- 3. найти максимальные по R в A элементы;
- 4. найти R-оптимальные элементы множества A;
- 5. найти ядро бинарного отношения R.

Решение.

1. Построим граф бинарного отношения R:

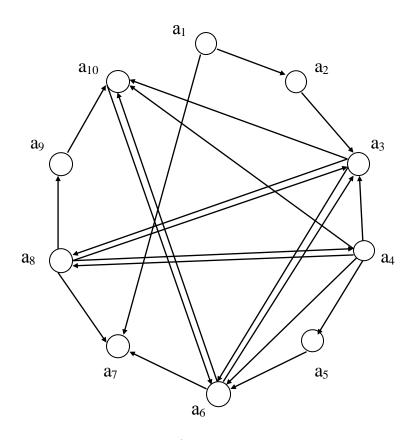


Рис.1. Граф бинарного отношения R

- 2. Наилучших по R в A элементов нет, так как нет вершины в графе, из которой исходят ребра во все остальные вершины.
- 3. Множество максимальных по R в A элементов $Max_RA = \{a_1, a_4, a_8\}$, так как в вершинах графа, соответствующих этим элементам, для каждого входящего ребра имеется компенсирующее исходящее ребро.
- $4. \ a_1 R$ -оптимальный элемент множества A, так как в него не входит ни одно ребро.
- 5. Множество максимальных элементов Мах_RА является внешне устойчивым, так как из вершин графа, соответствующих максимальным элементам, исходят ребра во все остальные вершины графа. Следовательно, множество максимальных элементов Мах_RА является ядром бинарного отношения R.

Вопросы для самопроверки.

- 1. Бинарные отношения.
- 2. Граф бинарного отношения.
- 3. Множества альтернатив, исходов, векторных оценок исходов.
- 4. Наилучший, максимальный, R-оптимальный элементы.
- 5. Внешняя устойчивость.
- 6. Ядро бинарного отношения.

Литература.

- 1. Орлов А.И. Теория принятия решений: учебник / А.И. Орлов. М.: Изд-во «Экзамен», 2006. 573 с.
- 2. Петровский А.Б. Теория принятия решений [Текст]:учебник. М.: Академия, 2009. 400 с. (Университетский учебник. Прикладная математика и информатика).
- 3. Черноруцкий И.Г. Методы принятия решений: учебное пособие / И.Г. Черноруцкий. СПб.: БХВ-Петербург, 2005. 416 с.