Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Таныгин Максим Олегович

Должность: и.о. декана факультета фундаментальной и прикладной информатики Дата подписания: 21.09.2023 13:14:04

Уникальный программный ключ:

65аь2 Федеральное образовательное учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра вычислительной техники

ПАРАМЕТРИЧЕСКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА СТАБИЛИТРОНЕ

Методические указания к лабораторной работе по дисциплинам «Электротехника электроника и схемотехника» и «Основы электроники» для студентов специальностей 09.03.01 и 09.03.04 Составитель М.В. Бобырь УДК 681.3

Репензент

Доктор технических наук, профессор кафедры Информационных систем и технологий *С.В. Дегтярев*

Параметрический стабилизатор напряжения на стабилитроне: Методические указания к лабораторной работе по дисциплинам «Электротехника электроника и схемотехника» и «Основы электроники» для студентов специальностей 09.03.01 и 09.03.04 / Юго-Зап. гос. ун-т; Сост. М.В. Бобырь. Курск, 2019. 9 с.

измерений статической Описывается методика характеристики параметров полупроводникового И параметрического стабилитрона и схемы стабилизатора напряжения на стабилитроне; приведены рекомендации по применению программы моделирования электронных схем Electronics Workbench 5.0 при выполнении исследований стабилитрона и стабилизатора.

Предназначены для студентов специальностей 09.03.01 и 09.03.04.

Текст печатается в авторской редакции

Подписано в печать 30.04.19. Формат 60х84 1/16. Усл. печ. л. 0,4 Уч.-изд. л. 0,3 Тираж 50 экз. Заказ 440.

Юго-Западный государственный университета. 305040 Курск, ул. 50 лет Октября, 94.

ПАРАМЕТРИЧЕСКИЙ СТАБИЛИЗАТОР НАПРЯЖЕНИЯ НА СТАБИЛИТРОНЕ

1. Цель работы

Изучение статической характеристики и параметров полупроводникового стабилитрона и параметрического стабилизатора напряжения на стабилитроне.

2. Основные теоретические положения и описание принципиальных схем

Полупроводниковый стабилитрон – это полупроводниковый диод, напряжение на котором в области электрического пробоя при обратном смещении слабо зависит от тока в заданном его диапазоне и который предназначен для стабилизации напряжения. Исходным материалом для стабилитрона служит кремний.

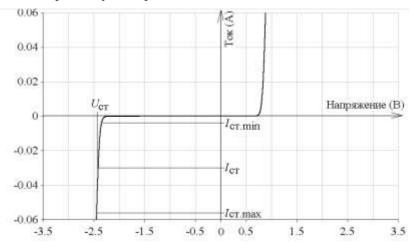


Рис. 1. Вольт-амперная характеристика стабилитрона

На рис. 1. показан примерный вид вольт-амперной характеристики (BAX) стабилитрона. Основным параметром стабилитрона является *напряжение стабилизации* $U_{\rm cr}-$ значение напряжения на стабилитроне при прохождении

заданного тока $I_{\rm cr.}$ В зависимости от толщины p-n перехода напряжение стабилизации может быть от 2 до 400 В. Рабочий участок ВАХ ограничен предельно допустимыми значениями тока $I_{\rm cr.min}$ и $I_{\rm cr.max}$, которые приводятся в справочных данных.

О качестве стабилитрона, т.е. о его способности стабилизировать напряжение при изменениях проходящего тока, можно судить по значению *дифференциального сопротивления стабилитрона* г_{ст}, которое определяется отношением приращения напряжения к вызвавшему его приращению тока. Качество стабилитрона тем выше, чем меньше его дифференциальное сопротивление.

При проектировании источников электропитания для радиоэлектронной аппаратуры предъявляются высокие требования к стабильности напряжения питания. Простейшими стабилизаторами напряжения являются схемы, использующие нелинейные элементы, ВАХ которых содержит участок, где напряжение почти не зависит от тока. Именно такую характеристику имеет стабилитрон при обратном напряжении в области пробоя.

В данной работе исследуется *параметрический стабилизатор*, основанный на использовании полупроводникового стабилитрона (рис. 2).

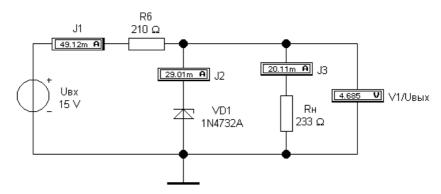


Рис. 2. Параметрический стабилизатор напряжения

В этой схеме стабильность выходного напряжения определяется в основном параметрами стабилитрона VD1.

Входное напряжение $U_{\rm BX}$ должно быть больше напряжения пробоя стабилитрона $U_{\rm CT}$. Для ограничения тока через стабилитрон устанавливается балластный резистор $R_{\rm 6}$, на котором падает разность напряжений $U_{\rm BX}-U_{\rm CT}$. Часть входного напряжения теряется на этом резисторе, а оставшаяся часть приложена к нагрузке. Функцию нагрузки в схеме выполняет сопротивление $R_{\rm H}$, величину которого можно задавать при проведении исследования. Колебания входного напряжения $U_{\rm BX}$ или тока нагрузки $I_{\rm H}$ приводят к изменению тока через стабилитрон $I_{\rm CT}$.

Наибольший ток через стабилитрон протекает при максимальном входном напряжении и минимальном токе нагрузки:

$$I_{cm.\text{\tiny MARC}} = rac{U_{
m \tiny 6X.MARC} - U_{cm}}{R_{
m \tiny 6}} - I_{
m \tiny H.MHH} \,.$$

Наименьший ток через стабилитрон протекает при минимальном входном напряжении и максимальном токе нагрузки:

$$I_{{\it cm.muh}} = rac{U_{{\it bx.muh}} - U_{{\it cm}}}{R_{\it b}} - I_{{\it n.makc}} \; .$$

Полный диапазон изменения тока стабилитрона составляет

$$I_{\it cm.макс} - I_{\it cm.макс} = (U_{\it bx.makc} - U_{\it bx.muh})/R_6 + I_{\it h.makc} - I_{\it h.muh}.$$
 При выполнении условий:

$$I_{\it cm.makc} < I_{\it cm.max}$$
 ; $I_{\it cm.muh} > I_{\it cm.min}$,

где $I_{cm.\max}$ и $I_{cm.\min}$ — предельно допустимые токи стабилитрона, напряжение на нагрузке $U_{\text{вых}} = U_{\text{ст}}$ стабильно.

3. Программа исследований и порядок работы

3.1. Исследование вольт-амперной характеристики стабилитрона

Собрать на рабочем столе программы **Electronics Workbench** схему рис. 3 для построения прямой и обратной ветвей BAX полупроводникового стабилитрона, модель

которого задана в таблице вариантов.

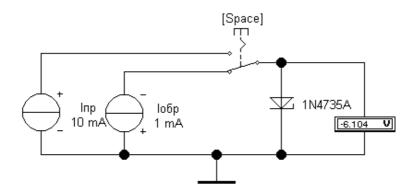


Рис. 3. Схема измерений ВАХ стабилитрона Таблица

Варианты заданий к схеме стабилизатора напряжения

Вариант	Стабилитрон	I _{ст.max} , мА	$U_{ ext{bx.Hom}}, \ ext{B}$	$U_{ ext{вых}},$ В	<i>I</i> _{н.ном} , мА
1	1N4730A	45	8	3,9	15
2	1N4731A	50	9	4,3	15
3	1N4732A	60	10	4,7	20
4	1N4733A	75	11	5,1	25
5	1N4734A	115	12	5,6	35
6	1N4735A	315	15	6,2	90
7	1N4736A	200	15	6,8	60
8	1N4737A	190	15	7,5	55
9	1N4738A	185	18	8,2	50
10	1N4739A	185	18	9,1	50
11	1N4740A	150	20	10	45
12	1N4741A	140	22	11	40
13	1N4742A	135	25	12	35
14	1N4743A	135	25	13	35
15	1N4744A	110	27	15	30

Примечание: стабилитроны выбраны из библиотеки motor_1n программы Electronics Workbench.

С помощью ключа, управляемого клавише **Space** (Пробел), к стабилитрону можно подключать либо источник прямого тока, либо источник обратного тока. Изменяя значения прямого тока $I_{\rm пр}$ в пределах от 1 мА до 100 мА (10...12 точек), произвести измерения прямого напряжения $U_{\rm пр}$. Задавая значения обратного тока в пределах от 0,5 мА до величины $I_{\rm cr.max}$ (10...12 точек), произвести измерения обратного напряжения $U_{\rm обр}$. Построить графики прямой $I_{\rm пр} = f(U_{\rm np})$ и обратной $I_{\rm обр} = f(U_{\rm обр})$ ветвей характеристики стабилитрона в одних и тех же координатах: напряжение (по горизонтали) – ток (по вертикали). Для наглядности графика ВАХ целесообразно использовать разные масштабы по оси напряжения для прямой и обратной ветвей.

Выбрать на обратной ветви BAX точку в середине участка пробоя и зафиксировать соответствующее напряжение $U_{\rm cr}$; сравнить его со справочным значением.

Определить в окрестности указанной выше точки дифференциальное сопротивление стабилитрона

$$r_{\rm cT} = \Delta U_{\rm cT} / \Delta I_{\rm cT}$$
.

3.2. Исследование схемы параметрического стабилизатора напряжения

Собрать на рабочем столе программы **Electronics Workbench** схему рис. 2 стабилизатора напряжения на полупроводниковом стабилитроне в соответствии с вариантом задания (см. табл.). Установить заданное номинальное значение входного напряжения $U_{\rm BX. Hom}$. Рассчитать сопротивление $R_{\rm H}$, которое обеспечивает заданный номинальный ток нагрузки $I_{\rm H. Hom}$, и величину балластного сопротивления $R_{\rm 6}$, необходимую для номинального тока стабилитрона:

$$R_{\delta} = \frac{U_{_{6X,HOM}} - U_{_{CM}}}{I_{_{CM,HOM}} + I_{_{H,HOM}}}.$$
 (2)

При вычислении $R_{\rm 6}$ принять величину $I_{\rm cr. mom}$ как среднее арифметическое значений $I_{\rm cr. min}$ и $I_{\rm cr. max}$.

Изменить входное напряжение в пределах от $U_{\text{вх.мин}} = 0.75 \cdot U_{\text{вх.ном}}$ до $U_{\text{вх.макс}} = 1.25 \cdot U_{\text{вх.ном}}$ при постоянном токе нагрузки $I_{\text{н.ном}}$. Измерить, в каких пределах будет при этом изменяться выходное напряжение $U_{\text{вых}}$. Оценить коэффициент стабилизации

$$K_{\it cm} = rac{\Delta U_{\it ex} \cdot U_{\it cm}}{\Delta U_{\it gbix} \cdot U_{\it ex.HO.M}}$$
 при $I_{\rm H} = const.$

Установить на входе номинальное значение напряжения $U_{\text{вх.ном}}$. Изменить с помощью сопротивления $R_{\text{н}}$ ток нагрузки в пределах от $I_{\text{н.мин}} = 0.75 \cdot I_{\text{н.ном}}$ до $I_{\text{н.макс}} = 1.25 \cdot I_{\text{н.ном}}$. Измерить, в каких пределах будет при этом изменяться выходное напряжение $U_{\text{вых}}$. Оценить выходное сопротивление стабилизатора

$$R_{\scriptscriptstyle Gblx} = \left| rac{\Delta U_{\scriptscriptstyle Gblx}}{\Delta I_{\scriptscriptstyle Gblx}}
ight|$$
 при $U_{\scriptscriptstyle
m BX} = const.$

4. Методические указания

5. Контрольные вопросы

- 1. В каком режиме используется стабилитрон? Какая особенность ВАХ стабилитрона определяет его применение?
- 2. Назовите основные параметры стабилитрона. Чем определяются минимально и максимально допустимые значения тока стабилитрона $I_{\text{cr.min}}$ и $I_{\text{cr.max}}$?
- 3. На чем основан принцип стабилизации напряжения в схеме на полупроводниковом стабилитроне?
- 4. Какую роль выполняет балластный резистор в схеме параметрического стабилизатора?
- 5. Какие условия необходимы для стабилитрона в схеме стабилизатора напряжения?
- 6. Как определить коэффициент стабилизации стабилизатора напряжения?
- 7. Как определить выходное сопротивление стабилизатора напряжения?

6. Содержание отчёта

Отчёт должен содержать:

- 1) титульный лист;
- 2) наименование работы и цель исследований;
- 3) схема и таблица результатов измерений и графики BAX полупроводникового стабилитрона; значения напряжения пробоя стабилитрона и его дифференциального сопротивления;
- 4) расчет компонентов схемы параметрического стабилизатора напряжения;
- 5) результаты измерения напряжения $U_{\rm вых}$ на выходе параметрического стабилизатора при изменении входного напряжения $U_{\rm вx}$ и постоянном токе нагрузки и расчет коэффициента стабилизации;
- 6) результаты измерения напряжения $U_{\rm выx}$ на выходе параметрического стабилизатора при изменении тока нагрузки и постоянном входном напряжении $U_{\rm вx. hom}$ и расчет выходного сопротивления стабилизатора.

Литература

- 1. Проектирование аналоговых и цифровых устройств: Учебное пособие / Титов В.С., Иванов В.И., Бобырь М.В. Москва: Инфра-М. 2014. 143 с.
- 2. Электротехника и электроника: Учебное пособие / М.В. Бобырь, В.И. Иванов, В.С. Титов, А.С. Ястребов. В 2 кн. Курск: Курск. гос. тех. ун-т. 2009. Кн. 2. Электроника. 240 с.
- 3. Гусев, В.Г. Электроника и микропроцессорная техника: Учебник для вузов. / В.Г. Гусев, Ю.М. Гусев. Изд. 3-е. М.: Высш. шк., 2004. 790 с.