Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна

МИНОБРНАУКИ РОССИИ

Должность: проректор до учебной работе Дата подписания: 15. **Федераль**ное государственное бюджетное образовательное уч-

Уникальный программный ключ: режление высшего образования 0b817ca911e6668abb13a5d426d39e5<u>f1c</u>11eabb<u>f7</u>3e943df4a4851fda56d089

(ЮЗГУ)

Кафедра нанотехнологий, микроэлектроники, общей и прикладной физики

МОДЕЛИРОВАНИЕ В МАТЕРИАЛОВЕДЕНИИ

Методические рекомендации по выполнению курсовых проектов студентами направления подготовки 28.03.01 «Нанотехнологии и микросистемная техника»

УДК 53

Составитель А.В. Кузько, А. Е. Кузько, А.П. Кузьменко

Рецензент Проректор по цифровой трансформации, доцент, к.т.н. А.И. Пыхтин

Моделирование в материаловедении: методические рекомендации по выполнению курсовых проектов студентами направления подготовки 28.03.01 Нанотехнологии и микросистемная техника/ Юго-Зап. гос. ун-т; сост.: Кузько А.В., Кузько А. Е., Кузьменко А.П. – Курск, 2022. 11 с.: Библиогр.: с. 10.

Изложена методика выполнения курсовых проектов: разъяснена терминология, подробно описаны этапы выполнения проекта, перечислены виды методов научного исследования, предложены темы курсовых проектов по дисциплине «Моделирование в материаловедении».

Методические указания соответствуют требованиям Федерального государственного образовательного стандарта высшего образования и учебного плана направления подготовки 28.03.01 Нанотехнологии и микросистемная техника, степень (квалификация) — бакалавр. Предназначены для студентов всех форм обучения.

Работа выполнена в рамках реализации стратегического проекта по программе развития федерального государственного бюджетного образовательного учреждения высшего образования "Юго-Западный государственный университет", в рамках реализации программы стратегического академического лидерства «Приоритет-2030» (Соглашения № 075-15-2021-1155 и № 075-15-2021-1213, ПРОЕКТ НАНО №1.7.21/3)

Текст печатается в авторской редакции

Подписано в печать 10.02,2022. Формат 60 х 84 1/16. Усл. печ. л. 0,69. Уч.- изд. л.0,6. Тираж 50 экз. Заказ Бесплатно. Юго-Западный государственный университет. 305040, Курск, ул. 50 лет Октября, 94.

МЕТОДИКА ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА

Для студентов, изучающих дисциплины нанотехнологического цикла, курсовой проект представляет собой самостоятельное научное исследование, предусмотренное учебным планом ВУЗа и раскрывающее ту или иную проблему из области нанотехнологий.

Как правило, курсовой проект — это относительно небольшой по объему письменный труд, выполняемый под контролем научного руководителя и содержащий результаты теоретических, расчетных, аналитических, экспериментальных исследований в выбранной для рассмотрения узкой области знаний.

Для научного руководителя курсовой проект является индикатором подготовленности студента и его отношения к изучаемому предмету, формой контроля его знаний, умения планировать и осуществлять научные исследования. Для самого же обучающегося курсовой проект — это средство совершенствования навыков самостоятельного научного творчества, повышения теоретического, профессионального уровня своей подготовки, получение навыка моделирования, лучшего усвоения учебного материала.

Написание курсового проекта является подготовкой студента к научному исследованию более высокого уровня – дипломной работе.

Курсовой проект является спланированным научным исследованием, состоящим из ряда последовательных этапов:

І. Выбор темы курсовой работы

Зачастую студенту не всегда предоставляется возможность самостоятельного выбора интересной для него темы курсового проекта. Фактически распределение тем происходит в соответствии с алфавитным списком обучающихся или номерами их зачётных книжек. Однако практиковать такой подход не рекомендуется: студенты должны внимательно ознакомиться с примерной тематикой курсовых проектов, имеющейся на кафедре, выбрать понравившуюся тему и сообщить о ней преподавателю дисциплины. Допускается также предложение студентом собственной темы исследования.

II. Составление плана курсового проекта

Наличие плана проекта всегда в значительной мере экономит время. Методически грамотно составленный план курсового проекта

обеспечит последовательность как в исследовании, так и в изложении материала, поможет осветить только те вопросы, которые относятся к теме, избежать пробелов и повторений.

Составление плана не должно проводиться механически. Предварительно необходимо ознакомиться с соответствующим разделом учебника (конспектом лекций), понять содержание темы, определить ее место и значение в изучаемом курсе. Для более четкого определения круга вопросов, которые необходимо рассмотреть, каждый раздел плана можно развернуть на более мелкие подвопросы.

План курсового проекта составляется совместно с научным руководителем. Если студент формирует его самостоятельно, то он обязан согласовать его с руководителем. Без такого согласования приступать к раскрытию темы не рекомендуется, так как неудачно составленный план может свести на нет всю последующую работу.

План выполнения курсового проекта косвенно определяет её будущую структуру.

III. Подбор научной литературы с последующим анализом

Этап подбора научной литературы рекомендуется совместить с этапом составления плана. Это позволит вносить в план только те пункты, информация для написания которых имеется в полном объеме. По каждой теме рекомендованы основные источники, которые имеются в библиотеке ЮЗГУ. Для расширения круга источников полезно использовать возможности других библиотек.

Рекомендуется рассматривать только актуальные и достоверные источники информации: учебники, научные статьи (как в российских, так и в зарубежных изданиях), официальная статистика, монографии, диссертации, изданные за последние годы. Предпочтение лучше отдать материалам, изданным в течение последних пяти лет.

После консультации с научным руководителем по отобранным источникам студент приступает к углубленному изучению литературы.

IV. Проведение исследования

Если курсовой проект носит теоретический характер, то выполнение предыдущего этапа при условии проведения полного и критического анализа литературы уже можно считать полноценной частью исследования. Если же в курсовой работе предполагается наличие практических разделов, то необходимо спланировать и провести ис-

следование. Кафедра НМОиПФ и Региональный центр нанотехнологий обладают огромной базой технологического, аналитического, электроизмерительного оборудования и оборудования для пробоподготовки. Проведение эмпирического исследования, осуществляемого студентом лично, сопровождается наблюдениями, измерениями и записью результатов в рабочую тетрадь с последующим их анализом и формулировкой выводов.

V. Написание основной части

Начать следует с введения, где указывается актуальность выбранной темы, цели и задачи курсового проекта, его предмет, объект и методы, примененные в работе. Далее пишется первая, теоретическая глава, где освящаются основные термины и понятия, приводится классификация, описание методов изучения и многое другое. При этом все, что было тут написано, должно найти свое отображение во второй главе с анализом, на основании которого выделяются основные проблемы, тенденции, намечаются пути их решения. Рекомендуется при написании активно использовать схемы, рисунки, таблицы. Они сделают текст курсового проекта более легким для восприятия.

VI. Составление перечня первоисточников

Каждая приведенная в тексте цитата должна быть отмечена ссылкой на первоисточник, а сами первоисточники формируются в список использованной студентом литературы. Рекомендуется совместить этапы составления перечня и написания основной части: как только приводится заимствованная откуда-то информацию, тут же следует добавить на соответствующую страницу описание источника информации. Такой подход заметно упростит работу, так как сформированный уже список останется лишь оформить согласно требованиям ГОСТа.

VII. Оформление курсового проекта

Как правило, курсовой проект выполняют в машинописном варианте, его объем устанавливается в пределах 25 – 30 страниц.

Оформление курсового проекта должно строго соответствовать стандарту университета СТУ_04.02.030-2017_4.1 «Курсовые работы (проекты). Выпускные квалификационные работы. Общие требования к структуре и оформлению».

Курсовой проект имеет титульный лист, который размещается на обложке. На титульном листе студент указывает название кафедры, темы, свою фамилию и инициалы, номер учебной группы, а также должность, научное звание научного руководителя.

Далее следует план или содержание курсового проекта и указывается, на каких страницах размещены главы, параграфы, подзаголовки.

Курсовой проект в соответствии с планом начинается с «Введения», где обосновывается актуальность, указываются мотивы выбора данной темы, показывается степень ее разработанности в различных трудах ученых. Необходимо также указывать цель и задачи курсового проекта.

В основной части проекта логически последовательно раскрываются поставленные вопросы. В первом разделе особое внимание обращается на обзор литературы по избранному направлению. При этом важно соблюдать логику изложения, используя основные способы — от общего к частному или от частного к общему.

В «Заключении» автор подводит итог сделанной работы, указывает, с какими трудностями пришлось столкнуться при изложении избранной темы, выделяет узловые или вызвавшие интерес проблемы.

Каждая страница текста проекта должна быть пронумерована. Текст каждого раздела курсового проекта начинается с названия и его порядкового номера в соответствии с планом и содержанием.

Ссылки на научные работы в тексте обозначаются числами в квадратных скобках, а в разделе «Список используемых источников» указывается цитируемый источник в соответствии с требованиями оформления по ГОСТу.

Оформление подразумевает не только правильную подачу текста, таблиц или рисунков, но также нюансы выполнения приложения, перечня первоисточников, титульной страницы. В приложения выносятся все таблицы или схемы по теме, которые занимают по объему более двух третей страницы или же просто помогают лучше понять суть исследования, но их присутствие в основной части будет явно излишним.

Курсовой проект подписывается автором, ставится дата ее завершения и работа сдается научному руководителю.

VIII. Корректировка

При спешном написании или оформлении курсового проекта нетрудно пропустить ту или иную деталь. В этой связи рекомендуется отложить текст на день или хотя бы несколько часов, а затем перечитать текст курсового проекта, исправляя по ходу не замеченные ранее ошибки.

Если речь идёт не о локальных языковых ошибках, а о несоответствии предъявляемым требованиям (не раскрыты вопросы, все переписано из одного источника и т. д.), то курсовой проект направляется на доработку. Только после устранения указанных замечаний и доработки студент допускается к защите.

IX. Защита курсового проекта

Защита курсового проекта проводится в установленные кафедрой сроки и принимается комиссией в составе 2-3 преподавателей, включая научного руководителя. В течение 5-7 минут студент кратко и убедительно излагает содержание проекта, делает обзор использованной научной литературы, подводит итоги.

После заслушивания студента научный руководитель указывает на наличие недочетов в выполненном проекте. В этом случае студент должен заблаговременно подготовить полные и аргументированные ответы на замечания.

Необходимо также быть готовым к ответам на возможные вопросы членов комиссии по курсовому проекту.

Оценка студенту выставляется с учетом качества выполненного проекта и результатов его защиты. Оценка за курсовой проект выставляется в зачетную книжку. Студент, не сдавший курсовой проект, считается имеющим академическую задолженность.

МЕТОДЫ НАУЧНОГО ИССЛЕДОВАНИЯ, КОТОРЫЕ ЗАДЕЙСТВУЮТСЯ ПРИ НАПИСАНИИ КУРСОВОГО ПРОЕКТА

Анализ — расчленение целостного предмета на составляющие части с целью их всестороннего изучения;

Аналогия — прием познания, при котором на основе сходства объектов по одним признакам делается заключение об их сходстве по другим;

Дедукция — вид умозаключения от общего к частному, когда из массы частных случаев делается обобщенный вывод о всей совокупности таких случаев;

Индукция — метод исследования и способ рассуждения, в котором общий вывод строится на основе частных посылок;

Классификация — разделение всех изучаемых предметов на отдельные группы в соответствии с каким-либо важным для исследователя признаком;

Моделирование — изучение объекта (оригинала) путем создания и исследования его копии (модели), замещающей оригинал с определенных сторон, интересующих познание. Модель всегда соответствует объекту-оригиналу в тех свойствах, которые подлежат изучению, но в то же время отличаются от него по ряду других признаков, что делает модель удобной для исследования изучаемого объекта;

Наблюдение — целенаправленное восприятие явлений объективной действительности, в ходе которого получают знания о внешних сторонах, свойствах и отношениях изучаемых объектов;

Обобщение — прием мышления, в результате которого устанавливаются общие свойства и признаки объектов;

Описание — фиксация средствами естественного или искусственного языка сведений об объектах;

Прогнозирование — специальное научное исследование конкретных перспектив развития какого-либо явления;

Синтез – соединение ранее выделенных частей предмета в единое целое;

Эксперимент – апробирование, испытание изучаемых явлений в контролируемых и управляемых условиях. В эксперименте стремятся выделить изучаемые явления в чистом виде с тем, чтобы было как можно меньше препятствий в получении искомой информации.

ЗАДАНИЕ К КУРСОВОМУ ПРОЕКТУ

Для выполнения курсового проекта в рамках изучения дисциплины «Моделирование в материаловедении» студентам предлагаются на выбор следующие темы (по согласованию с преподавателем возможно изменение темы).

- 1. Возможности моделирования магнитного поля соленоида с сердечником в программной среде Agros2D
- 2. Разработка программы для вычисления деформации растяжения-сжатия и напряжений для одномерной задачи упругости на языке программирования C++
- 3. Моделирование деформации и проектирование корпусов микроустройств в САПР Autodesk Inventor
- 4. Возможности моделирования и 3D визуализации напряжений и деформаций в программной среде Range Software
- 5. Возможности САПР для анализа свойств композитных материалов, содержащих нанокомпоненты
- 6. Возможности моделирования в программных средах Agros 2D и FEMM распределения электрического поля конденсатора из двух проводящих дисков
- 7. Возможность моделирования в программной среде Agros2D распределения поля постоянного магнита
- 8. Возможности моделирования распределения электрического поля системы электродов «игла-кольцо» в программных средах FEMM и Agros2D
- 9. Возможности моделирования в программных средах Agros2D и FEMM распределения магнитного поля для бесконечно длинного медного провода
- 10. Возможности моделирование распределения электрического поля системы электродов между двумя прямоугольными пластинами в программной среде FEMM
- 11. Возможности моделирования в программных средах Agros2D и FEMM распределения электрического поля для конденсатора в виде коаксиальных труб квадратного профиля
- 12. Моделирование задач электростатики в программных средах Agros2D и FEMM: нахождение электрического поля искрового разрядника и системы двух сфер.

ЛИТЕРАТУРА

- 1. Клунникова, Ю.В. Метод конечных элементов для моделирования устройств и систем [Электронный ресурс]: учебное пособие / Ю.В. Клунникова, С.П. Малюков, М.В. Аникеев.— Таганрог: Южный федеральный университет, 2019. 86 с. Режим доступа.— https://biblioclub.ru/index.php?page=book&id=577777.
- 2. Маковкин, Г. А. Применение МКЭ к решению задач механики деформируемого твердого тела [Электронный ресурс]: учебное пособие / Г. А. Маковкин, С. Ю. Лихачева. Нижний Новгород: Нижегородский государственный архитектурно-строительный университет (ННГАСУ), 2012. Ч. 1. 72 с. Режим доступа. https://biblioclub.ru/index.php?page=book&id=427425.
- 3. Мухутдинов, А.Р. Основы применения Autodesk Inventor для решения задач проектирования и моделирования [Электронный ресурс]: учебное пособие/ А.Р. Мухутдинов, С.А. Яничев. Казань: Казанский научно-исследовательский технологический университет (КНИТУ), 2016. 140 с. // Режим доступа https://biblioclub.ru/?page=book&id=560921&razdel=276.
- 4. Пузанов, А. В. Инженерный анализ в Autodesk Simulation Multiphysics [Электронный ресурс]: методическое руководство / А. В. Пузанов. М.: ДМК Пресс, 2012. 912 с. Режим доступа. https://biblioclub.ru/index.php?page=book&id=260212
- 5. Буйначев, С. К. Основы программирования на языке Python [Электронный ресурс]: учебное пособие / С. К. Буйначев, Н. Ю. Боклаг. Екатеринбург: Издательство Уральского университета, 2014. 92 с. Режим доступа. https://biblioclub.ru/index.php?page=book&id=275962
- 6. Колокольникова, А. И. Word 2019: теория и практика: в 2 частях [Электронный ресурс]: учебное пособие / А. И. Колокольникова. Москва; Берлин: Директ-Медиа, 2020. Ч. 1. 337 с. Режим доступа. https://biblioclub.ru/index.php?page=book&id=595446
- 7. Формалев, В. Ф. Численные методы [Электронный ресурс]: учебное пособие / В. Ф. Формалев, Д. Л. Ревизников. М.: Физматлит, 2006. 399 с. // Режим доступа http://biblioclub.ru/index.php?page=book&id=69333.
- 8. Деклу, Ж. Метод конечных элементов [Электронный ресурс]: учебное пособие / Ж. Деклу; под ред. Н. Н. Яненко; пер. с фр. Б. И.

- Квасова. М.: Мир, 1976. 95 с.// Режим доступа https://biblioclub.ru/index.php?page=book&id=456946.
- 9. Колокольникова, А. И. Word 2019: теория и практика: в 2 частях [Электронный ресурс]: учебное пособие / А. И. Колокольникова. Москва; Берлин: Директ-Медиа, 2020. Ч. 1. 337 с. Режим доступа. https://biblioclub.ru/index.php?page=book&id=595446

ИНТЕРНЕТ-РЕСУРСЫ:

- 1. http://www.ansys.com/- ANSYS User Guide ver 11. 2007
- 2. http://www.comsol.com/-Comsol Multiphysics
- 3. https://www.libreoffice.org/discover/calc/ -Calc это бесплатная программа для работы с электронными таблицами.
- 4. https://www.femm.info/wiki/HomePage FEMM это программный пакет на базе метода конечных элементов для решения двумерных плоских и осесимметричных задач магнитостатики и электростатики.
- 5. http://www.agros2d.org/ Agros2D это программный пакет с открытым исходным кодом для численного решения (МКЭ) двумерных связанных задач (Multiphysics) в технических дисциплинах.
- 6. https://www.autodesk.ru/products/inventor/overview Autodesk Inventor система трёхмерного твердотельного и поверхностного параметрического проектирования (САПР) компании Autodesk, предназначенная для создания цифровых прототипов промышленных изделий
- 7. https://replit.com/languages/python3 онлайн-компилятор и интерпретатор Python.
- 8. https://www.python.org/ официальный сайт Python (высокоуровневогоязыка программирования общего назначения с динамической строгой типизацией и автоматическим управлением памятью)