Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

минобрнауки россии

Дата подписания: 10.02.2021 21:22:31 Уникальный программный ключ деральное государственное бюджетное образовательное 0b817ca911e6668abb13a5d426**y34pextдентие** выстроброфессионального образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра управления инновациями Кафедра теплогазоснабжения и вентиляции

ИССЛЕДОВАНИЕ ГАЗОВОГО ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА

Методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» для студентов технических специальностей

Составители: И.Р. Чеховский, И.И. Сокол, Л.Е. Кудрявцева, В.А. Кудрявцев, Е.М. Кувардина

Рецензент

Кандидат технических наук, доцент кафедры теплогазоснабжения и вентиляции Г.Г.Щедрина

Исследование газового изотермического процесса: методические указания к выполнению лабораторной работы по дисциплине «Теплотехника» / Юго-Зап. гос. ун-т.; сост.: И.Р. Чеховский, И.И. Сокол, Л.Е. Кудрявцева, В.А. Кудрявцев, Е.М. Кувардина, Курск, 2013. 8 с., ил.4, табл.1. Библиогр.: с.8.

Излагаются методические рекомендации по исследованию газового изотермического процесса.

Предназначены для студентов технических специальностей.

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл.печ.л.0,46 . Уч.-изд.л. 0,42. Тираж экз. Заказ . Бесплатно. Юго-Западный государственный университет. 305040 Курск, ул. 50 лет Октября, 94. Целью работы является изучение изотермических процессов сжатия и расширения воздуха.

Задание

- 1. Провести экспериментальное исследование изотермического процесса сжатия и расширения воздуха.
- 2. Составить отчёт по выполненной работе.

Теоретическая часть

Процесс, в котором не изменяется температура газа, называется изотермическим процессом, а линия, изображающая этот процесс – изотермой. Из уравнения состояния pv=RT при T=const уравнение изотермы будет иметь вид pv=const, а график изотермы в p-v=диаграмме-это равнобокая гипербола (puc.1).

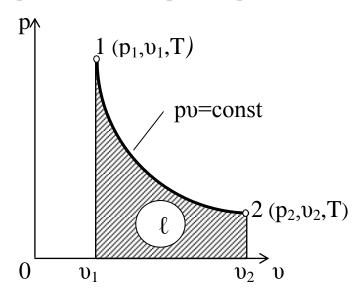


Рис. 1. Изотермический процесс в $p-\upsilon$ диаграмме

Из уравнения процесса $p\upsilon$ =const следует, что давление и удельный объём обратно пропорциональные величины, т.е. $p_2/p_1=\upsilon_1/\upsilon_2$.

Так как T = const, то dT = 0. Тогда изменение внутренней энергии $du = c_v \cdot dT = 0$ и изменение энтальпии $di = c_P \cdot dT = 0$, т.е. внутренняя энергия u и энтальпия i в процессе не изменяются (u=const u i=const).

Работа 1 кг идеального газа в процессе T = const равна

$$\ell = \int_{\upsilon_1}^{\upsilon_2} p d\upsilon = const \int_{\upsilon_1}^{\upsilon_2} \frac{d\upsilon}{\upsilon} = RT \ell n(\upsilon_2/\upsilon_1) = p_1 \upsilon_1 \ell n(\upsilon_1/\upsilon_2) = RT \ell n(p_1/p_2)$$

и в р-о диаграмме изображается площадкой, ограниченной линией процесса 1-2, ординатами крайних точек 1 и 2 и осью абсцисс.

Так как du = 0, то первый закон термодинамики $dq = du + d\ell$ для изотермического процесса имеет вид $dq = d\ell$ или $q = \ell = RT\ell n(\upsilon_2/\upsilon_1)$. Отсюда видно, что если газ расширяется, т.е. $\upsilon_2 > \upsilon_1$, то работа ℓ и теплота q имеет знак (+) и всё подводимое к газу тепло расходуется на совершение работы, а при изотермическом сжатии

 $(v_2 < v_1) \ q$ и ℓ имеет знак (-) и вся затраченная работа ℓ отводится от газа в виде теплоты $\ q$.

В T-S диаграмме изотерма (T=const) изображается горизонтальной прямой 1-2 (рис.2).

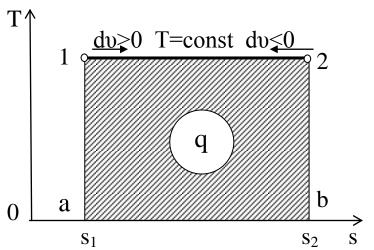


Рис. 2. Изотермический процесс в T – s

Тепло, участвующее в процессе 1-2, изображается в T-s диаграмме площадкой прямоугольника 12ba1, т.е. $q=T\cdot(s_2-s_1)$, откуда изменение энтропии $s_2-s_1=q/T=R\cdot \ell n(\upsilon_2/\upsilon_1)$.

Из этой формулы следует, что при расширении газа $d\upsilon > 0$, тепло к газу подводится и энтропия газа увеличивается, а при сжатии газа $d\upsilon < 0$, тепло от газа отводится и энтропия газа уменьшается.

Изотермический процесс является частным случаем политропного процесса, описываемого уравнением pv^n =const, где n – показатель политропы, который может изменяться от - ∞ до + ∞ . Для изотермического процесса n=1, т.к. pv=const.

Итак, для изотермического процесса для M кг газа можно записать

$$P_1V_1 \!\!=\!\! P_2V_2 \!\!=\!\! P_3V_3 \!\!=\!\! PV \!\!=\!\! const,$$
 откуда $P_2V_2 \!\!/\! P_1V_1 \!\!=\!\! P_3V_3 \!\!/\! P_1V_1 \!\!=\!\! P_3V_3 \!\!/\! P_2V_2 \!\!=\!\! const=1.$

Экспериментальная установка

Установка (рис.3) представляет собой две соединенные резиновым шлангом 1 вертикальные бюретки 2, наполовину заполненные водой.

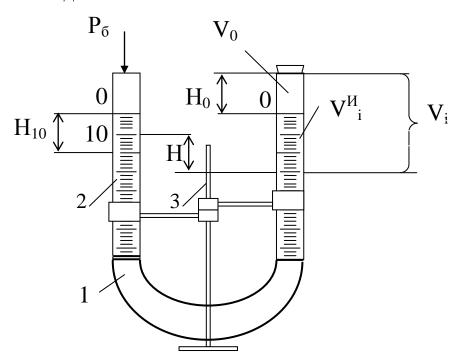


Рис. 3. Схема установки

Бюретки установлены в штативе 3. Одна бюретка герметически закрыта резиновой пробкой. Воздух, заключенный между пробкой и водой в этой бюретке, служит рабочим телом, с которым проводится процесс. Вторая бюретка открыта и служит для создания и измерения давления в закрытой бюретке.

Для измерения атмосферного давления используется барометр.

Проведение опыта и обработка опытных данных

Проводится три опыта, для каждого из которых вычисляются объём воздуха V_i (M^3) и его абсолютное давление в закрытой бюретке, P_i (Πa).

Объём воздуха V_i (мл) определяется суммой объёмов: объёма заключённого между пробкой и нулевой отметкой шкалы V_o и объёма, замеренного по шкале, V_i^u . $V_i = V_o + V_i^u$

Для определения объёма V_o линейкой измеряют высоту этого объёма H_o и высоту объёма 10 мл (по шкале бюретки) H_{10} . Искомый объём в мл находится по соотношению V_o = $10\cdot H_o/H_{10}$. (Величина V_o для всех 3-х опытов одна и та же.)

Первый замер (рис. 4,а) проводим при одинаковых уровнях воды в бюретках. В этом случае давление на уровни воды в бюретках одинаково и равно атмосферному давлению $P_1 = P_6$ и H = 0. Объём воздуха $V_1 = V_0 + V_1^{M}$.

Второй замер (рис. 4,б) проводим при давлении атмосферного. Сжатие воздуха осуществляем поднятием открытой бюретки до получения разницы уровней воды в бюретках 100÷150 бюретке MM. При ЭТОМ давление воздуха В закрытой Η барометрическим столбом жидкости уравновешивается давлением P_6 , т.е. $P_2 = P_6 + H \cdot 9,81$ (Па). Объём воздуха $V_2 = V_0 + V_2^H$.

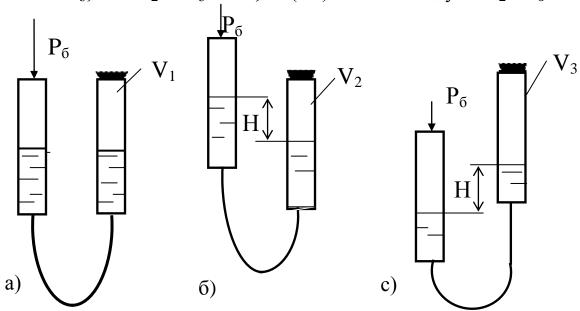


Рис. 4. Схема замеров

Третий замер (рис. 4,с) проводим при давлении ниже атмосферного. Расширение воздуха осуществляем опусканием открытой бюретки до получения разницы уровней воды в бюретках $100 \div 150$ мм. В этом случае в закрытой бюретке абсолютное давление будет ниже атмосферного и его величина определяется разницей атмосферного и столба жидкости H. $P_3 = P_6 \cdot H \cdot 9,81$ (Па). Объём воздуха $V_3 = V_0 + V_1^{M}$.

Для каждого замера определяем произведение давления и объёма, $P_i \cdot V_i \ (\Pi a \cdot m^3)$, составляем и находим отношения

 P_2V_2/P_1V_1 и P_3V_3/P_1V_1 и сравниваем их с единицей.

Результаты измерений и расчётов заносим в протокол работы.

Таблица Протокол лабораторной работы

Пара	Измеряемый	Пол	ный	Разность	Абсолют	Произв
метр	объём	объём,		уровней,	ное	еде-
	воздуха по	$V_i = V$	$_0$ + $\mathbf{V_i}^{\mathrm{M}}$	Н	давление,	ние,
	шкале, V_i^{H}				P_{i}	$P_i \cdot V_i$
№	МЛ	ΜЛ	M^3	мм.вод.ст.	Па	Па м³
замера						
1						
2						
3						
Атурофоруа даржания В — По						

Атмосферное давление P_{δ} = Πa .

Объем, заключенный между пробкой и нулевой отметкой шкалы,

 $V_0 = M$ л

Отчёт по выполненной работе должен содержать

- 1. Исходные данные работы.
- 2. Задание и схему установки.
- 3. Протокол лабораторной работы и обработку результатов опыта.
- 4. Изображение изотермического процесса в P-V и T-S координатах.

Контрольные вопросы

- 1. Понятия идеального и реального газа.
- 2. Основные термодинамические процессы.
- 3. Изображение изотермического процесса в P-V и T-s координатах.
- 4. Определение теплоты и работы.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Теплотехнические измерения и приборы/Г.И.Иванова, Н.Д.Кузне- цов, В.С.Чистяков.-М.: МЭИ 2005. 450с.
- 2. Теплотехника: Учеб.для вузов/ А.П.Баскаков, Б.В.Берг, О.К.Витт и др.; Под ред. А.П.Баскакова.-М.:ООО «ИД Бастет», 2010.-328c.
- 3. Теоретические основы теплотехники. Теплотехнический эксперимент: Справочник/ Под общ. Ред.В.М.Зорина: М.: Энергоатомиздат, 1988, 560 с.
- 4. Нащокин В.В.Техническая термодинамика и теплопередача: Учеб.пособие для ВУЗов. М.: Высш.шк., 1980. 469 с.