Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

минобрнауки россии

Дата подписания: 15.02.2022 13:09:35

Уникальный программный ключ: Обедеральное государственное бюджетное образовательное учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра промышленного и гражданского строительства

ОСНОВЫ ГЕОТЕХНИКИ

Методические указания к практическим занятиям для студентов направления подготовки 08.03.01 «Строительство»

Составитель: К.О. Дубракова

Рецензент

Кандидат технических наук, доцент А.В. Масалов

Основы геотехники: Методические указания к практическим занятиям/ Юго-Зап. гос. ун-т; сост. К.О. Дубракова, Курск, 2021.- 70 с.: табл. 20, Библиогр.: с. 70.

Методические указания соответствуют Федеральному государственному образовательному стандарту по направлению подготовки (специальности) 08.03.01.

Содержат сведения по вопросам определение основных физикомеханических характеристик грунтов и деформаций основания.

Предназначены для студентов направления подготовки 08.03.01 дневной и заочной форм обучения.

Текст напечатается в авторской редакции.

Подписано в печать . Формат 60х84 1/16.

Усл. печ. л. Уч.-изд. л. Тираж 100 экз. Заказ . Бесплатно.

Юго-Западный государственный университет.

305040, г. Курск, ул. 50 лет Октября, 94.

Содержание

Ведение	4
1. ФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ	5
Задачи к практическому занятию №1	11
2. ДЕФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ГРУНТОВ	13
Задачи к практическому занятию №2	16
3. РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В ОСНОВАНИИ	18
Задачи к практическому занятию №3	26
Пример решения задачи по теме: Распределение напряжений в основани	ии 28
4. ОПРЕДЕЛЕНИЕ РАСЧЕТНОГО СОПРОТИВЛЕНИЯ ГРУНТА	36
Задачи по теме: Определение расчетного сопротивления грунта	41
Пример решения задачи по теме: Определение расчетного сопротив грунта	
5. РАСЧЕТ ОСНОВАНИЙ ПО НЕСУЩЕЙ СПОСОБНОСТИ	45
Задачи к практическому занятию №5	50
6. ОПРЕДЕЛЕНИЕ ОСАДОК ОСНОВАНИЯ	51
Задачи к практическому занятию № 6	64
Пример решения задачи по теме: «Определение осадок основания»	65
Список питературы	67

Ведение

Дисциплина «Основы геотехники» является основополагающей среди дисциплин, связанных с проектированием, строительством, технологией возведения зданий и т.д.

Правильно спроектированный фундамент и основание, а так же удешевление работ по их устройству зависят от правильной оценки инженерногеологических условий строительной площадки, грунтовых условий, а так же от рационально выбранного типа фундамента.

Основы геотехники изучает проблемы напряженно-деформированного состояния, прочности, деформативности и устойчивости грунтовых массивов и определяет условия их использования в качестве оснований объектов строительства.

1. ФИЗИЧЕСКИЕ СВОЙСТВА ГРУНТОВ

Влажность грунта - отношение массы воды в объеме грунта к массе этого грунта, высушенного до постоянной массы.

Гигроскопическая влажность - влажность грунта в воздушно-сухом состоянии, т.е. в состоянии равновесия с влажностью и температурой окружающего воздуха.

Влажность на границе текучести - влажность грунта, при которой грунт находится на границе между пластичным и текучим состояниями.

Влажность на границе раскатывания - влажность грунта, при которой грунт находится на границе между твердым и пластичным состояниями.

Плотность грунта - масса единицы объема грунта.

Плотность сухого грунта - отношение массы грунта, за вычетом массы воды и льда в его порах, к его первоначальному объему.

Плотность частиц грунта - масса единицы объема твердых (скелетных) частиц грунта.

Водонасыщенное состояние грунта - состояние грунта при практически полном заполнении пор грунта водой.

Гранулометрический (зерновой) состав грунта - количественное содержание в грунте твердых частиц того или иного размера.

Коэффициент фильтрации - скорость фильтрации воды в грунте при градиенте напора, равном единице.

Градиент напора - отношение разности гидростатических напоров воды (потери напора) к длине пути фильтрации.

Относительная вертикальная деформация образца грунта - отношение абсолютной вертикальной деформации к начальной высоте образца.

Стабилизация деформации - приращение деформации во времени, характеризующее практическое затухание деформации при определенной нагрузке.

Стабилизированное состояние грунта - состояние грунта, характеризуемое

окончанием деформаций уплотнения под определенной нагрузкой и отсутствием избыточного давления в поровой жидкости.

Нестабилизированное состояние грунта - состояние грунта, характеризуемое незавершенностью деформаций уплотнения под определенной нагрузкой и наличием избыточного давления в поровой жидкости.

Сопротивление грунта срезу - характеристика прочности грунта, определяемая значением касательного напряжения, при котором происходит разрушение (срез).

Предел прочности на одноосное сжатие - отношение вертикальной нагрузки на образец грунта, при которой происходит его разрушение, к площади поперечного сечения образца.

Коэффициент сжимаемости - отношение относительной вертикальной деформации (изменения коэффициента пористости) к давлению, вызвавшему эту деформацию.

Модуль линейной деформации - показатель линейной деформируемости мерзлого грунта, отражающий отношение напряжений к вызванным относительным продольным деформациям.

Коэффициент поперечного расширения - показатель деформируемости, характеризующий отношение поперечных и продольных деформаций грунта.

Угол внутреннего трения - параметр прямой зависимости сопротивления грунта срезу от вертикального давления, определяемый как угол наклона этой прямой к оси абсцисс.

Удельное сцепление грунта - параметр прямой зависимости сопротивления грунта срезу от вертикального давления, определяемый как отрезок, отсекаемый этой прямой на оси ординат.

Модуль деформации - коэффициент пропорциональности линейной связи между приращениями давления на образец и его деформацией.

Модуль сдвига - характеристика деформируемости, определяемая отношением интенсивности касательных напряжений к интенсивности деформаций

сдвига.

Плотность скелета грунта - плотность сухого грунта ρ_d , г/см³, определяемая по формуле:

$$\rho_d = \frac{\rho}{1+W}$$

где ρ - плотность грунта, г/см³;

W - влажность грунта, д. е.

Число пластичности I_p - разность влажностей, соответствующая двум состояниям грунта: на границе текучести W_L и на границе раскатывания W_p .

Показатель текучести I_L - отношение разности влажностей, соответствующих двум состояниям грунта: естественному W и на границе раскатывания W_p , к числу пластичности I_p .

Коэффициент водонасыщения S_r , д.е. - степень заполнения объема пор водой. Определяется по формуле:

$$S_y = \frac{W\rho_s}{e\rho_w},$$

где W - природная влажность грунта, д.е.;

е - коэффициент пористости;

 ρ_s - плотность частиц грунта, г/см3;

 $\rho_{\rm w}$ - плотность воды, принимаемая равной 1 г/см³.

Коэффициент пористости е определяется по формуле:

$$e = \frac{\rho_s - \rho_d}{\rho_d}$$

где ρ s - плотность частиц грунта, г/см³;

 ρd - плотность сухого грунта, г/см³.

Таблица 1.1 – Классификация крупнообломочных и песчаных грунтов по гранулометрическому составу

Грунт	Размер частиц, мм	Масса частиц, % от мас-

		сы воздушно-сухого
		грунта
Крупнообломочный:		
валунный (глыбовый)		
галечниковый (щебе-	> 200	. 50
нистый)	> 10	> 50
гравийный (дресвя-	> 2	
ный)		
Песок:		
гравелистый	> 2	> 25
крупный	> 0,5	> 50
средней крупности	> 0,25	> 50
мелкий	> 0,1	≥ 75
пылеватый	> 0,1	< 75

Число пластичности грунта:

$$J_p = W_L - W_\rho,$$

где J_p - число пластичности грунта, W_L и W_p - влажность грунта на границе текучести и на границе раскатывания, %.

Показатель текучести (консистенции):

$$J_L = \frac{W - W_\rho}{W_L - W_\rho},$$

где J_L - показатель консистенции, W — природная влажность грунта, % ; W_L - влажность на границе текучести, %; W_ρ - влажность на границе раскатывания, %.

В соответствии с табл. Б.11 ГОСТ 25100-2020 «Грунты. Классификация» по числу пластичности грунты подразделяются (см. табл. 1.2).

Таблица 1.2 – Классификация грунтов в зависимости от значения показате-

ля пластичности

Разновидность глинистых грунтов	Чисто пластичности
Супесь	1-7
Суглинок	7-17
Глина	> 17

В соответствии с табл. Б.14 ГОСТ 25100-2020 «Грунты. Классификация» по показателю текучести глинистые грунты подразделяются (см. табл. 1.3).

Таблица 1.3 – Классификация грунтов в зависимости от значения показателя текучести

Разновидность глинистых грунтов	Показатель текучести I_L
Супесь:	
- твердая	< 0
- пластичная	0-1
-текучая	> 1
Суглинки и глины:	
- твердые	< 0
- полутвердые	0-0,25
- тугопластичные	0,25-0,50
- мягкопластичные	0,50-0,75
- текучепластичные	0,75-1,00
- текучие	> 1,00

В соответствии с табл. Б.17 ГОСТ 25100-2020 «Грунты. Классификация» по показателю коэффициенту водонасыщения Sr грунты подразделяются (см. табл. 1.4).

Таблица 1.4 - Классификация грунтов в зависимости от значения коэффициента водонасыщения

Разновидность грунтов	Коэффициент	водонасыщения	Sr,
-----------------------	-------------	---------------	-----

	д.е.
Малой степени водонасыщения	0-0,50
Средней степени водонасыщения	0,50-0,80
Насыщенные водой	0,80-1,00

В соответствии с табл. Б.18 ГОСТ 25100-2020 «Грунты. Классификация» по показателю коэффициенту пористости е песчаные грунты подразделяются.

Таблица 1.4 - Классификация грунтов в зависимости от значения коэффициента водонасыщения

Разновидность	Коэффициент пористости е				
песков	Пески гравелистые,	Пески мелкие	Пески пылеватые		
	крупные и средней				
	крупности				
Плотный	< 0,55	< 0,60	< 0,60		
Средней плотно-	0,55-0,70	0,60-0,75	0,60-0,80		
сти					
Рыхлый	> 0,70	> 0,75	> 0,80		

В соответствии с табл. Б.22 ГОСТ 25100-2020 «Грунты. Классификация» по относительному содержанию органических веществ глинистые грунты и пески подразделяются (см. табл. 1.5).

Таблица 1.5 - Классификация грунтов по относительному содержанию органических веществ

Разновидность грунтов	Относительное со	одержание с	рганического
	вещества Ir, д.е.		
	глинистые грунты	пески	
Сильнозаторфованный	0,50-0,40	-	
Среднезаторфованный	0,40-0,25	-	
Слабозаторфованный	0,25-0,10	-	

С примесью органических	0,10-0,05	0,10-0,03
веществ		

В соответствии с табл. Б.6 ГОСТ 25100-2020 «Грунты. Классификация» по степени водопроницаемости грунты подразделяются:

Таблица 1.6 - Классификация грунтов по степени водопроницаемости

Разновидность грунтов	Коэффициент фильтрации
	K_{ϕ} , м/сут
Неводопроницаемый	<0,005
Слабоводопроницаемый	0,005—0,30
Водопроницаемый	0,30—3
Сильноводопроницаемый	3—30
Очень сильноводопроницаемый	>30

Задачи к практическому занятию №1.

Задача №1.

Число пластичности грунта 0,16, показатель текучести 0,5, влажность на границе пластичности 12 %. Определить степень влажности грунта, если удельный вес воды 10 кН/м3, удельный вес частиц грунта 27 кН/м3, удельный вес сухого грунта 16,2 кН/м3.

Задача №2

Влажность грунта на границе пластичности составляет 12 %. Природная влажность грунта 20 %, показатель текучести 0,5, определить вид грунта.

Задача №3.

Коэффициент пористости грунта равен 1. Чему равна пористость грунта?

2. ДЕФОРМАЦИОННЫЕ ХАРАКТЕРИСТИКИ ГРУНТОВ

Механические характеристики грунтов определяются по результатам как лабораторных испытаний (на компрессионных приборах одноосного сжатия, стабилометрах, сдвиговых компрессионных приборах), так и штамповых и прессиометрических испытаний в полевых условиях.

Часть задач по определению модуля деформации, прочностных характеристик грунтов с и ф представлена в виде данных лабораторных испытаний. Для решения их в этом случае необходимо построение графиков.

При штамповых испытаниях в полевых условиях используют формулы (2.1).

$$E = (1 - \mu_0^2) \cdot P \cdot \omega_0 \cdot \frac{b}{s'}$$
 (2.1)

где Р – давление на грунт в конце линейного участка зависимости;

S – осадка штампа;

b – ширина прямоугольного или диаметр круглого штампа.

В ГОСТе 20276-99 «Грунты. Методы полевого определения характеристик просадочности и деформируемости» приведена следующая формулу (2.2).

$$E = (1 - \mu^2) \cdot k_p \cdot k_1 \cdot D \cdot \frac{\Delta P}{\Delta S'}$$
 (2.2)

Где µ - коэффициент Пуассона, при отсутствии данных принять

 $\mu = 0.27$ - для крупнообломочных грунтов;

 $\mu = 0.30$ - для песков и супесей;

 $\mu = 0.35$ - для суглинков;

 $\mu = 0,42$ - для глин.

 k_P — коэффициент, зависящий от заглубления штампа $\frac{h}{D}$, принимается по табл. 5.5 ГОСТ 20276-99, $k_P = 1$ — для испытания грунта в котлованах и шурфах;

 ${\bf k}_1$ - коэффициент формы, ${\bf k}_1=0.79$ - для жесткого круглого штампа;

D –диаметр штампа, см;

 $\Delta P = P_n - P_0$ – изменение давления;

 $\Delta S = S_n - S_0$ – осадка штампа, соответствующая ΔP , см;

Для определения P_n , P_0 , S_n , S_0 по данным испытаний строится график S=f(P). За начальное значение P_0 , S_0 принимается давление $\sigma_{zg,0}$ — вертикальное ное нормальное напряжение от собственного веса грунта и соответствующую этому давлению осадку. За конечные значения P_n , S_n принимаются значения давления и осадки, соответствующие 4-ой точке графика. (Если эти точки оказываются за пределами линейного участка графика, испытания переделываются заново).

Существуют и другие формулы:

формула Шлейхера:

$$E = (1 - \mu^2) \cdot \frac{\omega_0 \cdot P \cdot \sqrt{F}}{S}, \qquad (2.3)$$

где $\omega_0 = 0.96$ - для круглого штампа;

 $\omega_0 = 0.95$ - для квадратного штампа.

Формула НИИ Оснований:

$$E = \alpha \cdot k \cdot \frac{P}{S},$$

где $\alpha = 1$ - для шурфов;

 $\alpha = 0.7$ - для скважин.

$$k = \frac{1-\phi^2}{\sqrt{F}} \cdot \frac{\sqrt{2\pi}}{2}.$$

Широко применяются и лабораторные методы исследования физикомеханических характеристик грунта.

1. Способ компрессии в одометре.

Компрессия – одноосное сжатие образца вертикальной нагрузкой при условии отсутствия его бокового расширения.

Модуль деформации определяется:

$$E = \frac{p_{i+n} - p_i}{e_{i+n} - e_i} \cdot \beta, \tag{2.4}$$

где
$$\beta = 1 - \frac{2 \cdot \mu^2}{1 - \varphi}$$
.

2. Испытания образцов грунта на одноосное сжатие цилиндрического образца, диаметром D и высотой h, вертикальной нагрузкой, которую прикладывают ступенями, модуль деформации определяется по формуле:

$$E = \frac{P_{\text{pa3p}}}{3 \cdot \lambda_{71}},\tag{2.5}$$

Где Р – нагрузка, при которой происходит разрушение образца;

 $\lambda_{z\,1}=rac{\Delta h}{h}$ - относительная деформация образца, соответствующая нагрузке $P=rac{1}{3}\cdot P_{pasp.};$

$$\mu_0 = \frac{\lambda_x}{\lambda_z}$$
;

 $\lambda_{x}=rac{\Delta D}{D}$ - поперечное относительное расширение образца;

 $\lambda_z = \frac{\Delta h}{h}$ - относительное сжатие образца.

 λx и λ_z измеряются в стадии линейного деформирования образца при одной ступени нагружения.

3. При испытании в стабилометре цилиндрический образец диаметром D и высотой h разрушается вертикальным давлением σ_z при постоянном значении $\sigma_x = \sigma_y$. Для определения модуля деформации используют формулы теории упругости:

$$\lambda_{x} = \frac{\left[\sigma_{x} - \mu_{0} \cdot (\sigma_{y} + \sigma_{z})\right]}{E}; \tag{2.6}$$

$$\lambda_{y} = \frac{[\sigma_{y} - \mu_{0} \cdot (\sigma_{xy} + \sigma_{z})]}{E}; \tag{2.7}$$

$$\lambda_{z} = \frac{[\sigma_{z} - \mu_{0} \cdot (\sigma_{x} + \sigma_{y})]}{F}.$$
 (2.8)

 $\lambda_x; \, \lambda_y; \, \lambda_z$ — относительные величины деформаций образцов грунта в продольном и поперечном назначении;

 μ_0 - коэффициент Пуассона или коэффициент бокового расширения грунта:

$$\mu_0 = \frac{\theta \cdot \sigma_z - \lambda_z \cdot (2 \cdot \sigma_x + \sigma_z)}{2 \cdot \theta \cdot \sigma_x - \lambda_x \cdot (4 \cdot \sigma_x + \sigma_z)},$$
(2.9)

где θ - относительная объемная деформация грунта, определяемая по объему вытесненной за счет деформации образца во время испытания:

$$\theta = \lambda_{x} + \lambda_{y} + \lambda_{z}, \qquad (2.10)$$

или

$$\theta = \frac{\Delta V}{V}.\tag{2.11}$$

В пределах линейной зависимости между общими деформациями (продольными и объёмными) и приращением осевого давления σ_i модуль общей (линейной) деформации:

$$E = \frac{\Delta \sigma_i}{\lambda_z}.$$
 (2.12)

Прочностные характеристики грунта определяются по двум основным уравнениям прочности:

уравнению Кулона:

$$\tau = \sigma \cdot \mathsf{tg}\varphi + \mathsf{C},\tag{2.13}$$

уравнению Ренкина:

$$\sin \varphi = \frac{\sigma_1 - \sigma_2}{\sigma_1 + \sigma_2 + 2 \cdot C \cdot \operatorname{ctg} \varphi},\tag{2.14}$$

где τ - предельное сопротивление грунта сдвигу по некоторой площадке;

σ - нормальное напряжение по той же площадке;

 σ_1 ; σ_2 - главные напряжения.

Задачи к практическому занятию №2

ЗАДАЧА №1

Какова прочность грунта, если образец его разрушился при сдвигающем усилии, равном 0,12 Мпа под давлением 0,2 МПА и при 0,08 МПа под давлением 0,1 МПа.

ЗАДАЧА №2

По данным полевых испытаний грунтов пробными статическими нагрузками определить модуль деформации глины, являющейся основанием фундамента. Природное давление на уровне подошвы σz =0,05 МПа. Испытания проводились в шурфе жестким круглым штампом D=120 см.

Давление, МПа	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35
Осадка штампа, мм	0	0,85	2	3,45	5,1	6,95	9,45	12,55

ЗАДАЧА №3

По данным полевых испытаний грунтов пробными статическими нагрузками определить модуль деформации глины, являющейся основанием фундамента. Природное давление на уровне подошвы $\sigma z=0,15$ МПа. Испытания проводились в шурфе жестким круглым штампом D=120 см. (3 б.)

Давление, МПа	0	0,05	0,1	0,15	0,2	0,25	0,3	0,35
Осадка штампа, мм	0	0,85	2	3,45	5,1	6,95	9,45	12,55

ЗАДАЧА №4

При испытании образца грунта высотой h=12 см в стабилометре получена следующая зависимость.

Давление, МПа	0,01	0,05	0,10	0,20	0,4	0,8
Δh, mm	0,05	0,20	0,40	1,2	3,2	6,7

Определить модуль общей (линейной) деформации.

3. РАСПРЕДЕЛЕНИЕ НАПРЯЖЕНИЙ В ОСНОВАНИИ

Равномерно-распределенная нагрузка. [СП 22.13330 «Основания зданий и сооружений»]. Дополнительные вертикальные напряжения на глубине z от подошвы фундамента: σ_{zp} - по вертикали, проходящей через центр подошвы фундамента, и $\sigma_{zp,c}$ - по вертикали, проходящей через угловую точку прямоугольного фундамента, определяются по формулам:

$$\sigma_{zp} = \alpha p_0; \tag{3.1}$$

$$\sigma_{\rm zp,c} = \alpha p_0/4,\tag{3.2}$$

где α - коэффициент, принимаемый по <u>табл.3.1</u> в зависимости от формы подошвы фундамента, соотношения сторон прямоугольного фундамента и относительной глубины, равной: ξ =2z/b при определении σ_{zp} , и ξ =z/b при определении $\sigma_{zp,c}$;

 $p_0 = p - \sigma_{zg,0}$ - дополнительное вертикальное давление на основание (для фундаментов шириной $b \ge 10$ м принимается $p_0 = p$);

р - среднее давление под подошвой фундамента;

 $\sigma_{zg,0}$ - вертикальное напряжение от собственного веса грунта на уровне подошвы фундамента (при планировке срезкой принимается $\sigma_{zg,0} = \gamma_d$, при отсутствии планировки и планировке подсыпкой $\sigma_{zg,0} = \gamma d_n$, где γ - удельный вес грунта, расположенного выше подошвы, d и d_n - обозначены на рис.3.1).

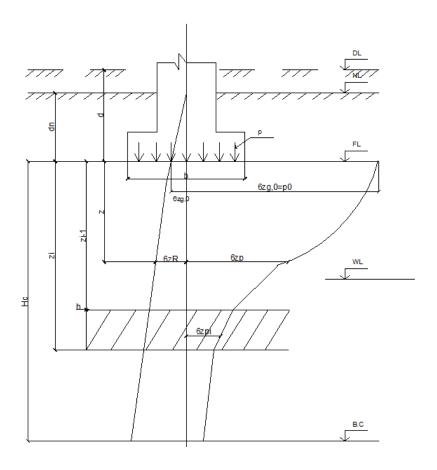


Рисунок 3.1 - Схема распределения вертикальных напряжений в линейно-деформируемом полупространстве DL - отметка планировки; NL - отметка поверхности природного рельефа; FL - отметка подошвы фундамента; WL - уровень подземных вод; B,C - нижняя граница сжимаемой толщи; d и d_n глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b - ширина фундамента; p - среднее давление под подошвой фундамента; p₀ - дополнительное давление на основание; σ_{zg} и $\sigma_{zg,0}$ - дополнительное вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; σ_{zp} и $\sigma_{zp,0}$ - дополнительное вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; H_c - глубина сжимаемой толщи

Таблица 3.1 -Коэффициент α

		Коэс	ффицис	ент а д	ля фун	дамент	ОВ	
$\xi = 2z/b$		прям	оуголь	ных с (соотноі	шением	и сто-	пентонни іх
$\zeta = 2L/0$	круглых		poi	$\eta = 1/$	b, равн	ЫМ		ленточных
		1,0	1,4	1,8	2,4	3,2	5	$(\eta \ge 10)$
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000
0,4	0,949	0,960	0,972	0,975	0,976	0,977	0,977	0,977
0,8	0,756	0,800	0,848	0,866	0,876	0,879	0,881	0,881
1,2	0,547	0,606	0,682	0,717	0,739	0,749	0,754	0,755
1,6	0,390	0,449	0,532	0,578	0,612	0,629	0,639	0,642
2,0	0,285	0,336	0,414	0,463	0,505	0,530	0,545	0,550
2,4	0,214	0,257	0,325	0,374	0,419	0,449	0,470	0,477
2,8	0,165	0,201	0,260	0,304	0,349	0,383	0,410	0,420
3,2	0,130	0,160	0,210	0,251	0,294	0,329	0,360	0,374
3,6	0,106	0,131	0,173	0,209	0,250	0,285	0,319	0,337
4,0	0,087	0,108	0,145	0,176	0,214	0,248	0,285	0,306
4,4	0,073	0,091	0,123	0,150	0,185	0,218	0,255	0,280
4,8	0,062	0,077	0,105	0,130	0,161	0,192	0,230	0,258
5,2	0,053	0,067	0,091	0,113	0,141	0,170	0,208	0,239
5,6	0,046	0,058	0,079	0,099	0,124	0,152	0,189	0,223
6,0	0,040	0,051	0,070	0,087	0,110	0,136	0,173	0,208
6,4	0,036	0,045	0,062	0,077	0,099	0,122	0,158	0,196
6,8	0,031	0,040	0,055	0,064	0,088	0,110	0,145	0,185
7,2	0,028	0,036	0,049	0,062	0,080	0,100	0,133	0,175
7,6	0,024	0,032	0,044	0,056	0,072	0,091	0,123	0,166
8,0	0,022	0,029	0,040	0,051	0,066	0,084	0,113	0,158
8,4	0,021	0,026	0,037	0,046	0,060	0,077	0,105	0,150
8,8	0,019	0,024	0,033	0,042	0,055	0,071	0,098	0,143

		Коэффициент α для фундаментов								
$\xi = 2z/b$	круглых	прям	прямоугольных с соотношением сто- рон $\eta = 1/b$, равным							
		1,0	1,4	1,8	2,4	3,2	5	$(\eta \ge 10)$		
9,2	0,017	0,022	0,031	0,039	0,051	0,065	0,091	0,137		
9,6	0,016	0,020	0,028	0,036	0,047	0,060	0,085	0,132		
10,0	0,015	0,019	0,026	0,033	0,043	0,056	0,079	0,126		
10,4	0,014	0,017	0,024	0,031	0,040	0,052	0,074	0,122		
10,8	0,013	0,016	0,022	0,029	0,037	0,049	0,069	0,117		
11,2	0,012	0,015	0,021	0,027	0,035	0,045	0,065	0,113		
11,6	0,011	0,014	0,020	0,025	0,033	0,042	0,061	0,109		
12,0	0,010	0,013	0,018	0,023	0,031	0,040	0,058	0,106		

В таблице 3.1 обозначено: b - ширина или диаметр фундамента, l - длина фундамента. Для фундаментов, имеющих подошву в форме правильного многоугольника с площадью A, значения α принимаются как для круглых

фундаментов радиусом
$$r = \sqrt{A/\pi}$$

Для промежуточных значений ξ и η коэффициент α определяется по интерполяции.

Сосредоточенная нагрузка на основание.

При действии на основание сосредоточенной нагрузки напряжение определяется по формуле:

$$\sigma_z = K \frac{\rho}{z^2},\tag{3.3}$$

Формула (3.3), выражающая величину сжимающих напряжений в массиве грунта для площадок, параллельных ограничивающей плоскости, имеет наибольшее число практических приложений.

Вблизи точки приложения сосредоточенной силы сжимающие напряжения, как и следовало ожидать, достигают чрезвычайно большой величины, и материал массива претерпевает пластические деформации. Это обстоятельство заставляет исключать из рассмотрения некоторую область вокруг точки приложения сосредоточенной силы (полушар радиуса ρ) и вычислять сжимающие напряжения по формуле (3.3) только на некотором расстоянии от точки приложения сосредоточенной силы.

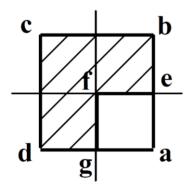
Для упрощения расчетов по формуле (3.3) в таблице 3.2 приведены значения коэффициента К.

Таблица 3.2. Значения коэффициента К

		Зна	чение коз	ффициен	та К		
Отно-	Коэф-	Отно-	Коэф-	Отно-	Коэф-	Отно-	Коэф-
шение	фициент	шение	фици-	шение	фициент	шение	фици-
$r_{/_Z}$	К	$r_{/_Z}$	ент К	$r_{/_Z}$	К	$r_{/_Z}$	ент К
0	0,4775	0,36	0,3521	0,72	0,1681	1,08	0,0691
0,1	0,4773	0,37	0,3465	0,73	0,1641	1,09	0,0674
0,02	0,4770	0,38	0,3408	0,74	0,1603	1,1	0,0658
0,03	0,4764	0,39	0,3351	0,75	0,1565	1,11	0,0641
0,04	0,4756	0,4	0,3294	0,76	0,1527	1,12	0,0626
0,05	0,4745	0,41	0,3238	0,77	0,1491	1,13	0,0610
0,06	0,4732	0,42	0,3185	0,78	0,1455	1,14	0,0595
0,07	0,4717	0,43	0,3124	0,79	0,1420	1,15	0,0581
0,08	0,4699	0,44	0,3068	0,8	0,1386	1,16	0,0567
0,09	0,4679	0,45	0,3011	0,81	0,1353	1,17	0,0553
0,1	0,4657	0,46	0,2955	0,82	0,1320	1,18	0,0539
0,11	0,4633	0,47	0,2899	0,83	0,1288	1,19	0,0526
0,12	0,4607	0,48	0,2843	0,84	0,1257	1,2	0,0513

0,13	0,4579	0,49	0,2788	0,85	0,1226	1,21	0,0501
0,14	0,4548	0,5	0,2733	0,86	0,1196	1,22	0,0489
0,15	0,4516	0,51	0,2679	0,87	0,1166	1,23	0,0477
0,16	0,4482	0,52	0,2625	0,88	0,1138	1,24	0,0466
0,17	0,4446	0,53	0,2571	0,89	0,1110	1,25	0,0454
0,18	0,4409	0,54	0,2518	0,9	0,1083	1,26	0,0443
0,19	0,4370	0,55	0,2466	0,91	0,1057	1,27	0,0433
0,2	0,4329	0,56	0,2414	0,92	0,1038	1,28	0,0422
0,21	0,4286	0,57	0,2363	0,93	0,1005	1,29	0,0412
0,22	0,4242	0,58	0,2313	0,94	0,0981	1,3	0,0402
0,23	0,4197	0,59	0,2263	0,95	0,0956	1,31	0,0393
0,24	0,4151	0,6	0,2214	0,96	0,0933	1,32	0,0384
0,25	0,4103	0,61	0,2165	0,97	0,0910	1,33	0,0374
0,26	0,4054	0,62	0,2117	0,98	0,0887	1,34	0,0365
0,27	0,4004	0,63	0,2070	0,99	0,0865	1,35	0,0357
0,28	0,3954	0,64	0,2024	1	0,0844	1,36	0,0348
0,29	0,3902	0,65	0,1978	1,01	0,0823	1,37	0,0340
0,3	0,3849	0,66	0,1934	1,02	0,0803	1,38	0,0332
0,31	0,3796	0,67	0,1889	1,03	0,0783	1,39	0,0324
0,32	0,3742	0,68	0,1846	1,04	0,0764	1,4	0,0317
0,33	0,3687	0,69	0,1804	1,05	0,0744	1,41	0,0309
0,34	0,3632	0,7	0,1762	1,06	0,0727	1,42	0,0302
0,35	0,3577	0,71	0,1721	1,07	0,0709	1,43	0,0295

Продолжение таблицы 3.2


	Значение ко	эффициента К	
Отношение $r/_z$	Коэффициент К	Отношение r/z	Коэффициент К
1,44	0,0288	1,74	0,0147
1,45	0,0282	1,76	0,0141
1,46	0,0275	1,78	0,0135
1,47	0,0269	1,8	0,0129
1,48	0,0263	1,82	0,0124
1,49	0,0257	1,84	0,0119
1,5	0,0251	1,86	0,0114
1,51	0,0245	1,88	0,0109
1,52	0,0240	1,9	0,0105
1,53	0,0234	1,92	0,0101
1,54	0,0229	1,94	0,0097
1,55	0,0224	1,96	0,0093
1,56	0,0219	1,98	0,0089
1,57	0,0214	2	0,0085
1,58	0,0209	2,1	0,0070
1,59	0,0204	2,2	0,0058
1,6	0,0200	2,3	0,0048
1,61	0,0195	2,4	0,0040
1,62	0,0191	2,5	0,0034
1,63	0,0187	2,6	0,0029
1,64	0,0183	2,7	0,0024
1,65	0,0179	2,8	0,0021
1,66	0,0175	2,9	0,0017

1,67	0,0171	3	0,0015
1,68	0,0167	3,5	0,0007
1,69	0,0163	4	0,0004
1,7	0,0160	4,5	0,0002
1,72	0,0153	5	0,0001

Задачи к практическому занятию №3

Задача №1.

Фундамент имеет размеры в плане 2×2 м и передает на основание распределенную нагрузку интенсивностью 200 кПа. Определить напряжения на глубине 1 м от незагруженной поверхности основания в точке (а), отстоящей от середины стороны фундамента на расстоянии 1 м.

ЗАДАЧА №2

Методом угловых точек определить сжимающие напряжения на глубине \mathbf{z} в точке \mathbf{O} , находящейся, от контура равномерно загруженного прямоугольного фундамента размером \mathbf{lxb} , на расстоянии \mathbf{a} против середины длинной стороны.

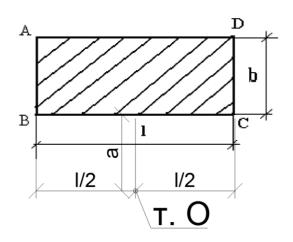
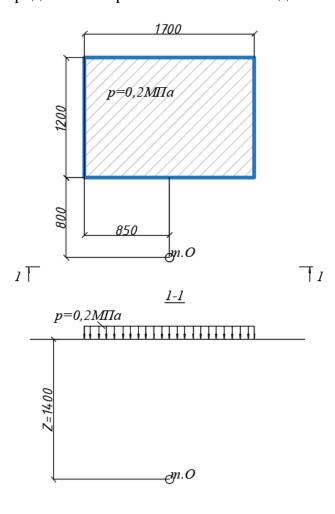


Рисунок 3.2. Расчетная схема к задаче №2.

Таблица 3.3. Варианты для решения задач

No		A			Б
п/п	р, МПа	1, м	b, м	а, м	Z, M
0	0,15	3,00	1,50	0,60	1,90
1	0,20	1,70	1,20	0,80	1,40
2	0,25	2,80	2,00	1,00	1,60
3	0,30	2,90	1,80	1,20	1,80
4	0,30	2,40	2,00	1,40	2,10
5	0,25	2,10	1,50	1,20	1,90
6	0,20	3,50	2,50	1,80	1,50
7	0,20	3,20	2,00	1,50	2,00
8	0,25	3,60	2,00	1,30	1,60
9	0,30	3,30	1,80	1,60	1,40

Пример решения задачи по теме: Распределение напряжений в основании


Задача

Методом угловых точек определить сжимающие напряжения на глубине **z** в точке **O**, находящейся, от контура равномерно загруженного прямоугольного фундамента размером **lxb**, на расстоянии **a** против середины длинной стороны 9 (см. рис. 3.2).

Дано:

№		A	Б		
п/п	р, МПа	1, м	b, м	а, м	Z, M
1	0,20	1,70	1,20	0,80	1,40

На рисунке 3.3 представлена расчетная схема к задаче.

Рисунок 3.3 – Расчётная схема

Решение:

Загруженная площадь размерами 1,7x1,2 метра. Точка O отстает от середины большей стороны на 0,8 м.

Разобьем загруженную площадь на два условных фундамента (см. рис. 2). Обратим внимание на то, что размеры фундаментов 1 и 2 одинаковы и равны 2,0x0,85 м:

$$\sigma_{z,p,c(1)} = \sigma_{z,p,c(2)} \tag{3.4}$$

Рассмотрим ф-т №1. Точка О находится под его углом. Следовательно, дополнительные вертикальные напряжения равны:

$$\sigma_{z,p,c(1)} = \alpha \cdot p/4,\tag{3.5}$$

р=0,2 МПа – по условию задачи;

 α – коэффициент, определяемый по таблице 5.8 СП 22.13330. Коэффициент α зависит от двух параметров:

 $\eta = \frac{l}{b} - \text{параметр формы}; \, \xi = \frac{z}{b} - \text{параметр относительной глубины}.$

Для фундамента 1:
$$\eta = \frac{2}{0.85} = 2,4$$
; $\xi = \frac{1,4}{0.85} = 1,65$.

Таблица 5.8 СП 22.13330 (фрагмент)

			НТОВ							
ξ	круг-	равным								
		1,0	1,4	1,8	2,4	3,2	5	(η≥10)		
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000		
0,4	0,949	0,960	0,972	0,975	0,976	0,977	0,977	0,977		
0,8	0,756	0,800	0,848	0,866	<mark>0,876</mark>	0,879	0,881	0,881		
1,2	0,547	0,606	0,682	0,717	0,739	0,749	0,754	0,755		

1,6	0,390	0,449	0,532	0,578	0,612	0,629	0,639	0,642
1,65								
2,0	0.285	0,336	0,414	0,463	0,505	0,530	0,545	0,550

Необходимо интерполировать трижды, чтобы определить значение коэффициента α .

$$\alpha = \frac{(0.505 - 0.612)}{2.0 - 1.6} \cdot (1.65 - 1.6) + 0.612 = 0.601$$

Следовательно, напряжения в точке О, находящейся на глубине 1,4 м, от условного фундамента 1 равны:

$$\sigma_{z,p,c(1)} = \sigma_{z,p,c(2)} = \alpha \cdot \frac{p}{4} = 0.601 \cdot \frac{0.2}{4} = 0.03005 \text{ M}\Pi a.$$

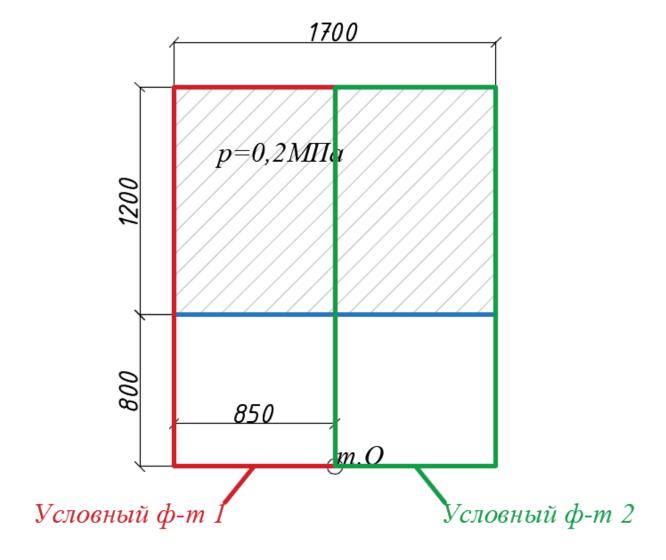


Рисунок 3.4 – Схема разбиения на условные фундаменты. Этап 1

Но в первоначальной расчетной схеме (см. рис.1) участок 3 не загружен (рис. 2). Рассмотрим условные фундаменты 3 и 4 (см. рис. 3). Они одинаковы и имеют размеры 0,85x0,8 м. Следовательно:

$$\sigma_{z,p,c(3)} = \sigma_{z,p,c(4)}$$

Рассмотрим ф-т №3. Точка О находится под его углом. Следовательно, дополнительные вертикальные напряжения равны:

$$\sigma_{z,p,c(3)} = \alpha \cdot p/4$$
,

р=0,2 МПа – по условию задачи;

а – коэффициент, определяемый по таблице 5.8 СП 22.13330. Коэффи-

циент α зависит от двух параметров:

 $\eta = \frac{l}{b} - \text{параметр формы}; \, \xi = \frac{z}{b} - \text{параметр относительной глубины}.$

Для фундамента 1: $\eta = 0.85/0.8 = 1.063$; $\xi = \frac{1.4}{0.8} = 1.75$.

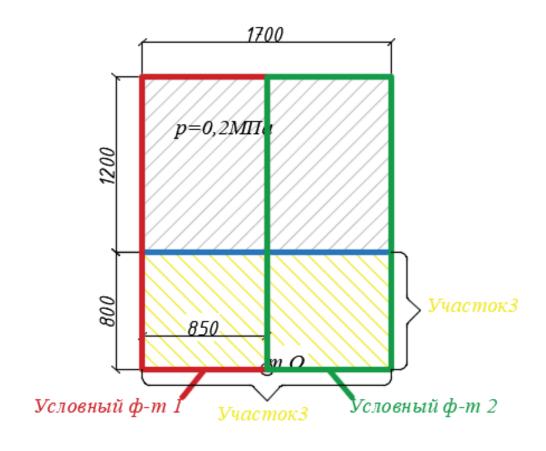


Рисунок 3.5

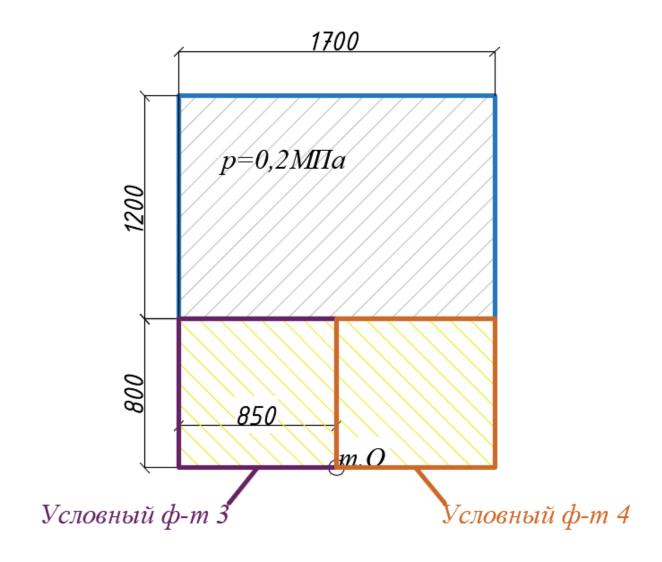


Рисунок 3.6 - Схема разбиения на условные фундаменты. Этап 2

Таблица 5.8 СП 22.13330 (фрагмент)

	Коэффициент α для фундаментов								
		прямоу							
ξ	круг-	равным						ленточных	
	лых		(η≥10)						
		1,0	1,4	1,8	2,4	3,2	5		
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	
0,4	0,949	0,960	0,972	0,975	0,976	0,977	0,977	0,977	

0,8	0,756	0,800	0,848	0,866	0,876	0,879	0,881	0,881
1,2	0,547	0,606	0,682	0,717	0,739	0,749	0,754	0,755
1,6	0,390	0,449	0,532	0,578	0,612	0,629	0,639	0,642
2,0	0,285	0,336	0,414	0,463	0,505	0,530	0,545	0,550

Ни одного из получившихся значений в таблице нет. Следовательно, необходимо интерполировать трижды, чтобы определить значение коэффициента α .

ξ	круг-	прямоугол	ленточных (η≥10)					
		1,0	1,063	1,4	1,8	2,4	3,2	(1210)
0	1,000	1,000		1,000	1,000	1,000	1,000	1,000
0,4	0,949	0,960		0,972	0,975	0,976	0,977	0,977
0,8	0,756	0,800		0,848	0,866	0,876	0,879	0,881
1,2	0,547	0,606		0,682	0,717	0,739	0,749	0,755
1,6	0,390	0,449		0,532	0,578	0,612	0,629	0,642
1,75		α_3	α	α_4				
2,0	0,285	0,336		0,414	0,463	0,505	0,530	0,550

$$\alpha_3 = \frac{(0.336 - 0.449)}{2,0 - 1,6} \cdot (1,75 - 1,6) + 0,449 = 0,4066$$

$$\alpha_4 = \frac{(0.414 - 0.532)}{2,0 - 1,6} \cdot (1,75 - 1,6) + 0,532 = 0,48775$$

$$\alpha = \frac{(0.48775 - 0.4066)}{1.4 - 1.0} \cdot (1,063 - 1,0) + 0,4066 = 0,419.$$

Следовательно, напряжения в точке О, находящейся на глубине 1,4 м, от условного фундамента 3 равны:

$$\sigma_{z,p,c(3)} = \sigma_{z,p,c(4)} = \alpha \cdot \frac{p}{4} = 0.419 \cdot \frac{0.2}{4} = 0.02095$$
M Π a.

Результирующие напряжения в рассматриваемой точке О, находящейся на глубине 1.4 метра и отстающей от большей из сторон загруженной интенсивностью 0,2МПа площади размером 1,7х1,2:

$$\sigma_{z,p,c} = \sigma_{z,p,c(1)} + \sigma_{z,p,c(2)} - \sigma_{z,p,c(3)} - \sigma_{z,p,c(4)}$$

$$= 0.03005 + 0.03005 - 0.02095 - 0.02095 = 0.0182 \text{ M}\Pi a.$$

Удобнее напряжения представить в виде:

$$\sigma_{z,p,c} = \frac{p}{4} \cdot (\alpha_1 + \alpha_2 - \alpha_3 - \alpha_4) = \frac{p}{4} \cdot (2 \cdot \alpha_1 - 2 \cdot \alpha_3) = \frac{p}{2} \cdot (\alpha_1 - \alpha_3)$$
$$= \frac{0.2}{2} \cdot (0.601 - 0.419) = 0.0182 \text{ M}\Pi \text{a}.$$

4. ОПРЕДЕЛЕНИЕ РАСЧЕТНОГО СОПРОТИВЛЕНИЯ ГРУНТА

При расчете деформаций основания среднее давление под подошвой фундамента р не должно превышать расчетного сопротивления грунта основания R, к Π a (Tc/M²), определяемого по формуле

$$R = \frac{\gamma_{c1}\gamma_{c2}}{k} \left[M_y k_z b \gamma_{11} + M_q d_1 \gamma_{11}' + (M_q - 1) d_b \gamma_{11}' + M_c c_{11} \right], \tag{4.1}$$

где γ_{c1} и γ_{c2} - коэффициенты, условий работы,

k - коэффициент, принимаемый равным: $k_1=1$, если прочностные характеристики грунта (ϕ и с) определены непосредственными испытаниями, и $k_1=1,1$,

 M_{γ} , M_{q} , M_{c} - коэффициенты, принимаемые по табл. 4.2

k_z - коэффициент, принимаемый равным:

при
$$b < 10$$
 м - $k_z = 1$, при $b \ge 10$ м - $k_z = z_0/b + 0.2$ (здесь $z_0 = 8$ м);

b - ширина подошвы фундамента, м;

 $\gamma_{\rm II}$ - осредненное расчетное значение удельного веса грунтов, залегающих ниже подошвы фундамента (при наличии подземных вод определяется с учетом взвешивающего действия воды), к H/M^3 (Tc/M^3);

 $\gamma_{\rm II}$ - то же, залегающих выше подошвы;

- c_{II} расчетное значение удельного сцепления грунта, залегающего непосредственно под подошвой фундамента, кПа (тс/м²);
- d₁ -глубина заложения фундаментов бесподвальных сооружений от уровня планировки или приведенная глубина заложения наружных и внутренних фундаментов от пола подвала, определяемая по формуле

$$d_1 = h_s + h_{cf} \gamma_{cf} / \gamma'_{11}, (4.2)$$

где h_{s} - толщина слоя грунта выше подошвы фундамента со стороны подвала, м;

h_{cf} - толщина конструкции пола подвала, м;

 γ_{cf} - расчетное значение удельного веса конструкции пола подвала, к H/M^3 (тс/ M^3);

 d_b -глубина подвала - расстояние от уровня планировки до пола подвала, м (для сооружений с подвалом шириной $B \le 20$ м и глубиной свыше 2 м принимается $d_b = 2$ м, при ширине подвала B > 20 м - $d_b = 0$).

Примечания: 1. Формулу (4.1) допускается применять при любой форме фундаментов в плане. Если подошва фундамента имеет форму круга или правильного многоугольника площадью A, принимается $b = \sqrt{A}$

- 2. Расчетные значения удельного веса грунтов и материала пола подвала, входящие в формулу (4.1), допускается принимать равными их нормативным значениям.
- 3. Расчетное сопротивление грунта при соответствующем обосновании может быть увеличено, если конструкция фундамента улучшает условия его совместной работы с основанием.
- 4. Для фундаментных плит с угловыми вырезами расчетное сопротивление грунта основания допускается увеличивать на 15 %.
- 5. Если $d_1 > d$ (d глубина заложения фундамента от уровня планировки) в формуле (4.1) принимается $d_1 = d$ и $d_b = 0$.

Таблица 4.1 коэффициенты работы грунта

		Коэффициент γ _{с2} для соору-			
	Коэффициент γ _{c1}	жений с жесткой	і конструк-		
		тивной схемой при отноше-			
Грунты		нии длины сооружения или			
		его отсека к высоте L/H, рав-			
		ном			
		4 и более	1,5 и менее		
Крупнообломочные с песча-	1,4	1,2	1,4		

Грунты	Коэффициент _{γс1}	Коэффициент γ_{c2} для сооружений с жесткой конструктивной схемой при отношении длины сооружения или его отсека к высоте L/H, равном			
ин им. дополниталом, и. посча		4 и более	1,5 и менее		
ным заполнителем и песча-					
ные, кроме мелких и пылева-					
Тых	1.2	1 1	1.2		
Пески мелкие	1,3	1,1	1,3		
Пески пылеватые:	1.25	1.0	1.2		
маловлажные и влажные	1,25	1,0	1,2		
насыщенные водой	1,1	1,0	1,2		
Пылевато-глинистые, а также	1,25	1,0	1,2		
крупнообломочные с пылева-					
то-глинистым заполнителем с					
показателем текучести грунта					
или заполнителя $I_L \le 0.25$					
Пылевато-глинистые, а также	1,2	1,0	1,1		
крупнообломочные с пылева-					
то-глинистым заполнителем с					
показателем текучести грунта					
или заполнителя $0.25 < I_L \le$					
0,5					
Пылевато-глинистые, а также	1,0	1,0	1,0		
крупнообломочные с пылева-					
то-глинистым заполнителем с					

Грунты	Коэффициент γ _{c1}	Коэффициент γ_{c2} жений с жесткой тивной схемой п нии длины соору его отсека к высо ном	й конструк- ри отноше- ужения или
показателем текучести грунта или заполнителя $I_L > 0.5$			

К сооружениям с жесткой конструктивной схемой относятся сооружения, конструкции которых специально приспособлены к восприятию усилий от деформации оснований. Для зданий с гибкой конструктивной схемой значение коэффициента γ_{c2} принимается равным единице. При промежуточных значений L/H коэффициент γ_{c2} определяется по интерполяции.

Таблица 4.2 Коэффициенты $M_{y},\,M_{q},\,M_{c}$

Коэффициенты		НТЫ	Угол внут-	Коз	Коэффициенты	
M	M	M	реннего тре-	M	М	M_{c}
1 ν 1 γ	1VI q	1 v1 _C	ния, фі, град.	1•1γ	141 q	1 v1 c
0	1,00	3,14	23	0,69	3,65	6,24
0,01	1,06	3,23	24	0,72	3,87	6,45
0,03	1,12	3,32	25	0,78	4,11	6,67
0,04	1,18	3,41	26	0,84	4,37	6,90
0,06	1,25	3,51	27	0,91	4,64	7,14
0,08	1,32	3,61	28	0,98	4,93	7,40
0,10	1,39	3,71	29	1,06	5,25	7,67
0,12	1,47	3,82	30	1,15	5,59	7,95
	M _γ 0 0,01 0,03 0,04 0,06 0,08 0,10	$\begin{array}{c cccc} M_{\gamma} & M_{q} \\ \hline 0 & 1,00 \\ 0,01 & 1,06 \\ 0,03 & 1,12 \\ 0,04 & 1,18 \\ 0,06 & 1,25 \\ 0,08 & 1,32 \\ 0,10 & 1,39 \\ \hline \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{c ccccccccccccccccccccccccccccccccccc$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$	$egin{array}{ c c c c c c c c c c c c c c c c c c c$

Угол внут-	Коэ	ффицие	НТЫ	Угол внут-	Коэ	Коэффициенты	
реннего трения, ϕ_{II} , град.	\mathbf{M}_{γ}	\mathbf{M}_{q}	M_{c}	реннего трения, ϕ_{II} , град.	M_{γ}	\mathbf{M}_{q}	$M_{\rm c}$
8	0,14	1,55	3,93	31	1,24	5,95	8,24
9	0,16	1,64	4,05	32	1,34	6,34	8,55
10	0,18	1,73	4,17	33	1,44	6,76	8,88
11	0,21	1,83	4,29	34	1,55	7,22	9,22
12	0,23	1,94	4,42	35	1,68	7,71	9,58
13	0,26	2,05	4,55	36	1,81	8,24	9,97
14	0,29	2,17	4,69	37	1,95	8,81	10,37
15	0,32	2,30	4,84	38	2,11	9,44	10,80
16	0,36	2,43	4,99	39	2,28	10,11	11,25
17	0,39	2,57	5,15	40	2,46	10,85	11,73
18	0,43	2,73	5,31	41	2,66	11,64	12,24
19	0,47	2,89	5,48	42	2,88	12,51	12,79
20	0,51	3,06	5,66	43	3,12	13,46	13,37
21	0,56	3,24	5,84	44	3,38	14,50	13,98
22	0,61	3,44	6,04	45	3,66	15,64	14,64

Расчетное сопротивление грунта основания R, вычисленное по формуле (4.1), может быть повышено в 1,2 раза, если расчетные деформации основания (при давлении, равном R) не превосходят 40 % предельных значений. При этом повышенное давление не должно вызывать деформации основания свыше 50 % предельных и превышать значения давления из условия расчета оснований по несущей способности в соответствии с требованиями.

Задачи к практическому занятию №4

Задачи по теме: Определение расчетного сопротивления грунта Задача №1.

Определить ширину подошвы сборного ленточного фундамента мелкого заложения для жилого дома.

<u>Дано:</u> Расчетная нагрузка, приходящаяся на 1 м длины фундамента $N=195~\mathrm{кH/m}$. Основание фундамента — супесь с характеристиками: $\phi=20^\circ$, C = 3 кПа. Удельный вес бетона $\gamma=23~\mathrm{кH/m}$. Среднее значение удельного веса фундамента и грунта на его уступах $\gamma=20~\mathrm{kH/m}$. Глубина заложения фундамента $d=2,2~\mathrm{m}$.

Задача №2.

Определить размеры подошвы внецентренно нагруженного фундамента.

<u>Дано</u>: Вертикальная нагрузка N= 1550 кН и момент 450 кН⋅м.

Глубина заложения фундамента d=2,2 м. Подвала нет, $d_{\scriptscriptstyle B}=0$. Угол внутреннего трения грунта $\phi=20^{\circ};$ C=13 кПа.

Пример решения задачи по теме: Определение расчетного сопротивления грунта

Задача. Определить расчетное сопротивление основания под прямоугольным фундаментом размерами 4x3 м.

<u>Дано:</u> Глубина заложения фундамента 1.8, глубина заложения подвала - 1,0 м, толщина бетонного поля подвала 0,08 м (удельный вес бетона γ = 25 кH/м³). Угол внутреннего трения грунта ϕ = 16°; удельное сцепление C = 20 кПа.

Решение:

Расчетного сопротивления грунта основания R (формула 5.7 СП 22.13330.2016 или формула 4.1 в материале к практике):

$$R = \frac{\gamma_{c1}\gamma_{c2}}{k} \left[M_y k_z b \gamma_{11} + M_q d_1 \gamma_{11}' + (M_q - 1) d_b \gamma_{11}' + M_c c_{11} \right], \tag{4.3}$$

где γ_{c1} и γ_{c2} - коэффициенты, условий работы принимаем равными 1,0 (при отсутствие данных о расчетной схеме, в запас прочности);

k = 1, т.к. механические характеристики получены испытаниями,

 $M_{\gamma},\,M_{q},\,M_{c}$ - принимаем по табл. 4.2 (т. 5.5 СП22.13330.2016) в зависимости от значения угла внутреннего терния $\phi=16^{\circ}$:

$$M_{\gamma}$$
=0,36 , M_{q} =2,43, M_{c} =4,99,

b=3 м – ширина фундамента, меньший из двух размеров, если фундамент прямоцгольный,

 k_z - принимаем равным k_z = 1, т.к. при $b < 10\ \mbox{м}.$

$$\gamma_{\rm II} = 20 \text{ kH/m}^3$$
;

$$\gamma_{\rm II} = 17 \text{ kH/m}^3$$
;

 $c_{II} = 20 к \Pi a$.

 d_1 определяем по формуле, т.к. есть подвал:

$$d_1 = h_s + h_{cf} \, \gamma_{cf} / \gamma_{11}^{'}, \tag{4.4}$$

где $h_s = 1,8-1,0-0,08=0,72$ м;

 $h_{cf} = 0.08 \text{ m};$

 $\gamma_{cf} = 0.25 \text{ kH/m}^{3.}$

 $d_b = 1,0 \text{ M}.$

По формуле (2) получаем:

$$d_1 = 0.72 + 0.08 \cdot 25/17 = 0.84$$
 м

Таблица 5.4 СП 22.13330.2016 - Коэффициенты работы грунта

Грунты	Коэффициент _{γс1}	Коэффициент γ_{c2} жений с жесткой тивной схемой п нии длины соору его отсека к высо ном 4 и более	й конструк- при отноше- ужения или оте L/H, рав-		
Крупнообломочные с песча-	1,4	1,2	1,4		
ным заполнителем и песча-					
ные, кроме мелких и пылева-					
тых					
Пески мелкие	1,3	1,1	1,3		
Пески пылеватые:					
маловлажные и влажные	1,25	1,0	1,2		
насыщенные водой	1,1	1,0	1,2		
Пылевато-глинистые, а также	1,25	1,0	1,2		
крупнообломочные с пылева-					
то-глинистым заполнителем с					
показателем текучести грунта					
или заполнителя $I_L \le 0.25$					
Пылевато-глинистые, а также	1,2	1,0	1,1		
крупнообломочные с пылева-					
то-глинистым заполнителем с					
показателем текучести грунта					
или заполнителя $0.25 < I_L \le$					
0,5	1.0	1.0	1.0		
Пылевато-глинистые, а также	1,0	1,0	1,0		
крупнообломочные с пылева-					
то-глинистым заполнителем с					
показателем текучести грунта					
или заполнителя $I_L > 0,5$					

Расчетное сопротивление определяем по формуле (1):

$$R = \frac{1 \cdot 1}{1} \cdot [0,36 \cdot 1 \cdot 3 \cdot 20 + 2,43 \cdot 0,84 \cdot 17 + (2,43 - 1) \cdot 1,0 \cdot 17 + 4,99 \cdot 20]$$
$$= 21,6 + 34,7004 + 24,31 + 99,8 = 180,41 \text{ кПа.}$$

Таблица 5.5 СП 22.13330.2016 - Коэффициенты $M_{y},\,M_{q},\,M_{c}$

Угол внут-	Коэ	ффицие	НТЫ	Угол внут-	Коз	ффицие	НТЫ
реннего тре-	M	М	$M_{\rm c}$	реннего тре-	М	М	M_{c}
ния, фп, град.	$ m M_{\gamma}$	$M_{\rm q}$	IVI _C	ния, фп, град.	M_{γ}	M_{q}	IVI _C
0	0	1,00	3,14	23	0,69	3,65	6,24
1	0,01	1,06	3,23	24	0,72	3,87	6,45
2	0,03	1,12	3,32	25	0,78	4,11	6,67
3	0,04	1,18	3,41	26	0,84	4,37	6,90
4	0,06	1,25	3,51	27	0,91	4,64	7,14
5	0,08	1,32	3,61	28	0,98	4,93	7,40
6	0,10	1,39	3,71	29	1,06	5,25	7,67
7	0,12	1,47	3,82	30	1,15	5,59	7,95
8	0,14	1,55	3,93	31	1,24	5,95	8,24
9	0,16	1,64	4,05	32	1,34	6,34	8,55
10	0,18	1,73	4,17	33	1,44	6,76	8,88
11	0,21	1,83	4,29	34	1,55	7,22	9,22
12	0,23	1,94	4,42	35	1,68	7,71	9,58
13	0,26	2,05	4,55	36	1,81	8,24	9,97
14	0,29	2,17	4,69	37	1,95	8,81	10,37
15	0,32	2,30	4,84	38	2,11	9,44	10,80
<mark>16</mark>	<mark>0,36</mark>	2,43	<mark>4,99</mark>	39	2,28	10,11	11,25
17	0,39	2,57	5,15	40	2,46	10,85	11,73
18	0,43	2,73	5,31	41	2,66	11,64	12,24
19	0,47	2,89	5,48	42	2,88	12,51	12,79
20	0,51	3,06	5,66	43	3,12	13,46	13,37
21	0,56	3,24	5,84	44	3,38	14,50	13,98
22	0,61	3,44	6,04	45	3,66	15,64	14,64

5. РАСЧЕТ ОСНОВАНИЙ ПО НЕСУЩЕЙ СПОСОБНОСТИ

Расчет оснований по несущей способности производится исходя из условия

$$F \le \gamma_c F_u / \gamma_n, \tag{5.1}$$

где F - расчетная нагрузка на основание, определяемая по указаниям;

 $F_{\rm u}$ - сила предельного сопротивления основания;

 $\gamma_{\rm c}$ - коэффициент условий работы, принимаемый:

для песков, кроме пылеватых $\gamma_c = 1.0$

для песков пылеватых, а также пылевато-глинистых грунтов

в стабилизированном состоянии $\gamma_c = 0.9$

для пылевато-глинистых грунтов в нестабилизированном состоянии γ_c = 0.85

для скальных грунтов:

невыветрелых и слабовыветрелых $\gamma_c = 1,0$

выветрелых $\gamma_c = 0.9$

сильновыветрелых $\gamma_c = 0.8$

 γ_n - коэффициент надежности по назначению сооружения, принимаемый равным 1,2; 1,15 и 1,10 соответственно для зданий и сооружений I, II и III классов.

$$b' = b - 2e_b; l' = l - 2e_l,$$
 (5.2)

здесь e_b и e_l - соответственно эксцентриситеты приложения равнодействующей нагрузок в направлении поперечной и продольной осей фундамента, м.

Вертикальную составляющую силы предельного сопротивления N_u основания, сложенного нескальными грунтами в стабилизированном состоянии, допускается определять по формуле (5), если фундамент имеет плоскую по-

дошву и грунты основания ниже подошвы однородны до глубины не менее ее ширины, а в случае различной вертикальной пригрузки с разных сторон фундамента интенсивность большей из них не превышает 0,5R (R - расчетное сопротивление грунта основания, определяемое в соответствии с (1):

$$N_{u} = b' l' (N_{q} \xi_{\gamma} b' \gamma_{1} + N_{q} \xi_{q} \gamma_{1}' d + N_{c} \xi_{c} c_{1}), \tag{5.3}$$

Где b' и l' - обозначения те же, что в формуле (5.2), причем символом в обозначена сторона фундамента, в направлении которой предполагается потеря устойчивости основания;

 N_{γ} , N_{q} , N_{c} - безразмерные коэффициенты несущей способности, определяемые по табл. 5.1 в зависимости от расчетного значения угла внутреннего трения грунта ϕ_{I} и угла наклона к вертикали δ равнодействующей внешней нагрузки на основание F в уровне подошвы фундамента;

 γ_1 и γ_1' - расчетные значения удельного веса грунтов, кН/м³ (тс/м³), находящихся в пределах возможной призмы выпирания соответственно ниже и выше подошвы фундамента (при наличии подземных вод определяются с учетом взвешивающего действия воды);

 c_1 - расчетное значение удельного сцепления грунта, кПа (тс/м 2);

d - глубина заложения фундамента, м (в случае неодинаковой вертикальной пригрузки с разных сторон фундамента принимается значение d, соответствующее наименьшей пригрузке, например, со стороны подвала);

 $\xi \gamma, \; \xi_q, \; \xi_c$ - коэффициенты формы фундамента, определяемые по формулам:

$$\xi \gamma = 1 - 0.25/\eta; \ \xi_q = 1 + 1.5/\eta; \ \xi_c = 1 + 0.3/\eta,$$
 (5.4)

здесь $\eta = 1/b$;

1 и b - соответственно длина и ширина подошвы фундамента, принимаемые в случае внецентренного приложения равнодействующей нагрузки равными приведенным значениям , определяемым по формулам (5.2).

Если $\eta = 1/b < 1$, в формулах (5.3) следует принимать $\eta = 1$.

Угол наклона к вертикали δ равнодействующей внешней нагрузки на основание определяется из условия

$$tg \delta = F_h/F_{v_s} \tag{5.5}$$

где F_h и F_v - соответственно горизонтальная и вертикальная составляющие внешней нагрузки на основание F в уровне подошвы фундамента.

Расчет по формуле (5.3) допускается выполнять, если соблюдается условие $tg \ \delta < \sin \phi_{\rm I}. \eqno(5.6)$

При использовании формулы (5.6) в случае неодинаковой пригрузки с разных сторон фундамента в составе горизонтальных нагрузок следует учитывать активное давление грунта.

Если условие (5.6) не выполняется, следует производить расчет фундамента на сдвиг по подошве(табл. 5.1).

Таблица 5.1 Коэффициенты N_{γ}, N_{q}, N_{c}

Угол	Обо-	Коэффи	Коэффициенты несущей способности N_{γ},N_{q},N_{c} при уг-								
внутрен-	значе-	лах накло	она к верт	гикал	и рав	нодей	іству	ющей	внец	иней	на-
него грун-	ние ко-		I	грузкі	и δ, гр	рад, р	авны	X			
та фі, град	эффи-	0	5	10	15	20	25	30	35	40	45
1201	циентов		1								
0	N_{γ}	0	-	ı	1	-	1	1	1	ı	-
	N_q	1,00									
	N_c	5,14									
5	N_{γ}	0,20	$\binom{0,05}{1,26}$	$\delta' =$	-	-	-	-	-	-	-
	N_q	1,57	{1,26} (2,93)	4,9							
	N_c	6,49									

Vrog	Обо-	Коэффи	циенты н	есущ	ей сп	Коэффициенты несущей способности N_{γ},N_{q},N_{c} при уг-					
Угол	значе-	лах накло	она к вер	тикал	и рав	нодей	іству	ющей	внец	иней	на-
внутрен-	ние ко-		грузки б, град, равных								
та фі, град	эффи-	0	5	10	15	20	25	30	35	40	45
	циентов										
10		0.60	0.42	(0.42	- /						
10	N_{γ}	0,60	0,42	$\begin{cases} 0,12 \\ 1.60 \end{cases}$	$\delta' =$	-	-	-	-	-	-
	N_q	2,47	2,16	{1,60 (3,38	9,8						
	N_c	8,34	6,57								
15	N_{γ}	1,35	1,02	0,61	(0,21)	$\delta' =$	-	-	ı	-	-
	N_q	3,94	3,45	2,84	$\{2,06,3,94\}$	$\delta' = 14,5$					
	N_c	10,98	9,13	6,88							
20	N_{γ}	2,88	2,18	1,47	0,82	(0,36	$\delta' =$	-	-	-	-
	N_q	6,40	5,56	4,64	3,64	$ \begin{cases} 0,36 \\ 2,69 \\ 4,65 \end{cases} $	18,9				
	N_c	14,84	12,53	10,0		() ()					
				2							
25	N_{γ}	5,87	4,50	3,18	2,00	1,05	(0,58	$\delta' =$	-	-	-
	N_{q}	10,66	9,17	7,65	6,13	4,58	{3,60 (5.58	22,9			
	N_c	20,72	17,53								
				6	9						
30	N_{γ}	12,39	9,43	6,72 12,9	4,44	2,63	1,29	(0,95	$\delta' =$	-	-
	N_q	18 40	15,63	12.9	10 3	7 96	5 67	{4,95	26,5		
	- 'q	10,10	10,00		7	,,,,,	2,07	(0,00			
	N_{c}	30,14	25,34			12.0	8.09				
	- 10			8	3	5					
35	N_{γ}	27.50	20.58	14.6	9.79	6.08	3.38	(1.60	δ'=		_
	Ι ΤΥ	27,50	_==,0	3	- , , , ,	,,,,	2,20	7,04			
								(8,63			

Угол	Обо-	Коэффи	циенты н	есущ	ей сп	особн	юсти	Ν _γ , Ν	I_q, N_c	при	уг-
внутрен-	значе-	лах накло	пах наклона к вертикали равнодействующей внешней на-								
него грун-	ние ко-]	грузкі	и δ, гр	рад, р	авны	X			
та фі, град	эффи-	0	5	10	15	20	25	30	35	40	45
1w 41, 1pw	циентов)	3	10	13	20	2	30	33	10	7
	N_q	33,30	27,86	22,7	18,1	13,9	10,2		29,8		
				7	2	4	4				
	N_c	46,12	38,36	31,0	24,4	18,4	13,1				
				9	5	8	9				
40	N_{γ}	66,01	48,30	33,8	22,5	14,1	8,26	4,30	${2,7}$	δ	-
				4	6	8			$\binom{10,4}{11,2}$	=	
	N_q	64,19	52,71	42,3	33,2	25,3	18,7	13,1		32,	
				7	6	9	0	1		7	
	N_c	75,31	61,63	49,3	38,4	29,0	21,1	14,4			
				1	5	7	0	3			
45	N_{γ}	177,61	126,09	86,2	56,5	32,2		11,2	5,45	$\binom{5,2}{16}$	δ
				0	0	6	3	6		(15, 15, 15, 15, 15, 15, 15, 15, 15, 15,	=
	N_q	134,87	108,24	85,1	65,5	49,2	35,9	25,2	16,4		35,
				6	8	6	3	4	2		2
	N_c	133,87	107,23	84,1	64,5	48,2	34,9	24,2	15,8		
				6	8	6	3	4	2		

Примечания: 1. При промежуточных значениях ϕ_I и δ коэффициенты $N_\gamma,\,N_q,\,N_c$ допускается определять по интерполяции.

2. В фигурных скобках приведены значения коэффициентов несущей способности, соответствующие предельному значению угла наклона нагрузки δ' , исходя из условия (5.6).

Задачи к практическому занятию №5

Задача №1

Определить несущую способность основания сборного ленточного фундамента мелкого заложения для жилого дома. Ширина фундамента 1 м.

Основание — супесь с характеристиками: $\phi = 20^\circ$, C = 3 кПа. Среднее значение удельного веса грунта $\gamma = 20$ кН/м. Глубина заложения фундамента d = 2,2 м.

Задача №2.

Определить несущую способность подошвы внецентренно нагруженного фундамента размерами 3,6х4,2 м. Нагрузка приложена с эксцентриситетом 0,4 м. Потеря устойчивости возможна по длине (4,2 м) фундамента. Глубина заложения фундамента d = 2,2 м. Основание – супесь с характеристиками: угол внутреннего трения грунта $\phi = 20^{\circ}$; удельное сцепление C = 13 кПа, среднее значение удельного веса $\gamma = 20$ кН/м. Угол наклона к вертикали равнодействующей внешней нагрузки δ равен 0° .

6. ОПРЕДЕЛЕНИЕ ОСАДОК ОСНОВАНИЯ

Расчет оснований по деформациям проводят исходя из условия

$$S \le S_u, \tag{6.1}$$

где S - осадка основания фундамента (совместная деформация основания и сооружения);

 S_u - предельное значение осадки основания фундамента (совместной деформации основания и сооружения). Предельные значения деформаций оснований допускается принимать по таблице 5.1, если конструкции сооружения не рассчитаны на усилия, возникающие в них при взаимодействии с основанием и в задании на проектирование не установлены значения S_u .

Таблица 6.1 - Предельные деформации основания фундаментов объектов нового строительства

Сооружения	Предельные деформации основания фундаментов				
	Относитель-	Крен ^і и	Макси-		
	ная разность		мальная ^қ и		
	осадок $(\Delta s/L)_u$		или средняя		
			\bar{s}_u осадка,		
			СМ		
1 Производственные и гражданские одно-					
этажные и многоэтажные здания с пол-					
ным каркасом:					
железобетонным	0,002	-	10		
то же, с устройством железобетонных	0,003	-	15		
поясов или монолитных перекрытий, а					
также здания монолитной конструкции					
стальным	0,004		15		
то же, с устройством железобетонных	0,005	-	18		
поясов или монолитных перекрытий					
2 Здания и сооружения, в конструкциях	0,006	-	20		
которых не возникают усилия от нерав-					
номерных осадок					
3 Многоэтажные бескаркасные здания с					
несущими стенами из:					

Сооружения	Предельные деформации основания фундаментов					
	Относитель-	Крен ^і и	Макси-			
	ная разность	1	мальная s_u^{max}			
	осадок $(\Delta s/L)_u$		или средняя			
	очаск		⁵ и осадка,			
			см			
крупных панелей	0,0016	-	12			
крупных блоков или кирпичной кладки	0,0020	-	12			
без армирования	,					
то же, с армированием, в том числе с уст-	0,0024	-	18			
ройством железобетонных поясов или	,					
монолитных перекрытий, а также здания						
монолитной конструкции						
4 Сооружения элеваторов из железобе-						
тонных конструкций:						
рабочее здание и силосный корпус моно-	-	0,003	40			
литной конструкции на одной фунда-						
ментной плите						
то же, сборной конструкции	-	0,003	30			
отдельно стоящий силосный корпус мо-	-	0,004	40			
нолитной конструкции						
то же, сборной конструкции	-	0,004	30			
5 Дымовые трубы высотой Н, м:						
<i>H</i> ≤100	-	0,005	40			
100< <i>H</i> ≤200	-	1/(2H)	30			
200< <i>H</i> ≤300	-	1/(2H)	20			
H > 300	-	1/(2H)	10			
6 Жесткие сооружения высотой до 100 м,	-	0,004	20			
кроме указанных в пунктах таблицы 4 и 5						
7 Антенные сооружения связи:						
стволы мачт заземленные	-	0,002	20			
то же, электрически изолированные	-	0,001	10			
башни радио	0,002	-	-			
башни коротковолновых радиостанций	0,0025	-	-			
башни (отдельные блоки)	0,001	-	-			
8 Опоры воздушных линий электропере-						
дачи:						
промежуточные прямые	0,003	-	-			
анкерные и анкерно-угловые,	0,0025	-	-			
промежуточные угловые, концевые, пор-	0,002	-	-			

Сооружения	Предельные	деформациі	и основания
	ф	ундаментов	3
	Относитель-	Крен ^і и	Макси-
	ная разность		мальная s _u max
	осадок $(\Delta_{S}/L)_{u}$		или средняя
			\bar{s}_u осадка,
			СМ
талы открытых распределительных уст-			
ройств			
специальные переходные			

Осадку основания фундамента S, см, с использованием расчетной схемы в виде линейно деформируемого полупространства вычисляют методом послойного суммирования. Основные допущения указанного метода следующие:

- 1. Осадка происходит только при давлениях, превышающих природное давление на отметке заложения подошвы фундамента.
- 2. Связь между давлением и относительной деформацией линейная и может быть описана зависимостью закона Гука.
- 3. Напряжения в грунтовом массиве распределяются в соответствии с решениями теории упругости.
- 4. Рассчитывается эпюра давлений s z по глубине только по оси симметрии нагрузки (x = 0), и эти напряжения считаются одинаковыми вдоль горизонтальной оси x. Таким образом, имеет место некоторое завышение напряжений, действующих вдоль оси x, против средних значений в пределах ширины подошвы фундамента.
- 5. Считается, что грунт не претерпевает бокового расширения и сжимается только в вертикальном направлении (за счет этого осадка несколько преуменьшается). Схема показана на рис.5.1.

В методе послойного суммирования осадки суммируются до той отметки, когда осевые напряжения не снизятся до 50 % от природных (бытовых) на этой же отметке. Эта отметка считается нижней границей сжимаемой толщи (В.С.), а осадками за счет сжатия нижерасположенной толщи пренеб-

регают. Однако, если ниже расположены слабые грунты с модулем деформации E < 5 МПа, то нижнюю границу сжимаемой толщи следует опустить до той отметки, где дополнительные по отношению к природным давления составят 25 % от природных, а не 50 % как обычно.

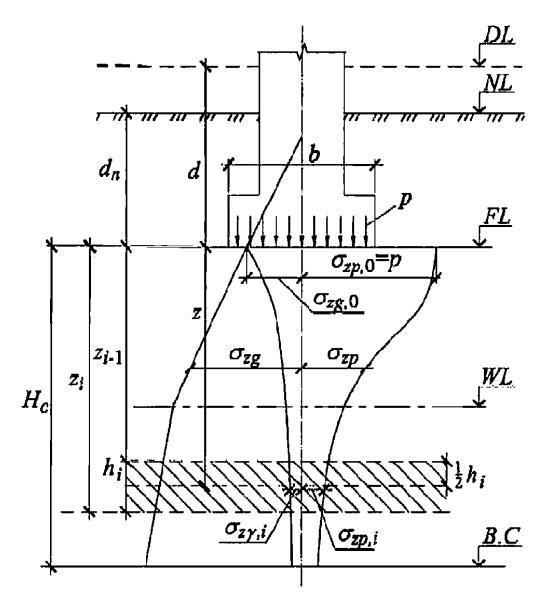
Осадку основания фундамента S, см, с использованием расчетной схемы в виде линейно деформируемого полупространства вычисляют методом послойного суммирования по формуле:

$$S = \beta \cdot \sum_{i=1}^{n} \frac{(\sigma_{zp,i} - \sigma_{zy,i}) \cdot h_i}{E_i} + \beta \cdot \sum_{i=1}^{n} \frac{\sigma_{zy,i} \cdot h}{E_{e,i}}, \tag{6.2}$$

где β - безразмерный коэффициент, равный 0,8;

 $\sigma_{zp,i}$ - среднее значение вертикального нормального напряжения (далее - вертикальное напряжение) от внешней нагрузки в i-м слое грунта по вертикали, проходящей через центр подошвы фундамента, кПа. Средние значения напряжений $\sigma_{zp,i}$ и $\sigma_{z\gamma,i}$, в i-м слое грунта допускается вычислять как полусумму соответствующих напряжений на верхней Z_{i-1} и нижней Z_i границах слоя;

 h_i - толщина і-го слоя грунта, см, принимаемая не более 0,4 ширины фундамента;


 E_i - модуль деформации і-го слоя грунта по ветви первичного нагружения, кПа;

 $\sigma_{z\gamma,i}$ - среднее значение вертикального напряжения в і-м слое грунта по вертикали, проходящей через центр подошвы фундамента, от собственного веса выбранного при отрывке котлована грунта, кПа;

 $E_{e,i}$ - модуль деформации i-го слоя грунта по ветви вторичного нагружения, кПа. При отсутствии опытных определений модуля деформации $E_{e,i}$ для сооружений геотехнических категорий 1 и 2 допускается принимать $E_{e,i}=5\cdot E_i$

n - число слоев, на которые разбита сжимаемая толща основания.

При этом распределение вертикальных напряжений по глубине основания принимают в соответствии со схемой, приведенной на рисунке 6.1.

DL – отметка планировки; NL – отметка поверхности природного рельефа; FL – отметка подошвы фундамента; WL – уровень подземных вод; B.C – нижняя граница сжимаемой толщи; d и d_n – глубина заложения фундамента соответственно от уровня планировки и поверхности природного рельефа; b – ширина фундамента; p – среднее давление под подошвой фундамента; σ_{z_R} и $\sigma_{z_{R,0}}$ – вертикальное напряжение от собственного веса грунта на глубине z от подошвы фундамента и на уровне подошвы; σ_{z_R} и $\sigma_{z_{R,0}}$ – вертикальное напряжение от внешней нагрузки на глубине z от подошвы фундамента и на уровне подошвы; $\sigma_{z_{R,1}}$ – вертикальное напряжение от собственного веса вынутого в котловане грунта в середине i-го слоя на глубине z от подошвы фундамента; H_c – глубина сжимаемой толщи

Вертикальные напряжения от внешней нагрузки σ_{zp} зависят от размеров, формы и глубины заложения фундамента, распределения давления на грунт по его подошве и свойств грунтов основания. Для прямоугольных, круглых и ленточных фундаментов значения σ_{zp} , кПа, на глубине z от по-

дошвы фундамента по вертикали, проходящей через центр подошвы, вычисляют по формуле:

$$\sigma_{zp} = \alpha \cdot p, \tag{6.3}$$

где α - коэффициент, принимаемый по **таблице 6.2** в зависимости от относительной глубины ξ , равной $\frac{2\cdot Z}{h}$;

р - среднее давление под подошвой фундамента, кПа.

Вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента $\sigma_{z\gamma,i}$, кПа, на глубине z от подошвы прямоугольных, круглых и ленточных фундаментов вычисляют по формуле:

$$\sigma_{z\gamma,i} = \alpha \cdot \sigma_{zq,0},\tag{6.4}$$

где α - коэффициент, принимаемый по **таблице 6.2** в зависимости от относительной глубины ξ , равной $\frac{2\cdot Z}{h}$;

 $\sigma_{zg,0}$ - вертикальное напряжение от собственного веса грунта на отметке подошвы фундамента, кПа (при планировке срезкой $\sigma_{zg,0} = \gamma' \cdot d$, при отсутствии планировки и планировке подсыпкой $\sigma_{zg,0} = \gamma' \cdot d_n$, где γ' - удельный вес грунта, расположенного выше подошвы; d и d_n , м - см. **рисунок 6.1**).

При этом в расчете $\sigma_{z\gamma}$ используются размеры в плане не фундамента, а котлована.

При расчете осадки фундаментов, возводимых в котлованах глубиной менее 5 м, допускается в формуле (6.2) не учитывать второе слагаемое.

Если среднее давление под подошвой фундамента $p \leq \sigma_{zg,0}$, осадку основания фундамента s вычисляют по формуле:

$$S = \beta \cdot \sum_{i=1}^{n} \frac{\sigma_{zp,i} \cdot h_i}{E_{e,i}},\tag{6.5}$$

где β , $\sigma_{zp,i}\sigma_{zp,i}$, h_i , $E_{e,i}$ и n - то же, что и в формуле (6.2).

	круг-	прямоу	прямоугольных с соотношением сторон $\eta = l/b$, рав-								
	лых			НЫ	M			ных (η≥10)			
		1,0	1,4	1,8	2,4	3,2	5				
0	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000			
0,4	0,949	0,960	0,972	0,975	0,976	0,977	0,977	0,977			
0,8	0,756	0,800	0,848	0,866	0,876	0,879	0,881	0,881			
1,2	0,547	0,606	0,682	0,717	0,739	0,749	0,754	0,755			
1,6	0,390	0,449	0,532	0,578	0,612	0,629	0,639	0,642			
2,0	0,285	0,336	0,414	0,463	0,505	0,530	0,545	0,550			
2,4	0,214	0,257	0,325	0,374	0,419	0,449	0,470	0,477			
2,8	0,165	0,201	0,260	0,304	0,349	0,383	0,410	0,420			
3,2	0,130	0,160	0,210	0,251	0,294	0,329	0,360	0,374			
3,6	0,106	0,131	0,173	0,209	0,250	0,285	0,319	0,337			
4,0	0,087	0,108	0,145	0,176	0,214	0,248	0,285	0,306			
4,4	0,073	0,091	0,123	0,150	0,185	0,218	0,255	0,280			
4,8	0,062	0,077	0,105	0,130	0,161	0,192	0,230	0,258			
5,2	0,053	0,067	0,091	0,113	0,141	0,170	0,208	0,239			
5,6	0,046	0,058	0,079	0,099	0,124	0,152	0,189	0,223			
6,0	0,040	0,051	0,070	0,087	0,110	0,136	0,173	0,208			
6,4	0,036	0,045	0,062	0,077	0,099	0,122	0,158	0,196			
6,8	0,031	0,040	0,055	0,069	0,088	0,110	0,145	0,185			
7,2	0,028	0,036	0,049	0,062	0,080	0,100	0,133	0,175			
7,6	0,024	0,032	0,044	0,056	0,072	0,091	0,123	0,166			
8,0	0,022	0,029	0,040	0,051	0,066	0,084	0,113	0,158			
8,4	0,021	0,026	0,037	0,046	0,060	0,077	0,105	0,150			
8,8	0,019	0,024	0,033	0,042	0,055	0,071	0,098	0,143			
9,2	0,017	0,022	0,031	0,039	0,051	0,065	0,091	0,137			
9,6	0,016	0,020	0,028	0,036	0,047	0,060	0,085	0,132			
10,0	0,015	0,019	0,026	0,033	0,043	0,056	0,079	0,126			
10,4	0,014	0,017	0,024	0,031	0,040	0,052	0,074	0,122			
10,8	0,013	0,016	0,022	0,029	0,037	0,049	0,069	0,117			
11,2	0,012	0,015	0,021	0,027	0,035	0,045	0,065	0,113			
11,6	0,011	0,014	0,020	0,025	0,033	0,042	0,061	0,109			
12,0	0,010	0,013	0,018	0,023	0,031	0,040	0,058	0,106			

Примечания

- 1 B таблице обозначено: b ширина или диаметр фундамента, l длина фундамента.
- 2 Для фундаментов, имеющих подошву в форме правильного многоугольника с площадью A, значения α принимают как для круглых фундаментов радиусом $r=\sqrt{A/\pi}$
- 3 Для промежуточных значений ξ и η коэффициенты α определяют интерполяци-

Алгоритм определение осадки основания:

- 1. Выписываем из таблице 6.2 выписываем в таблицу 6.3 значения коэффициента ξ. (ст. 1) (Чем больше давление и меньше размеры фундамента, тем больше сжимаемая толща).
- 2. Определяем $\eta = \frac{1}{h}$.
- 3. Из табл. 6.2 выписываем в таблицу 6.3 соответствующие значения коэффициента α (ст. 2).
- 4. Вычисляем глубину z по формуле $z = \frac{\xi \cdot b}{2}$, соответствующую каждому коэффициенту α (ст. 3).
- 5. Определяем h_i , как разницу между z_i и z_{i-1} . В общем случае h_i постоянно по всей глубине.
- 6. Вычисляем напряжение от собственного веса грунта на глубине z и умножаем его на 0,5 для определения в дальнейшем границы сжимаемой толщи (сжимаемая толща считается до глубины, на которой дополнительное напряжение становится в 2 раз меньше природных)(ст. 4)
- 7. Вычисляем $p = \frac{N_{II}}{4}$. (ст. 5).
- 8. Вычисляем дополнительное напряжение на глубине z. (ст. 6)
- 9. Вычисляем осадку S_i каждого слоя толщиной h. (ст. 8)
- **10.**Вычисляем общую осадку основания S, как сумму осадок каждого отдельного слоя.

Табл. 6.2 Определение осадки методом послойного суммирования

1	2	3	4	5	6	7	8	7	8	9
ξ	α	$z = \frac{\xi \cdot b}{2}$	$\sigma_{\rm zg} = 0.5 \cdot z \cdot \gamma$	p	$\sigma_{\mathrm{zp,i}} = \alpha \cdot \mathrm{p}$	$\sigma_{\mathrm{zp},i}$	$\sigma_{z\gamma,i}$	E_i	$E_{e,i}$	S _i
			$S = \mu$							

Метод эквивалентного слоя. Метод эквивалентного слоя, предложенный Н.А. Цытовичем, позволяет определить осадку с учетом ограниченного бокового расширения. Эквивалентным слоем называется такая толща грунта hэ, которая в условиях невозможности бокового расширения (при загружении всей поверхности сплошной нагрузкой) дает осадку, равную по величине осадке фундамента, имеющего ограниченные размеры в плане при нагрузке той же интенсивности. Другими словами, в данном методе пространственная задача расчета осадок может заменяться одномерной. Мощность эквивалентного слоя зависит от коэффициента Пуассона v, коэффициента формы площади и жесткости фундамента ю и его ширины b.

Мощность эквивалентного слоя определяется по формуле

$$h_{\exists} = A\omega b, \tag{6.6}$$

где A = (1-v)2 / 1-2v - коэффициент, зависящий от вида грунта; ω — коэффициент, зависящий от формы фундамента и жесткости; b — ширина фундамента.

Сочетание $A\omega$ в формуле называют коэффициентом эквивалентного слоя. Значения коэффициента эквивалентного слоя в зависимости от коэффициента Пуассона для различных грунтов и соотношения сторон загруженной площади приведены в табл. 1.

Осадку однородного основания определяют по формуле

$$S = P_0 h_{\ni} m_{\nu}, \tag{6.7}$$

где P_0 — дополнительное давление по подошве фундамента; m_v — коэффициент относительной сжимаемости грунта.

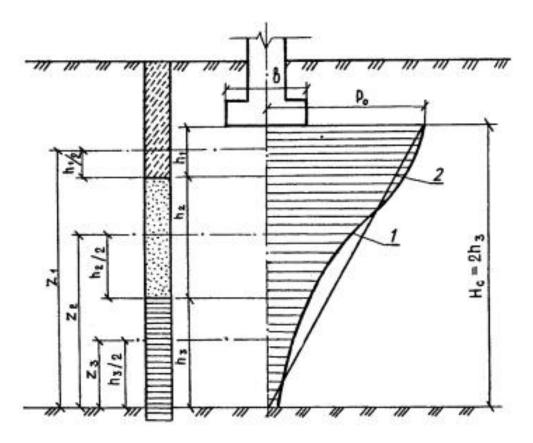


Рис. 6.1. Расчетная схема к определению осадки методом эквивалентного слоя для неоднородного основания

В этом методе криволинейная эпюра 1 (см. рис. 6.1) распределения давления в основании с достаточной для практики точностью заменяется эквивалентной по площади треугольной эпюрой 2 с высотой $Hc = 2h_3$, где H_c мощность сжимаемой толщи.

Осадку неоднородного (слоистого) основания также определяют по формуле (6.2), с той лишь разницей, что в ней используют средневзвешенное значение коэффициента относительной сжимаемости, определяемой из условия, что в пределах сжимаемой толщи полная осадка равна сумме осадок, входящих в нее слоев. Значение средневзвешенного относительного коэффициента сжимаемости слоистого напластования грунтов находят из выражения

$$\overline{m}_{v} = \frac{1}{2h_{\exists}^{2}} \sum_{i=1}^{n} h_{i} m_{vi} z_{i}, \tag{6.8}$$

где h_i — толщина і-го слоя грунта в пределах сжимаемой толщи; m_{vi} —

коэффициент относительной сжимаемости i-го слоя; z_i — расстояние от нижней точки треугольной эпюры до середины i-го слоя (см. рис. 6.1).

Тогда осадка многослойного основания вычисляется по формуле
$$S{=}P_0h_{\ni}m_v \tag{6.9}$$

Достоинством метода Н.А. Цытовича является то, что он учитывает коэффициент поперечного линейного расширения (коэффициент Пуассона), содержащийся в произведении $A\omega$, тогда как метод послойного суммирования не учитывает его, поскольку принятие $\beta=0.8$ для всех грунтов нивелирует свойства всех грунтов.

Таблица 6.1 – Значение коэффициента эквивалентного слоя.

Соотно-		Грави	ий			Пес	ски			Суглинки						Глины		
шение		и галь	ка					пластичные							и суглинки			
n=l/b			Глиг	ны и					Суг	іеси			Глины			мягкоплас-		
			сугл	инки					твёр	одые			П.	ластич	ные	тичные		ле
			твёрд	цые и					и плас	гичные	e							
			полутн	вёрдые	;								ļ					
		v=0,	10		v = 0,	20		v=0,	25	v = 0.30		30		v = 0,	35		v = 0,	40
1	1,13	0,96	0,89	1,2	1,01	0,94	1,26	1,07	0,99	1,37	1,17	1,08	1,58	1,34	1,24	2,02	1,71	1,58
1,5	1,37	1,16	1,09	1,45	1,23	1,15	1,53	1,3	1,21	1,66	1,4	1,32	1,91	1,62	1,52	2,44	2,07	1,94
2	1,55	1,31	1,23	1,63	1,39	1,3	1,72	1,47	1,37	1,88	1,6	1,49	2,16	1,83	1,72	2,76	2,34	2,34
4	1,99	1,72	1,63	2,09	1,81	1,72	2,21	1,92	1,81	2,41	2,09	1,97	2,77	2,39	2,26	3,53	3,06	2,9
5	2,13	1,85	1,74	2,24	1,95	1,84	2,37	2,07	1,94	2,58	2,25	2,11	2,96	2,57	2,42	3,79	3,29	3,1
6	2,25	1,98	-	2,37	2,09	-	2,5	2,21	-	2,72	2,41	-	3,14	2,76	-	4	3,53	-
7	2,35	2,06	-	2,47	2,18	-	2,61	2,31	-	2,84	2,51	-	3,26	2,87	-	4,18	2,67	-
8	2,43	2,14	-	2,56	2,26	-	2,7	2,4	-	2,94	2,61	-	3,38	2,98	-	4,32	3,82	-
9	2,51	2,21	-	2,64	2,34	-	2,79	2,47	-	2,03	2,69	-	3,49	3,08	-	4,46	3,92	-
10 и	2,58	2,27	2,15	2,71	2,4	2,26	2,86	2,54	2,38	3,12	2,77	2,6	3,58	3,17	2,98	4,58	4,05	3,82
более																		
Коэффи-	$A_{\omega o}$	$A_{\omega m}$	$A_{\omega const}$	$A_{\omega o}$	$A_{\omega m}$	$A_{\omega const}$	$A_{\omega o}$	$A_{\omega m}$	$A_{\omega const}$	Αωο	$A_{\omega m}$	$A_{\omega const}$	$A_{\omega o}$	$A_{\omega m}$	$A_{\omega const}$	$A_{\omega o}$	$A_{\omega m}$	$A_{\omega const}$
циенты																		

Задачи к практическому занятию № 6

Задача №1.

Определить осадку фундамента.

<u>Дано.</u> Размеры подошвы фундамента $bx \cdot \ell = 3x4$ м. Глубина заложения от природного рельефа 1,4 м. Основание фундамента сложено супесями $h_1 = 2,18$ м; E = 4,84 МПа; $\gamma = 18$ кН/м.

Подстилаемый слой — песок средней крупности h_2 = 3,98 м; γ =19 кH/м ; E= 18,41 МПа. Уровень подземных вод на глубине 4,50 м от рельефа.

Среднее давление под подошвой фундамента Р= 0,128 МПа.

Пример решения задачи по теме: «Определение осадок основания»

Задача:

Определить осадку основания фундамента размерами 2x2 метра, если нагрузка на уровне подошвы – 2000 кH, глубина заложения фундамента 2,0 метра. Строительная площадка сложена следующими грунтами:

- 1. Песок с удельным весом 18,5 кН/м3, модуль деформации 18 МПа, мощность 4,0 метра;
- 2. Глина с удельным весом 17,5 кН/м3, модуль деформации 12 МПа, мощность 5,0 метра;
- 3. Супесь с удельным весом 18,0 кН/м3, модуль деформации 8 МПа, мощность 4,0 метра;

$$S = 0.8 \cdot \sum_{i=1}^{n} \frac{(\alpha_{i} \cdot p - d \cdot \alpha_{i} \cdot \gamma_{II}^{'}) \cdot h_{i}}{E_{i}} + \beta \cdot \sum_{i=1}^{n} \frac{d \cdot \alpha_{i} \cdot \gamma_{II}^{'} h_{i}}{E_{e,i}}, \tag{6.10}$$

Принимаем $h_i = 0.2b = 400$ мм.

1 слой:

$$S_i = 0.8 \left(\frac{(490-36,26)\cdot0.4}{18000} + \frac{36,26\cdot0.4}{90000} \right) = 0.008003 \text{ m} = 8,003 \text{ mm}$$

Давл.	Глубина	Параметр	Памаметр	α_i .	α_i .сред	$\sigma_{zp,i}$,	d ,	$\gamma_{II}^{'}$,	h_i ,	E_i ,	$\sigma_{z\gamma,i}$,	$E_{e,i}$,	$\sigma_{zg,i}$,	S_i ,
<i>p</i> ,	Z, M	формы	отн.			<mark>кПа</mark>	M	κ Н/м 3	M	кПа	кПа	кПа	<mark>кПа</mark>	MM
кПа	,		Глубины ,			11110						161 167		
			2*z/b											
500	0	1	0	1,0	0,98	<mark>490</mark>	2,0	18,5	0,4	18000	36,26	90000		8,003

500	0,4	1	0,4	0,96	0,88	<mark>440</mark>	2,0	18,5	0,4	18000	32,56	90000		
500	0,8	1	0,8	0,8	0,703	351,5	2,0	18,5	0,4	18000	26,01	90000		
500	1,2	1	1,2	0,606	0,528	<mark>264</mark>	2,0	18,5	0,4	18000	19,54	90000	3,2*18,5 =59,2	
500	1,6	1	1,6	0,449	0,393	196,5	2,0	18,5	0,4	18000	14,54	90000		
500	2,0	1	2,0	0,336	0,297	148,5	2,0	18,5	0,4	18000	10,99	90000	<mark>74</mark>	
500	2,4	1	2,4	0,257	0,229	114,5	2,0	17,5	0,4	12000	8,47	60000		
500	2,8	1	2,8	0,201			2,0	17,5	0,4	12000		60000	74+17,5*0,8 =88	

Список литературы

- 1. Мангушев, Рашид Александрович. Механика грунтов : учебник / Р. А. Мангушев, В. Д. Карлов, И. И. Сахаров. Москва : Издательство Ассоциации строительных вузов, 2014. 256 с. : ил. Библиогр.: с. 224-225. ISBN 978-5-93093-070-2 (в пер.) : 310.39 р. Текст : непосредственный.
- 2. Бартоломей, А. А. Механика грунтов : учебник / А. А. Бартоломей. 2-е изд., перераб. и доп. М. : Издательство АСВ, 2004. 304 с. ISBN 5-93093-185-2 : 121.00 р. Текст : непосредственный.
- 3. Хрусталев, Л.Н. Прогноз теплового и механического взаимодействия инженерных сооружений с многолетнемерзлыми грунтами в примерах и задачах : учебное пособие : [16+] / Л.Н. Хрусталев, Л.В. Емельянова. Москва ; Берлин : Директ-Медиа, 2019. 163 с. : ил., схем., табл. Режим доступа: по подписке. –

URL: https://biblioclub.ru/index.php?page=book&id=497216 (дата обращения: 09.02.2021). — Библиогр. в кн. — ISBN 978-5-4475-2771-6. — DOI 10.23681/497216. — Текст : электронный.

- 4. Савельев, А.В. Основания и фундаменты сооружений: учебное пособие / А.В. Савельев; Министерство транспорта Российской Федерации, Московская государственная академия водного транспорта. Москва: Альтаир: МГАВТ, 2014. 119 с.: табл., ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=429642 (дата обращения: 09.02.2021). Библиогр. в кн. Текст: электронный.
- 5. Дмитриева, Ксения Олеговна. Механика грунтов : [Электронный ресурс] : учебное пособие : [для студентов направления подготовки 08.03.01 «Строительство»] / К. О. Дмитриева, С. В. Дубраков ; Юго-Зап. гос. ун-т. Электрон. текстовые дан. (1123 КБ). Курск : Университетская книга, 2017. 112 с. Текст: электронный.

- 6. Малышев, М. В. Механика грунтов. Основания и фундаменты (в вопросах и ответах) [Текст] : учебное пособие / Г. Г. Болдырев. Москва : ACB, 2015. 103 с.
- 7. Механика грунтов [Текст] : учебник / В. Н. Бронин [и др.] ; под ред. Б.
- И. Далматова. Москва : Интеграл, 2013.
- Ч. 1: Основы геотехники. 201 с.
- 8. Далматов, Б. И. Механика грунтов, основания и фундаменты: Включая спец. курс инж. геологии [Текст]: учебник для вузов / Б. И. Далматов. 2-е изд., перераб. и доп. Л.: Стройиздат, 1988. 414 с.
- 9. Малышев, М. В. Механика грунтов. Основания и фундаменты (в вопросах и ответах) [Текст] : учеб. пособие / Г. Г. Болдырев. М. : АСВ, 2001. 328 с.
- 10. Механика грунтов, основания и фундаменты [Текст] : учебное пособие / под ред. С. Б. Ухова. 3-е изд., испр. М. : Высшая школа, 2004. 566 с.
- 11. Цытович, Н. А. Механика грунтов [Текст] : краткий курс / Н. А. Цытович. 4-е изд., перераб. и доп. М. : Высшая школа, 1983. 288 с.
- 12. Геотехника и механика грунтов [Текст] : монография / А. Г. Булгаков [и др.] ; Минобрнауки России, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет". Курск : ЮЗГУ, 2013. 390 с.
- 13. Геотехника и механика грунтов [Электронный ресурс] : монография / А. Г. Булкагов [и др.] ; Минобрнауки России, Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет". Курск : ЮЗГУ, 2013. 389 с.
- 14. Украинченко, Д.А. Цикл лабораторных работ по дисциплине «Механика грунтов» : учебное пособие / Д.А. Украинченко, Л.А. Муртазина. — Оренбург : Оренбургский государственный университет, 2014. — 136 с. :

схем., табл., ил. — Режим доступа: по подписке. — URL: https://biblioclub.ru/index.php?page=book&id=330601 (дата обращения: 09.02.2021). — Текст : электронный.