Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе Дата подписания: 18.12.2021 15:22:17 Уникальный программный ключ:

 Орватиса
 Орватиса

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Юго-Западный государственный университет» (ЮЗГУ)

Кафедра механики, мехатроники и робототехники

УТВЕРЖДАЮ:

Проректор но учебной работе

О.Г.Локтионова

2015 г.

(ЮЗГУ)

РАСЧЁТ РАДИАЛЬНЫХ РОТОРНО-ПОРШНЕВЫХ ГИДРАВЛИЧЕСКИХ МАШИН

Методические указания для практических и самостоятельных работ по дисциплине «Гидравлические приводы мехатронных систем»

для студентов направления 15.03.06 Мехатроника и робототехника

УДК 531.8(075.8)

Составитель: О.В.Емельянова

Рецензент Кандидат технических наук, доцент Б.В.Лушников

Расчёт радиальных роторно-поршневых гидравлических указания практических методические ДЛЯ «Электрические самостоятельных работ по дисциплинам гидравлические приводы и робототехнических мехатронных мехатронных систем», «Основы гидроприводов робототехнических устройств» / Юго-Зап. гос. ун-т; О.В.Емельянова. Курск, 2015. 20 с.: ил. 5. Библиогр.: с. 20.

 Содержат краткие теоретические положения о гидроприводах роторных объёмных насосов и гидромоторов. Разобран пример расчета основных оценочных показателей радиально-поршневых гидромашин и приведены задания для самостоятельного решения

Предназначена для студентов специальности 15.03.06-Мехатроника и робототехника всех форм обучения.

Методические указания соответствуют требованиям программы, утверждённой учебно-методическим объединением (УМО).

Текст печатается в авторской редакции

Подписано в печать 16 02.75. Формат 60х84 1\16 Усл.печ.л. 1 Уч.изд.л. 10. Тираж 20 экз.Заказ. 11 Бесплатно. Юго-Западный государственный университет. 305040, г.Курск, ул.50 лет Октября, 94.

Введение

Гидравлические машины предназначены для преобразования различных видов механической энергии в энергию потока жидкости. По принципу преобразования энергии гидромашины делятся на объемные и динамические.

 $(O\Gamma M)$, Объемными гидромашины принцип называются действия, которых основан на попеременном заполнении опорожнении ограниченных пространств, периодически сообщающихся с местами входа и выхода рабочей жидкости. К классу ОГМ относятся гидронасосы-генераторы энергии потока жидкости и гидродвигатели-потребители энергии.

Объёмный насос гидравлического привода служит для преобразования механической энергии, прилагаемой к приводному валу (входному звену) в энергию потока жидкости, величину которого стремятся при заданной мощности максимально уменьшить.

Объемные гидродвигатели с неограниченным вращательным движением выходного звена называются гидромоторами.

объёмных гидромоторах происходит обратное преобразование энергии потока рабочей жидкости в механическую энергию ведомого звена. В отличие от насоса (в котором входным параметром является скорость вала И выходным жидкости) ВХОДНЫМ параметром гидравлического двигателя является расход жидкости и выходным - перемещение или скорость выходного его звена (вала или штока).

В применяемых гидроприводах роторных объёмных насосах и гидромоторах перемещение рабочей жидкости происходит в результате вытеснения её из рабочих камер при помощи вытеснителей, выполняемых в виде поршня, пластины и др. Рабочая камера в таких гидравлических машинах представляет собой замкнутое пространство, попеременно сообщающееся при работе насоса с полостью всасывания (слива) или нагнетания.

По характеру процесса вытеснения жидкости объёмные насосы делятся на насосы с неподвижными рабочими камерами (поршневые насосы) и на роторные насосы. В первых – вытеснение

жидкости происходит из неподвижных камер вытеснителями, совершающими возвратно-поступательное движение; во вторых (роторных) — вытеснение жидкости производится из камер, совершающих вращательное движение, в результате которого происходит перенос вытесняемого объёма жидкости из всасывающей полости насоса в нагнетательную. Вытеснители этих насосов совершают вместе с ротором вращательное движение, которое может сочетаться с возвратно-поступательным движением в камерах.

Гидромоторы могут классифицироваться теми же показателями, что и насосы, однако с учётом свойств их обратимости, под которыми понимается пригодность машины для работы в качестве как насоса, так и гидромотора.

1. РАСЧЕТ РАДИАЛЬНЫХ РОТОРНО-ПОРШНЕВЫХ ГИДРАВЛИЧЕСКИХ МАШИН

Радиальные роторно-поршневые гидравлические машины характеру (сокращённо-радиально-поршневые) ПО движения рабочих органов вытеснителей, относятся К роторнопоступательным гидроагрегатам с радиальным расположением рабочих камер, относительно оси вращения их ротора.

Принципиальная схема регулируемого радиально-поршневого насоса представлена на рис. 1.1.

Рабочими камерами в насосе являются радиально расположенные цилиндры, а вытеснителями - поршни. Ротор (блок цилиндров) 1 на скользящей посадке установлен на ось-цапфу 2, которая имеет два канала 3 и 4 (один соединен с гидролинией всасывани - а, другой - с напорной гидролинией -б). Каналы имеют окна 5, которыми они могут соединяться с цилиндрами 6. Статор 7 по отношению к ротору располагается с эксцентриситетом.

Ротор вращается от приводного вала через муфту 8. При вращении ротора в направлении, указанном на рис.1.1. стрелкой, поршни 9 вначале выдвигаются из цилиндров (происходит всасывание), а затем вдвигаются (нагнетание). Соответственно

рабочая жидкость вначале заполняет цилиндры, а затем поршнями вытесняется оттуда в канал 4 и далее в напорную линию гидросистемы. Поршни выдвигаются и прижимаются к статору центробежной силой или принудительно (пружиной, давлением рабочей жидкости или иным путем).

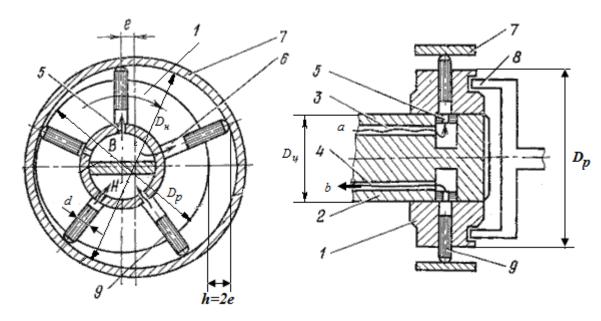


Рис.1.1. Схема радиально-поршневого насоса однократного действия

Статорное кольцо можно перемещать относительно оси ротора и тем самым изменять эксцентриситет насоса $e_{\rm H}$, а следовательно, его рабочий объём $q_{\rm H}$. Если рабочую жидкость нагнетать в гидравлическую машину, рис.1.1, то она будет работать в режиме гидромотора.

Радиальные роторно-поршневые гидравлические машины выпускаются однорядными, двухрядными и многорядными. Число цилиндров (рабочих камер) в одном ряду выполняют предпочтительно нечётным, что позволяет снижать неравномерность подачи и крутящего момента.

1.1. Последовательность расчета основных параметров радиально-поршневых гидромашин

Основными оценочными показателями объёмных гидравлических машин являются расчётная (теоретическая) Q_T и

действительная (фактическая) $Q_{\rm Д}$ подачи (расходы — для гидромоторов), скорость вращения вала n, рабочее давление p, крутящий момент M и мощность N.

При расчёте насосов исходными данными являются параметры: действительная подача $Q_{\text{Д max}}$, максимальная частота вращения $n_{\text{H max}}$, максимальное давление в полости нагнетания p_{H} p_{max} , величина объёмного к.п.д.- $\eta_{\text{O H}}$;

при расчёте гидромоторов - крутящий момент на его валу M_{Mmax} частота вращения вала n_{Mmax} , максимальное давление в полости нагнетания p_{Mmax} , величина механического к.п.д.- η_{MM} .

1. По заданной подаче насоса $Q_{\text{Д max}}$ определяется расчётная (теоретическая) подача $Q_{\text{T (H) max}}$:

$$Q_{T(H)\max} = \frac{Q_{D\max}}{\eta_{OH}}, \quad \Pi/\text{MUH}$$
 (1)

где $\eta_{O\ H}$ - для номинальных режимов работы насосов принимают 0,96...0,98.

При проектировании гидромотора по заданному моменту M_{Mmax} на его валу и частота вращения вала $n_{M\ max}$ подсчитывается теоретический момент:

$$M_{T(M)\max} = \frac{M_{M\max}}{\eta_{MM}}, \text{ HM}$$
 (2)

где η_{MM} - для номинальных режимов работы гидромоторов принимают 0.85...0.9.

2. Исходя из заданной частоты вращения вала насоса n_{Hmax} , определяют его рабочий объём:

$$q_{O(H)} = \frac{Q_{T(H) \text{ max}}}{n_{H \text{ max}}}, \quad \pi/\text{o} \cdot 1000 = \text{cm}^3/\text{o} \cdot 6.$$
 (3)

где п – частота вращения в об/мин.

 $1 \text{м}^3 = 1000 \text{ л}; \ 1 \text{м}^3 = 10^6 \text{см}^3; \ 1 \text{л} = 1000 \text{ cm}^3 = 10^6 \text{ мм}^3; \ 1 \text{ об/мин} - 1/60 \text{ об/с},$ $1 \text{ об/мин} = \pi/30 \text{ рад/c}; \ 1 \text{ кгс·см} = 0,1 \text{ H·м},$

$1\Pi a=1 \text{ H/m}^2=0,1 \text{ кгс/m}^2=10^{-5} \text{ бар.}$

Для поршневых (плунжерных) гидромашин изменение рабочей камеры за один оборот определяется числом поршней (цилиндров) z, их диаметром d, ходом h поршня.

$$q_{O(H)} = f h z = \frac{\pi d^2}{4} h z,$$
 (4)

где $f = \frac{\pi d^2}{4}$ - площадь поршня, см³.

Умножив и разделив (4) на величину d_{H} , получим:

$$q_{O(H)} = f h z = \frac{\pi d^3}{4} \cdot \frac{h}{d} z = \frac{\pi d^3}{4} i z,$$
 (5)

Число цилиндров (поршней) z в одном ряду (в одной плоскости) рекомендуется выбирать 5; 7; 9; 11.

Число рядов m цилиндров – от 1 до 3 (редко - до 5).

При выборе отношения (конструктивный параметр) $i = \frac{h}{d}$, где h = 2e (ход поршня равен двойному эксцентриситету е) и d -ход и диаметр цилиндра, принимать для предварительных расчётов $\frac{h}{d} = 1 \div 1,5$. Число цилиндров выбирается, исходя из конструктивных соображений с учётом диаметра поршня d.

Для гидромоторов рассчитывается перепад давления Δp и определяется рабочий объём машины:

$$q_{O(M)} = \frac{2\pi M_{T(M)\max}}{\Delta p}, \qquad M^3$$
 (6)

где $\Delta p = p_{ex} - p_{ebix}$ — перепад давления в гидромоторе; p_{ex} , p_{ebix} — давление соответственно на входе в гидромотор и выходе из него.

Давление на входе в гидроцилиндр принимается равным (0,8...0,9) $p_{ном}$, чтобы учесть падение давления по пути от насоса до гидроцилиндра Давление в сливной гидролинии после гидроцилиндра необходимо принять с учётом потерь на фильтре, если фильтр установлен на сливной линии. Эти потери зависят от типа фильтра и равняются (0,2...0,3) МПа.

Расход рабочей жидкости в гидромоторе равен расходу рабочей жидкости в насосе:

$$Q_M = \frac{q_{O(M)} \cdot n}{\eta_{OM}}, \quad M^3 / \text{MUH} \cdot 10^{-3} = \pi / \text{MUH}.$$
 (7)

<u>Расчёт прочих параметров гидромотора производится так же, как и расчёт насоса.</u>

3. На основании (5) определяют диаметр поршня:

$$d = \sqrt[3]{\frac{4 \cdot q_{O(H)}}{\pi i z m}}, \text{ cm} \cdot 10 = \text{mm}.$$
(8)

Полученная величина диаметра округляется до ближайшего по ГОСТ значения.

4. Для машин с несколькими циклами работы (вытеснения и всасывания) за один оборот рабочий объём определяется как

$$q'_{O(H)} = k \cdot q_{O(H)} = kf \, h \, z = k \frac{\pi d^2}{4} h \, z,$$
 (9)

где k — число циклов за один оборот (k=1 для одноходовых и т.д.).

Под одним рабочим циклом понимают разовое изменение объёма рабочих камер OT максимального значения ДО минимального. Различают насосы однократного, двукратного и многократного действия, понимая под этим роторный насос, у среда вытесняется ИЗ замкнутой которого жидкая камеры соответственно один, два и несколько раз за один оборот.

5. Гидравлическая связь рабочих камер радиальнопоршневых гидромашин, оснащенных цапфовым распределителем (и не только этого типа конструкции гидромашин) осуществляется через специально выполненную расточку в роторе, называемую проходным окном, диаметром d_0 (рис.1.2).

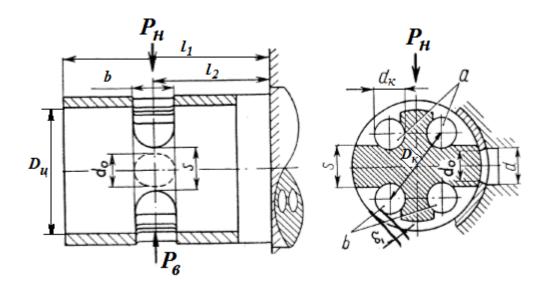


Рис. 1.2. Расчётная схема цапферного распределителя

Диаметр окна d_0 определяется из уравнения расходов рабочей жидкости:

$$Q_0 = Q_T = f_0 \cdot v_{OX}, \tag{10}$$

где

$$f_0 = \frac{\pi d_0^2}{4}$$
 - площадь сечения проходного окна;

υ_{ОЖ} – скорость рабочей жидкости в проходном окне;

 $\upsilon_{\text{ОЖ}} = 3 \dots 4 \text{ м/c} - для закрытых гидросистем;}$

 $v_{\text{ОЖ}} = 2...3 \text{ м/c} - для открытых гидросистем.}$

Тогда из (10):

$$d_0 = \sqrt{\frac{4Q_{T(H)}}{60 \cdot \pi \ z \upsilon_{OK}}}, \text{ MM}.$$
 (11)

6. Расчет распределительного узла

При применении цилиндрового золотника распределение осуществляется через выполненные в цапфе окна, с которыми при вращении блока поочерёдно соединяются рабочие камеры через отверстия в донышках цилиндров. Через осевые каналы эти окна соединяются с всасывающей и нагнетающей магистралями (для насоса).

Далее определяются основные параметры цапферного распределительного устройства. Обычно каналы выполняют с

одинаковым проходным сечением d_K (рис.1.2), которое определяется по максимальной теоретической подаче:

$$d_{\kappa} = \sqrt{\frac{4 Q_{T(H) \text{ max}}}{60 \cdot \pi \ i_{KH} \ v_{KK}}}, \text{ MM}$$
 (12)

где $i_{\rm KH}$ — число каналов в нагнетающей полости распределителя. Общее число каналов (предварительно выбираем, напр.4) будет равно удвоенному $i_{\rm KH}$;

 υ_{KW} – скорость рабочей жидкости в проходных каналах:

 v_{KW} =5...6 м/с – для закрытых гидросистем;

 $v_{\text{ОЖ}}$ =3...4 м/с – для открытых гидросистем.

7. Определяем размер уплотняющей перемычки втулки S (рис.1.2). Предварительно, по опыту созданных конструкций, ширина уплотняющей перемычки S назначается больше диаметра проходного окна d_0 .

$$S = d_0 + (0, 2 \dots 0, 6), \text{ MM}.$$
 (13)

При перекрытиях свыше 0,6 мм работа насоса ухудшается, т.к. питательное окно цилиндра с большим упреждением закрывается и с большим опозданием открывается. Это может вызвать кавитацию или компрессию жидкости.

Размер S разделительных перемычек должна быть несколько (на десятые доли миллиметра) больше ширины d_0 окна; в свою очередь, эта ширина меньше диаметра d цилиндра ($d_0 < d$).

8. По условиям прочности и жесткости для рассматриваемых конструкций гидравлических машин широко применяется четырёхканальный цапфовый распределитель рабочей жидкости.

Диаметр расположения осей проходных каналов D_K находят из выражения:

$$D_K = \sqrt{2}(d_K + S), \tag{14}$$

Следовательно, внешний диаметр цапфы D_{u} зависит от количества осевых отверстий a и e и их диаметра d_{o} и прочности цапфы под действием боковой нагрузки P_{u} (рис. 1.2):

$$D_{u} = D_{K} + d_{K} + 2\delta_{I}, \text{ MM}$$
 (15)

где δ_I — наименьшая толщина стенки распределительной цапфы: $\delta_I \ge 0.3 d_H \, (\mathrm{d_H} - \mathrm{диаметр} \, \mathrm{цилиндров}).$

Учитывать, что минимальная толщина стенки между двумя соседними цилиндрами должна быть 5-7 мм.

Диаметр цапфы D_u округляем до ближайшего целого.

9. Определяем осевые размеры цапфы, рис. 1.2, в долях диаметра цапфы:

$$l_1$$
=(2,0...2,5) D_u , MM
$$l_2$$
=(1,5...1,9) D_u , MM
$$b$$
=(0,3...0,4) D_u , MM

где l_1 — полная длина цапфы; l_2 — координата приложения силы давления рабочей жидкости в нагнетающей P_H и во всасывающей P_B гидролиниях; b — ширина фрезеровки цапфы.

Цапфа изготавливается из сталей 12ХНЗА, 12ХГТ. Её поверхность упрочняется до HRC=56...60.

10. Приступаем к определению основных размеров ротора гидравлической машины, рис.1.3.

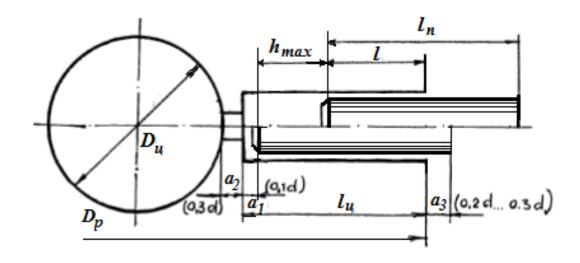


Рис.1.3. Расчетная схема ротора цилиндров

При проектировании ротора необходимо исключить смятие цилиндров под действием тангенциальной силы \overline{T} на рис.1.4.

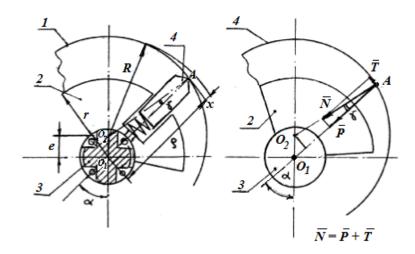


Рис.1.4. Расчетная схема радиально-поршневого насоса: 1- статор, 2- ротор, 3- распределитель, 4- поршень; α - угол поворота ротора, x- перемещение поршня относительно цилиндра; N- усилие реакции статорного кольца, ρ - мгновенное значение плеча

Для этого минимальная величина оставшейся части поршня в цилиндре l, при максимальном ходе его h_{max} =(1,0...1,5)d, определяется из зависимостью (рис.1.3):

$$l \ge (1, 5...2, 0) d. \tag{17}$$

Полная длина цилиндра составляет:

$$l_{\mathrm{II}} \ge a_1 + h_{max} + l,\tag{18}$$

где $a_1 = (0,1...0,2)d$ — минимальный размер, определяющий "недоход" поршня до днища цилиндра.

11. Общая длина поршня l_n должна быть такой, чтобы он в утопленном положении выступал из цилиндра на $(0,1...0,2)d_H$. Поэтому:

$$l_n = h_{max} + l + a_3 = h_{max} + (1, 6...2, 2)d$$
(19)

где $a_3 \ge 0.2d_{\rm H}$ — наименьший размер выступающей части поршня в его исходном положении, обеспечивающий контакт со статорным кольцом, рис.1.3.

12. Внешний диаметр ротора цилиндра D_p :

$$D_p = 2l_u + D_u + 2a_2, (20)$$

где $a_2 \ge 0.3d$ – высота проходных окон ротора.

Подставляя (18) и а₂ в (20), получим:

$$D_p = D_u + (5,8...7,8)d. (21)$$

Ротор изготавливается из антифрикционного материала или из стали. В последнем варианте должна быть предусмотрена втулка 1.2), (рис. будет которая выполнять функцию подшипника скольжения И поэтому должна изготавливаться ИЗ антифрикционного материала.

13. В конструкциях насосов, применяемых в гидросистемах, используют схемы, в которых поршни опираются о барабан своими сферическими головками (рис.1.5, а), так и схемы с опорными башмаками (рис. 1.5, б).

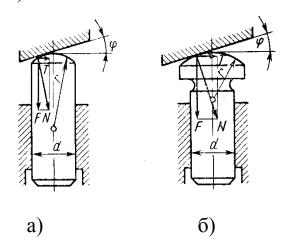


Рис.1.5. Схемы контакта плунжера со статорным кольцом: N —усилие реакции статорного кольца на сферическую головку поршня; r —радиус сферы; F, T—радиальная и тангенциальная силы; ϕ = $15^0 - 20^0$

Радиус сферы головки плунжера обычно принимают:

$$r = (1, 5 \dots 2, 5)d. \tag{22}$$

14. Диаметр внутреннего кольца статора может быть принят как

$$D_{H} = 2R = 0.075 \sqrt[3]{q_{O}^{2}} + b_{H} \sqrt[3]{q_{O}}$$
 (23)

где $b_{_{H}}=0.9$ при давлениях до 7,5 *МПа*;

 $b_{_{_{\it H}}}$ =7,8 при давлениях до 15 МПа.

15. Мощность источника энергии:

$$N_{H \text{ max}} = \frac{q_{OH} \cdot n_{H \text{ max}} \cdot \Delta p}{60 \cdot \eta_{OH} \cdot \eta_{MH}}, \quad \text{KBT}$$
 (24)

16. Средняя величина крутящего момента, подводимого к валу насоса:

$$M_H = \frac{q_{OH} \cdot \Delta p}{2\pi \cdot \eta_{MH}}, \quad H \cdot M \tag{25}$$

Пример: Спроектировать радиальный роторно-поршневой гидромотор объёмной гидропередачи с закрытой циркуляцией масла и рассчитать основные оценочные показатели.

Исходные данные:

Крутящий момент на валу: $M_{M \ max} = 210 \ \text{H} \cdot \text{м};$

Входное давление рабочей жидкости: $P_{Bmax} = 21 \text{ МПа};$

Выходное давление рабочей жидкости: $P_M = 0.5 \text{ M}\Pi a$;

Максимальная частота вращения вала гидромотора:

 $n_{M \; max} = 1800 \; \text{об/мин}$

Объёмный КПД: $\eta_{OM} = 0.97$

Механический КПД: $\eta_{MM} = 0.90$

Последовательность расчета основных параметров

Расчет проводится по расчетным схемам этого раздела, сохраняя принятую последовательность

1. По заданному моменту $M_{M \ max}$ на валу гидромотора определяем расчетный (теоретический) момент:

$$M_{T(M) \ max} = \frac{M_{M \ max}}{n_{MM}} = \frac{210}{0.9} = 233.3 \ \mathrm{H} \cdot \mathrm{M}$$

где принимаем $n_{MM}=0.9$ - для номинальных режимов работы гидромотора.

2. Определяем перепад давления Δp и величину рабочего объема гидромотора:

$$\Delta p = p_{\text{вх}} - p_{\text{вых}} = 21 - 0.5 = 20.5 \text{ МПа}$$

$$q_{O(M)} = \frac{2\pi M_{T(M)\,max}}{\Delta p} = \frac{2\cdot 3.14\cdot 233.3}{20.5\cdot 10^6} = 71.5\cdot 10^{-6}\text{м}^3 = 71.5 \text{ cm}^3$$

Расход рабочей жидкости в гидромоторе:

$$Q_M = \frac{q_{O(M)} \cdot n}{\eta_{OM}} = \frac{71.5 \cdot 10^{-6} \cdot 1800}{0,97} = 0,132680 \frac{\text{м}^3}{\text{мин}}$$
$$= 132.68 \frac{\pi}{\text{мин}}$$

3. Принимаем число цилиндров в одном ряду z = 5, число рядов цилиндров i = 1, определим величину диаметра поршня:

$$d = \sqrt[3]{\frac{4 \cdot q_{O(M)}}{\pi i z}} = \sqrt[3]{\frac{4 \cdot 71.5}{3.14 \cdot 1 \cdot 5}} = 2.63 \text{ cm} = 26.3 \text{ mm}$$

Примем *d*=26 мм.

4. Примем число циклов за один оборот k=2, тогда рабочий объём гидромотора :

$$q'_{O(M)} = k \cdot q_{O(M)} = 2 * 71.5 = 143 \text{ cm}^3$$

5. Задаваясь скоростью рабочей жидкости в проходных окнах v_{ox} =4м/с, определяем их диаметр d_0 :

$$d_O = \sqrt{rac{4Q_M}{60 \cdot \pi \cdot z \cdot v_{\text{ож}}}} = \sqrt{rac{4 \cdot 132.68 \cdot 10^6}{60 \cdot 3.14 \cdot 5 \cdot 4 \cdot 10^3}} = 11.87 \ \text{мм}$$

Примем d_0 =12 мм.

6. Согласно (12), предварительно приняв скорость рабочей жидкости в проходных каналах: $\upsilon_{\kappa \varkappa \kappa} = 5$ м/с, общее число проходных каналов в распределительной втулке четыре, тогда число каналов в нагнетающей полости распределителя: $i_{KH} = 2$, находим их диаметр d_K :

$$d_K = \sqrt{\frac{4 \cdot Q_M}{60 \cdot \pi \cdot i_{KH} \cdot v_{k\mathfrak{K}}}} = \sqrt{\frac{4 \cdot 132.68 \cdot 10^6}{60 \cdot 3.14 \cdot 2 \cdot 5 \cdot 10^3}} = 16.78 \ \mathrm{mm}$$

Примем d_K =17 мм.

Малое значение d_K вполне допустимо, т.к. скорость рабочей жидкости, в этом случае, не превысит предельного значения.

7. Размер управляющей перемычки цапфовой втулки S определяется из (13):

$$S = d_0 + (0.2 \dots 0.6) = 12 + 0.4 = 12,4 \text{ MM}$$

8. Определяем диаметр расположения осей проходных каналов:

$$D_K = \sqrt{2} \cdot (d_K + S) = 1.41 * (17 + 17.4) = 48.5 \text{ MM}$$

Наружный диаметр цапфы $D_{\rm ц}$, задаваясь толщиной её стенки $\delta_1=0.3~d$, составит величину:

$$D_{\text{II}} = D_{\text{K}} + d_{\text{K}} + 2\delta_1 = 48.5 + 17 + 2 \cdot 0.3 \cdot 26 = 81.1 \text{ MM}.$$

Для конструирования гидромотора примем $D_{\rm II} = 81\,$ мм.

9. Осевые размеры цапфы определяем согласно (16), рис. 1.2:

$$l_1=(2.0\dots 2.5)D_{\mathrm{II}}=2D_{\mathrm{II}}=162.2$$
 мм; $l_2=(1.5\dots 1.9)D_{\mathrm{II}}=1.5D_{\mathrm{II}}=121,\!65$ мм; $b=(0.3\dots 0.4)D_{\mathrm{II}}=0.3D_{\mathrm{II}}=24.33$ мм.

Приступаем к определению основных размеров ротора гидравлической машины.

10.Принимая:

- длину "заделки" поршня в цилиндре (17) $l=2d=2\cdot 26=52$ мм;
 - максимальный ход поршня $h_{max} = d = 26$ мм;
 - величину a_1 =0,1d = 2,6 мм,

находим, согласно (18), полную длину цилиндра $l_{\rm u}$:

$$l_{II} = a_1 + h_{max} + l = 0.1d + d + 2d = 3.1d = 80.6$$
 mm.

11. Длина поршней (18) определяем:

$$l_{\text{II}} = h_{max} + (1.6 \dots 2.2) d_{\text{M}} = 26 + 2.2 \cdot 26 = 83.2 \text{ MM}$$

12. Внешний диаметр ротора гидромотора, согласно (20) будет равен:

$$D_{\rm P}=2l_{\scriptscriptstyle \rm II}+D_{\scriptscriptstyle \rm II}+2a_2{=}2\cdot 3$$
,1 $d+81.1+2\cdot 0$,2 $d=252$,7 мм

13. Определяем радиус сферы головки плунжера:

$$r = 1.5d = 1.5 \cdot 26 = 39 \text{ MM}$$

14. Диаметр внутреннего кольца статора, согласно (23), определим как:

$$D_H = 0.075 \cdot \sqrt[3]{71.5^2 \cdot 10^6} + 7.8 \cdot \sqrt[3]{71.5 \cdot 10^3} = 338.3 \text{ MM}$$

15. Определяем мощность источника энергии:

$$N_{Hmax} = \frac{q_{O(M)} \cdot n_{Hmax} \cdot \Delta p}{60 \cdot \eta_{OH} \cdot \eta_{MH}} = \frac{71.5 \cdot 10^{-6} \cdot 1800 \cdot 20.5 \cdot 10^{6}}{60 \cdot 0.97 \cdot 0.9}$$
$$= 50370 \text{ BT}$$

ИЛИ

$$N_{Hmax} = 50.4 \text{ кВт}$$

16. Определяем среднюю величину крутящего момента, подводимого к валу:

$$M_H = \frac{q_{O(M)} \cdot \Delta p}{2 \cdot \pi \cdot \eta_{MH}} = \frac{71.5 \cdot 10^{-6} \cdot 20.5 \cdot 10^6}{2 \cdot 3.14 \cdot 0.9} = 260 \ H \cdot M$$

ВАРИАНТЫ ЗАДАНИЙ

Спроектировать радиальный роторно-поршневой насос объёмной гидропередачи с <u>закрытой циркуляцией</u> масла и рассчитать основные оценочные показатели.

$N_{\underline{0}}$	Действительная	Максимальное		Максимальная	Объём-	Механичес
	подача	давление		частота	ный	кий КПД,
	Q _Д , л/мин	рабочей		вращения	КПД,	ηмн
		жидкости:		ротора насоса	ηон	
		P_{B} ,	P _{H max} ,	$n_{ m H\;max},{ m o}$ б/мин		
		МПа	МПа			
1	225	1	21	2000	0,96	0,95
2	200	1,2	23	1800	0,97	0,90
3	210	1,5	25	1650	0,98	0,85
4	300	1,1	20	2200	0,96	0,88
5	210	2,2	30	2500	0,97	0,91

Спроектировать радиальный роторно-поршневой гидромотор объёмной гидропередачи с закрытой циркуляцией масла и рассчитать основные оценочные показатели

$N_{\underline{0}}$	Крутя-	Максимальное		Максимальн	Объёмн	Механи-
	щий	давление рабочей		ая частота	ый КПД,	ческий
	момент	жидкости:		вращения	ηом	КПД,
	на валу	на входе на выходе		вала		η_{MM}
	$M_{M\;max},$	(нагнета-	(слив)	гидромотора		
	Нм	ние)	P _M , МПа	n _{M max} ,		
		P_{Bmax} , $M\Pi a$		об/мин		
6	180	21	0,7	2000	0,96	0,85
7	240	23	1,2	1750	0,97	0,90
8	210	25	1,5	1650	0,98	0,84
9	190	20	1,1	2200	0,96	0,88
10	230	30	2,2	2500	0,97	0,87

Спроектировать радиальный роторно-поршневой **насо**с объёмной гидропередачи с <u>открытой циркуляцией</u> масла и рассчитать основные оценочные показатели

$N_{\underline{0}}$	Действитель	Максимальное		Максимальная	Объём-	Механичес
	ная подача	давление		частота	ный	кий КПД,
	Q _Д , л/мин	рабочей		вращения	КПД,	η _{м н}
	Д	жиді	кости:	ротора насоса	ηон	· [IVI H
		P_{B} ,	P _{H max} ,	n _{н max} , об/мин	(0.1.	
		МПа	МПа			
11	215	1,3	22	3000	0,98	0,86
12	280	2,0	28	1500	0,96	0,87
13	230	1,0	30	2250	0,97	0,88
14	250	1,5	24	2800	0,97	0,89
15	290	2,0	26	1700	0,97	0,92

Спроектировать <u>радиальный роторно-поршневой</u> **гидромотор** объёмной гидропередачи с от<u>крытой циркуляцией</u> масла и рассчитать основные оценочные показатели.

No	Крутя-	Максимальное давление		Максималь-	Объём-	Механи-
	щий	рабочей жидкости:		ная частота	ный	ческий
	момент	на входе	На выходе	вращения	КПД,	КПД,
	на валу	(нагнета-	(слив)	вала	ηом	η_{MM}
	$M_{M max}$	ние)	P _M , M∏a	гидромотора		
	Нм	P_{Bmax} , $M\Pi a$		n _{M max} ,		
				об/мин		
16	200	25	1,5	3000	0,95	0,85
17	220	24	0,2	1800	0,94	0,90
18	160	30	1,0	1550	0,96	0,84
19	210	23	2,0	2700	0,97	0,88
20	270	26	1,2	2150	0,96	0,87

СПИСОК ЛИТЕРАТУРЫ

- 1. Беленков, Ю. А. Гидравлика и гидропневмопривод [Текст]: учебник / Ю. А. Беленков, А. В. Лепешкин, А. А. Михайлин. Москва : Бастет, 2013. 406 с.
- 2. Башта Т.М., Зайченко И.З. Объемные гидравлические приводы, М., Машиностроение 1969.-628 с.
- 3. Башта Т.М. Объемные насосы и гидравлические двигатели гидросистем, М., Машиностроение 1974.- 606 с.
- 4. Никитин О.Ф., Холин К.М. Объёмные гидравлические и пневматиче-ские приводы. М. Машиностроение. 1981.- 248 с.