Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Локтионова Оксана Геннадьевна Должность: проректор по учебной работе

МИНОБРНАУКИ РОССИИ

Дата подписания: 21.10.2022 12:27:29

Юго-Западный государственный университет

Уникальный программный ключ:

0b817 ca911e6668 abb13a5d426d39e5f1c11eabbf73e943df4a4851fda56d089

УТВЕРЖДАЮ: Заведующий кафедрой информационной безопасности

(наименование ф-та полностью)

М.О. Таныгин

(подпись, инициалы, фамилия)

« <u>29</u> » <u>августа</u> 2022 г.

ОЦЕНОЧНЫЕ СРЕДСТВА

для текущего контроля успеваемости и промежуточной аттестации обучающихся по дисциплине

Дискретная математика	
(наименование учебной дисциплины)	

10.05.02 Информационная безопасность телекоммуникационных систем «Управление безопасность телекоммуникационных систем и сетей»

(код и наименование ОПОП ВО)

1 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

1.1 ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Тема 1 Введение и предмет курса дискретной математики

- 1. Непрерывные и дискретные процессы. Соотношение и связь между ними.
 - 2. Дискретность как моделирование процессов.
 - 3. Дискретность в вычислительных процессах.

Тема 2 Элементы теории множеств

- 4. Множества. Включение и равенство множеств. Свойства.
- 5. Операции объединения и пересечения множеств. Их свойства.
- 6. Разность и симметрическая разность множеств и их свойства.
- 7. Пустое и универсальное множества. Дополнение множества и её свойства.
- 8. Упорядоченные последовательности. Произведение множеств и его свойства.
 - 9. Бинарные соответствия между множествами и их виды.
 - 10. Отображения множеств и их свойства.
 - 11. Композиция соответствий. Ассоциативность композиции.
 - 12. Бинарные отношения и их виды.
 - 13. Отношение эквивалентности. Фактор-множество.
 - 14. Отношения строгого и нестрого порядка. ЛУМ. ЧУМ.
 - 15. Равномощные множества. Теорема Кантора.

Тема 3 Элементы комбинаторики

- 16. Метод математической индукции.
- 17. Основное правило комбинаторики.
- 18. Перестановки и их число.
- 19. Размещения и их число.
- 20. Сочетания и их число.
- 21. Свойства сочетаний. Треугольник Паскаля.
- 22. Бином Ньютона.
- 23. Перестановки с повторениями и их число.
- 24. Сочетания с повторениями и их число.
- 25. Решение неоднородных рекуррентных последовательностей.

Тема 4 Элементы теории графов и сетей

26. Задача о Кенигсбергских мостах. Основные понятия теории графов. Способы задания графов.

- 27. Число ориентированных графов без кратных ребер. Число неориентированных графов без кратных ребер.
 - 28. Изоморфизм графов. Свойства отношения изоморфности графов.
- 29. Мультиграфы и их изоморфизм. Необходимое и достаточное условие изоморфности графов.
 - 30. Группа автоморфизмов графа.
 - 31. Степени вершин и их сумма.
 - 32. Полные графы. Группа автоморфизмов полного графа.
 - 33. Части графа и операции над ними.
 - 34. Подграф. Пересечение подграфов.
 - 35. Двупольные графы. Регулярные графы.
- 36. Операции добавления вершины (ребра) к графу. Операции удаления вершины (ребра) графа.
 - 37. Отождествление вершин графа. Стягивание ребра графа.
 - 38. Дополнение графа. Свойства.
 - 39. Кольцевая сумма графов. Свойства.
 - 40. Соединение (сумма) графов и его свойства.
 - 41. Произведение графов. Свойства.
- 42. Композиция графов. Некоммутативность операции композиции графов.
- 43. Маршруты, цепи, циклы, простые цепи и циклы. Связность в графах.
 - 44. Сильно связные графы. Связные компоненты.
 - 45. Расстояние в графах. Матрицы связности и достижимости.
- 46. Эксцентриситет вершин, диаметр и радиус графа. Центральные и периферийные вершины.
 - 47. Эйлеровы графы. Построение эйлеровых циклов.
 - 48. Покрытия графов.
 - 49. Гамильтоновы графы.
 - 50. Деревья и лес. Критерий дерева.
 - 51. Остов графа. Циклический и коциклический ранги графа.
- 52. Взвешенные графы. Алгоритм нахождения остова графа наименьшего веса.
 - 53. Обходы графа по глубине и ширине.
 - 54. Раскраска графов по вершинам. Алгоритм раскраски графа.
 - 55. Задача о четырех красках.
 - 56. Раскраска ребер мультиграфа.
 - 57. Свойства бихроматического графа.
 - 58. Планарные графы.
- 59. Теорема Понтрягина Куратовского. Критерий планарности графа.

Тема 5 Элементы теории булевых функций

60. Сеть Петри как граф с двумя типами вершин.

- 61. Как отмечаются вершины сети Петри?
- 62. Опишите один такт работы сети Петри.
- 63. Опишите сеть Петри соответствующей операции сложения чисел.
- 64. Опишите сеть Петри соответствующей операции разности чисел.
- 65. Опишите сеть Петри соответствующей операции умножения чисел.
 - 66. Может ли сеть Петри «зацикливаться»?
 - 67. Когда сеть Петри заканчивает работу?
 - 68. Как представляются через сети Петри параллельные вычисления?
 - 69. Композиция сетей Петри.
- 70. Для чего в сетях Петри указывается порядок выполнения операций?

Тема 6 Элементы теории автоматов

- 71. Понятие автоматов. Их структура.
- 72. Виды автоматов.
- 73. Автоматные графы.
- 74. Словарные грамматики. Автоматные грамматики.
- 75. Изоморфизм автоматов. Число неизоморфных автоматов.
- 76. Операции над автоматами.
- 77. Представление языков и сверхъязыков автоматами.
- 78. Эквивалентные автоматы.

Тема 7 Элементы теории кодирования

- 79. Шифрование и его виды.
- 80. Алфавитные коды. Их примеры.
- 81. Свойства суффикса и аффикса. Однозначность декодирования при алфавитном кодировании.
 - 82. Сложностные оценки кодирований. «Экономные» кодирования.
 - 83. Самокорректирующиеся коды. Простейшие примеры.
 - 84. Кодирование Хемминга.
 - 85. Обнаружение ошибки в коде Хемминга.

Тема 8 Алгоритм функционирования цифрового автомата в микрооперациях

- 86. Противогоночное кодирование
- 87. Суть и алгоритм развязывания состояний
- 88. Соседнее кодирование состояний автомата
- 89. Кодирование состояний и сложность комбинационных систем
- 90. Кодирование состояний и КС
- 91. Кодирование выходныз состояний и КС

Тема 9 минимизация функций с помощью карт Карно

- 92. Понятие карты Карно
- 93. Виды карт Карно
- 94. Принципы склейки
- 95. Правило нахождения МДНФ и КНФ
- 96. Алгоритм построения карт Карно

Тема 10 Проверка работоспособности цифрового автомата

- 97. Составление таблиц истинности по карте Карно
- 98. Сущность работы логического элемента ИЛИ
- 99. Оптимизация булевой функции и сущность алгебраических преобразований
 - 100. Булевая функция с тремя аргументами
 - 101. Сущность работы логического элемента И, имеющего 3 входа

Критерии оценки:

2 балла выставляется обучающемуся, если демонстрирует глубокое знание вопроса; точные определения основных содержания дает аргументированно и логически стройно излагает учебный материал; (типовыми иллюстрирует свой ответ актуальными примерами нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

1 балл обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов выставляется

обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

1.2 КОНТРОЛЬНЫЕ ВОПРОСЫ ДЛЯ ЗАЩИТЫ ЛАБОРАТОРНЫХ РАБОТ

Лабораторная работа 1. Множества и операции над множествами

- 1. Понятие множества. Способы задания множеств. Понятие подмножества.
 - 2. Представление множеств в виде кругов Эйлера.
- 3. Понятия универсального и пустого множеств. Дополнение множества.
- 4. Основные операции над множествами: объединение множеств, пересечение множеств, разность множеств, симметричная разность множеств.

5. Законы де Моргана.

Лабораторная работа 2. Отношения и функции

- 1. Декартово произведение множеств.
- 2. Степень множества.
- 3. Понятие бинарного соответствия. Область определения и область значения бинарного соответствия. Понятия образа и прообраза.
- 4. Понятие функции. Недоопределённые (частично определенные) и всюду определённые функции, разнозначные (1-1) функции. Понятие подстановки множества.
 - 5. Композиция соответствий.
 - 6. Сравнение бесконечных множеств по мощности.

Лабораторная работа 3. Элементы комбинаторики

- 1. Предмет изучения комбинаторики.
- 2. Правило произведения в комбинаторике.
- 3. Понятие факториала. Перестановки без повторений. Перестановки с повторениями.
 - 4. Размещения без повторений и размещения с повторениями.
 - 5. Сочетания без повторений и сочетания с повторениями.

Лабораторная работа 4. Формула включений и исключений и бином Ньютона

- 1. Формула включений и исключений.
- 2. Формула бинома Ньютона.
- 3. Свойства биномиальных коэффициентов.
- 4. Треугольник Паскаля.

Лабораторная работа 5. Графы. Операции над графами.

- 1. Принцип математической индукции.
- 2. Рекуррентные соотношения.

Лабораторная работа 6. Связность в графах. Деревья

- 1. Понятие связного и несвязного графа
- 2. Порядок графа, смежные рёбра
- 3. Понятие кратности ребра
- 4. Понятие расстояния до вершины дерева

Лабораторная работа 7. Алгебра высказываний. Представления булевых функций

- 1. Обозначение операции Штрих Шеффера
- 2. Понятие СДНФ
- 3. Понятие СКНФ
- 4. Понятие ДНФ
- 5. Формула алгебры высказываний

Лабораторная работа 8. Теория автоматов

- 1. Стратегии кодирования внутренних состояний автоматов.
- 2. Понятие триггера
- 3. Шифратор, приоритетный шифратор
- 4. Особенности синтеза КС

Лабораторная работа 9. Автоматы Мура и Мили

- 1. Выходные сигналы автомата Мили
- 2. Выходные сигналы автомата Мура
- 3. Связь между моделями автоматов Мили и Мура

Лабораторная работа 10. Табличный способ задания множеств

- 1. Понятие множеств и отношений
- 2. Сравнение множеств
- 3. Операции над множествами
- 4. Диаграммы Эйлера Венна

Лабораторная работа 11. Элементы теории кодирования

- 1. Базовые понятия теории кодирования
- 2. Двоичный алфавит
- 3. Кодирование и обработка чисел компьютером
- 4. Алфавитное кодирование

Лабораторная работа 12. Классификация цифровых автоматов

- 1. Детерминированные и вероятностные цифровые автоматы
- 2. Синхронные и асинхронные цифровые автоматы
- 3. Полностью определенные и частичные цифровые автоматы

Критерии оценки:

2 балла выставляется обучающемуся, если демонстрирует глубокое знание вопроса; точные определения основных понятий; содержания дает аргументированно И логически стройно излагает учебный материал; иллюстрирует свой актуальными примерами (типовыми ответ нестандартными), в том числе самостоятельно найденными; не нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

1 балл обучающемуся, если он освоил основные положения контролируемой темы, но недостаточно четко дает определение основных понятий и дефиниций; затрудняется при ответах на дополнительные вопросы; приводит недостаточное количество примеров для иллюстрирования своего ответа; нуждается в уточняющих и (или) дополнительных вопросах преподавателя.

0 баллов выставляется

обучающемуся, если он не владеет содержанием вопроса или допускает грубые ошибки; затрудняется дать основные определения; не может привести или приводит неправильные примеры; не отвечает на уточняющие и (или) дополнительные вопросы преподавателя или допускает при ответе на них грубые ошибки.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ОБУЧАЮЩИХСЯ

2.1 БАНК ВОПРОСОВ И ЗАДАНИЙ В ТЕСТОВОЙ ФОРМЕ

Задания в открытой форме

- 1. Граф это ...?
- 2. Граф называется счетным если ...?
- 3. Граф называется связным если ...?
- 4. Что такое задача перечисления в комбинаторике?
- 5. Как называется 0-местный функциональный символ?
- 6. Как называется кольцо, в котором все отличные от нуля элементы составляют группу по умножению?
- 7. Что называется мощностью алгебраической системы?
- 8. Сколько будет всего разных булевых функций одной переменной?
- 9. Что такое предикат?
- 10. Чем полностью характеризуются формулы алгебры логики семантически?
- 11. Как называется конъюнкция литер?
- 12. Как называется логическая операция, соответствующая союзу «тогда и только тогда, когда»?
- 13. Что называется конъюнкцией?
- 14. Как называется логическая операция, соответствующая союзу «или» в неразделительном смысле?
- 15. Как называется логическая операция, соответствующая союзу «если, ... то»?
- 16. Как называется логическая операция, соответствующая частице «не», словосочетанию «неверно, что»?
- 17. Какой код называется групповым?
- 18. Какие из функций ассоциативны?
- 19. Какие из операций ассоциативны?
- 20. Сколько различных слов можно получить перестановками букв в слове abc?
- 21. Дана матрица сильной связности S(D). Число компонент сильной связности равно.

$$\mathbf{S}(\mathbf{D}) = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

22. Дана матрица смежности орграфа A(D). Определить минимальный путь из v_1 в v_5 в орграфе D.

Дано: U=
$$\{0,1,2,3,4,5,6,7,8,9\}$$
, A= $\{0,2,3\}$, B= $\{2,3,4,5\}$.

$$\mathbf{A(D)} = \begin{bmatrix} 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

- 23. Дано: U= $\{0,1,2,3,4,5,6,7,8,9\}$, A= $\{0,2,3\}$, B= $\{2,3,4,5\}$. A \cup B равно ...
- 24. Дано: U= $\{0,1,2,3,4,5,6,7,8,9\}$, A= $\{1,2,3\}$, B= $\{1,3,4,5\}$. A\B равно...
- 25.Дана матрица сильной связности S(D). Число компонент сильной связности равно.

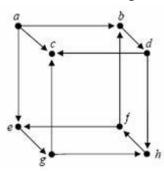
$$S(D) = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

26. Дана матрица смежности орграфа A(D). Определить минимальный путь из v_1 в v_5 в орграфе D.

$$\mathbf{A(D)} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

Задания в закрытой форме

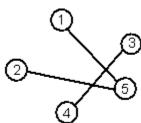
- 1) Число строк в таблице булевой функции f(X, Y) равно
 - a) 8
 - b) 2
 - c) 4
 - d) 16
- 2) а и b высказывания, а ложно, b истинно. Высказывание «а и b» истинно или ложно? Использована операция
 - а) ложно, конъюнкция
 - b) истинно, дизъюнкция
 - с) истинно, конъюнкция
 - d) ложно, дизъюнкция
- 3) Каким может быть дополнение к отношению эквивалентности?
 - а) рефлексивным
 - b) антисимметричным


с) симметричным					
4) Какой радиус может быть у графа с 5 вершинами?					
a) 2					
b) 5					
c) 1					
d) 3					
5) Слова длины 5 в алфавите {a,b,c,d} перечисляются в лексикографическом порядке. Слово ааааа имеет номер 0. Какой номер будет иметь слово caabd?					
a) 625					
b) 812					
c) 907					
d) 519					
6) Отметьте дистрибутивны слева множества:					
а) пересечение относительно разностиb) разность относительно объединенияc) объединение относительно пересечения					
7) Трое студентов сдают экзамен. Сколькими способами могут быть поставлены им отметки, если известно, что никто из них не получил неудовлетворительной отметки?					
a) 3					
b) 81					

	d)	9	
8) Ka	кие из операц	ий над множествами	коммутативны?
,	-	пересечение	•
		разность	
		объединение	
9) Ka	кие из операц	ий коммутативны?	
	a)	пересечение множе	СТВ
	b)	умножение чисел	
	c)	вычитание чисел	
	,2,3,4} задано	множеством пар G =	вами $A = \{a,b,c,d,e\}$ и $B = \{(a,2),(b,1),(c,3),(d,1),(d,4),(e,3)\}.$ олемента d при этом соответствии?
	a)	{1,2,3}	
		{1,2,3,4}	
	c)	{1,4}	
11)		стве действительных ч е утверждения:	писел задано отношение x-y <5.
OI	метые верны	с утверждения.	
	a)	отношение транзити	ІВНО
		отношение антиреф	
		отношение симметр	
	d)	отношение рефлекс	
12)	Отношени	е эквивалентности об	ладает свойствами
	a)		мметричности, транзитивности
	b)	рефлексивности,	антисимметричности,
тра	анзитивности	• •	•
-	c)	симметричности, тр	анзитивности, полноты
	d)	рефлексивности, си	мметричности, полноты
13)	Одним из	свойств отношения п	орядка является
	a)	полнота	
	b)	антитранзитивностн	
	c)	транзитивность	
	d)	симметричность	
14) 250			ва A, если множество ${ m A}^4$ содержит

c)

27


- a) 252
- b) 64
- c) 8
- d) 4
- 15) В орграфе, заданном диаграммой, ...

а) один источник, нет

стока

- b) один источник, один сток
- с) нет источника, один сток
- d) один источник, три стока
- 16) Количество ребер в полном 4-вершинном графе (графе, не содержащем петель и кратных ребер) равно ...
 - a) 4
 - b) 6
 - c) 16
 - d) 8
- 17) Число компонент связности графа, заданного диаграммой, равно ...

- a) 1
- b) 5
- c) 2
- d) 3
- 18) Даны множества $A = \{1, 2\}$ и $B = \{a, b\}$. Соответствием (отношением) $f \subseteq A \times B$ является ...
 - a) $\{(1,2),(a,b)\}$
 - b) $\{(1,a),(a,1),(b,2),(2,b)\}$
 - (1, 2, a, b)
 - d) $\{(1,2),(a,b)\}$

19) Какое из данных множеств является нечетким?

a)
$$\{a, 0.1, b, 0.2, c, 0.3\}$$

- b) $\{(a,1), (b,2), (c,3)\}$
- c) $\{(1, 1), (9, 9), (5, 5)\}$
- d) $\{(a, 0.1), (b, 0.9), (c, 0.5)\}$
- e) $\{(a, a), (b, b), (c, a)\}$

20) Дано: U=
$$\{0,1,2,3,4,5,6,7,8,9\}$$
, A= $\{1,2,3\}$, B= $\{1,3,4,5\}$. А\В равно

- a) Q
- b) {4,5}
- c) {2)
- d) {0,2,3,4,5,6,7,8,9}
- e) {2,3}

21)

Какая из булевых функций записана в конъюнктивной нормальной форме (КНФ)? $\frac{(\overline{y} \vee \overline{z} \wedge x) \wedge (\overline{x} \vee \overline{z})}{(\overline{x} \wedge y \vee \overline{z}) \wedge (\overline{x} \vee \overline{z})}$ $\frac{(\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z})}{(\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z})}$ $\frac{(x \vee y) \wedge (\overline{x} \vee \overline{z})}{(\overline{y} \vee \overline{z}) \wedge (\overline{x} \vee \overline{z})}$

22)

Пусть А и В непустые множества и А≠В тогда какое из данных
множеств
является пустым
$A \cup B$
$A \cup \overline{B}$
$\overline{A} \cup B$
$\overline{A \cup \overline{A}}$
$\overline{A} \cup \overline{B}$

Какая из булевых функций записана в базисе ИЛИ-НЕ?				
Z A N A 5 / / X A 7				
$\overline{x} \wedge y \wedge z \vee x \wedge \overline{y}$				
$(x \wedge y) \oplus 1$				
$\overline{x_1} \vee \overline{x_2} \vee \overline{x_2} \vee x_3$				
$x_1 \wedge \overline{x}_3 \vee x_2$				
$(\overline{x \lor y}) \lor x \land \overline{y}$				

24)

Какая из булевых функций записана в базисе И-НЕ?			
$x \wedge (\overline{x} \vee \overline{y})$			
$x_1 \wedge \overline{x_3} \vee x_2$			
$x \wedge (\overline{x} \wedge \overline{y})$			
$x \wedge y \wedge z \oplus x \wedge y \oplus 1$			
$x \wedge (\overline{x} \vee \overline{y})$			

Задания на установление соответствия

1. Установить соответствие между логическими операциями и их определениями

	1		
1	конъюнкция	A	это сложное логическое выражение, если
			исходное логическое выражение истинно,
			то результат отрицания будет ложным, и
			наоборот, если исходное логическое
			выражение ложно, то результат отрицания
			будет истинным. Другими простыми слова,
			данная операция означает, что к исходному
			логическому выражению добавляется
			частица НЕ или слова НЕВЕРНО
2	дизъюнкция	Б	это сложное логическое выражение,
			которое истинно во всех случаях, кроме как
			из истины следует ложь. То есть данная
			логическая операция связывает два
			простых логических выражения, из
			которых первое является условием (А), а

			второе (В) является следствием.	
3	инверсия	В	это сложное логическое выражение,	
			которое истинно, если хотя бы одно из	
			простых логических выражений истинно и	
			ложно тогда и только тогда, когда оба	
			простых логических выраженья ложны.	
4	импликация	Γ	это сложное логическое выражение,	
			которое считается истинным в том и только	
			том случае, когда оба простых выражения	
			являются истинными, во всех остальных	
			случаях данное сложенное выражение	
			ложно.	

2. Установить соответствие между законами логики и их определениями

	T n	1 .	
1	Закон тождества	A	утверждает, что любая мысль
			(тезис) для того, чтобы иметь
			силу, обязательно должна быть
			доказана (обоснована) какими-
			либо аргументами
			(основаниями), причём эти
			аргументы должны быть
			достаточными для
			доказательства исходной мысли,
			т. е. она должна вытекать из них с
			необходимостью (тезис должен с
			необходимостью следовать из
			оснований).
2	Закон противоречия	Б	утверждает, что любая мысль
			(любое рассуждение)
			обязательно должна быть равна
			(тождественна) самой себе, т. е.
			она должна быть ясной, точной,
			простой, определённой.
3	Закон достаточного	В	говорит о том, что если одно
	основания		суждение что-то утверждает, а
			другое то же самое отрицает об
			одном и том же объекте, в одно и
			то же время и в одном и том же
			отношении, то они не могут быть
			одновременно истинными.

3. Соотнести операции над множествами и их обозначения

1	Объединение	A	$E A = A = x:x\{ \in E \text{ и } x \notin A\}.$
2	Пересечение	Б	$A \cup B = \{x : x \in A$ или $x \in B\}.$
3	Разность	В	$A \cap B = \{x : x \in a \ \text{u} \ x \in B\}.$
4	Универсальное	Γ	$A \setminus B = \{x : x \in A \ u \ x \notin B\}$
	множество		

4. Соотнести функции и их определения

	4. Соотнести функции и их определения			
1	Бинарное	A	если каждому	
	соответствие R		элементу х ЕХ соответствует	
	является функцией		некоторый элемент у ЕҮ, в	
			противном случае	
			функция является недоопределённой	
			(частично определённой).	
			,	
2	Функция у=F(х)	Б	если каждому элементу х	
	называется всюду		∈Х соответствует не более одного	
	определённой		элемента у ЕҮ, что выполняется	
			отношение	
			$(y,x) \in R$.	
3	Функция	В	функцией, если для любых	
	называется		элементов х1, х2, у из того, что	
	разнозначной (1-1)		y=f(x1) и $y=f(x2)$, следует $x1=x2$.	
	функцией			

5. Соотнести размещения и формулы, по которым они рассчитываются

	1 1	<u> </u>	J / I I
1	Размещение без	A	
	повторений		4 ^m _ n!
			$A_n = (n-m)I$
2	Размещение с	Б	
	повторениями		$\dot{A}_n^m = n^m$.

6. Соотнести сочетания и формулы, по которым они вычисляются

1	Сочетание без	A	
	повторений		$C_n^m = \frac{n!}{m!(n-m)!}.$
2	Сочетание с	Б	
	повторениями		$f_n^m = \dot{C}_n^m = \frac{(n+m-1)!}{m!(n-1)!} = C_{n+m-1}^m$

7. Соотнести термин и его определение

	to the top state of the party		
1	Отношение нестрого	A	Любые два элемента М
	порядка		сравнимы
2	Отношение строгого	Б	Любые два элемента М не
	порядка		сравнимы
3	Линейно	В	Рефлексивно, антисимметрично
	упорядоченное		и транзитивно
4	Частично	Γ	Антирефлексивно,
	упорядоченное		антисимметрично, транзитивно

8. Соотнести термин и его определение

<u>e.</u> eee1111	сти термин и сто опред	031011110	
1	Функционально	A	Любая суперпозиция функций
	полная система		из М снова принадлежит М
2	Алгебра Жегалкина	Б	Любая логическая функция может быть представлена формулой, т.е. является суперпозицией функций.
3	Замкнутый класс	В	Алгебра над множеством логических функций с двумя бинарными операциями

9. Соотнести термин и его определение

1	Неориентированный	A	Пару вершин соединяет более
	граф		чем одно ребро
2	Инцидентность	Б	Отношение между вершинами и
			ребрами
3	Мультиграф	В	Объект, заданный парой
			множеств

10. Соотнести термин и его определение

	is. essineeth replant in the supergentation				
1	Связанность	A	Содержит хотя бы одну точку		
			сочленения		
2	Разделимый граф	Б	Бинарное отношение на		
			множестве вершин		
3	Неразделимый граф	В	Не содержит точек сочленения		

11. Соотнести термин и его определение

1	Эйлеров обход	A	Содержит все вершины графа в
			точности по одному разу
2	Гамильтонов обход	Б	Цикл в неориентированном
			графе
3	Простой цикл	В	Любая вершина графа
			встречается в ней не более
			одного раза

12. Соотнести термин и его определение

1	Путь в	Α	Последовательность ребер ,
	неориентированном графе		такая, что любые два соседних ребра ребра различны и имеют общую инцидентную им вершину
2	Полупуть	Б	Последовательность ориентированных ребер, такая что конец любого ребра совпадает с началом следующего ребра
3	Слабо связный орграф	В	Между любой парой вершин существует полупуть

13. Соотнести термин и его определение

1	Несвязный	A	Не содержит циклов
	орграф		
2	Ациклический	Б	Один источник и один сток
	орграф		
3	Двухполюсный	В	Между некоторой парой
	орграф		вершин нет полупути

14. Соотнести термин и его определение

1 ., 0 0 0 11	ice in replant in ero on		-
1	Неориентированное	A	Связный ациклический орграф, в
	дерево		котором только одна вершина,
			называемая корнем, не имеет
			входящих ребер, а все остальные
			вершины имеют по одному ребру
2	Ориентированное	Б	Называется лесом
	дерево		
3	Несвязный	В	Связный неориентированный
	неориентированный		граф без циклов
	граф без циклов		

15. Соотнести термин и его определение

1	Двудольный граф	A	Каждая вершина одной доли соединена с каждой вершиной другой доли
2	Полный двупольный граф	Б	Множество попарно несмежных ребер
3	Паросочетание в неориентированном графе	В	Неориентированный граф, вершины которого можно разбить на два класса так, что концы каждого ребра принадлжеат разным классам

16.Соотнести термин и его определение

1	Внутренняя грань	A	Плоский граф со всеми его
	Biry rpeninn rpanin		гранями
2	Плоская карта	Б	Единственная внешняя по
	_		отношению к графу область
3	Внешняя грань	В	Область плоскости, ограниченная
			простым циклом и не содержащая
			никакой другой цикл

17. Соотнести термин и его определение

17.001	17. Соотпести термин и его определение				
1	Раскрашиваемый	A	Минимальное число к, для		
	граф		которого граф раскрашиваемый		
2	Хроматическое	Б	Вершины попарно не смежны		
	число графа				
3	Внутренне	В	Существует его правильная		
	устойчивое		вершинная к - раскраска		
	множество вершин				
	графа				

18. Соотнести термин и его определение

10, 000	incern replinin in ere on	эсдология	
1	Автомат Мура	A	Множество слов во входном
			алфавите
2	Регулярное событие	Б	Оно может быть построено из
			элементарных событий с
			помощью конечного числа
			применений объединения.
3	Событие	В	Функция выходов зависит только
			от состояния

19. Соотнести термин и его определение

1	Ιπ •	A .	г ч 1
1	Детерминированный	A	Его входной алфавит состоит из
	источник		2 ^m двоичных наборов m длины, а
			выходной из 2 ⁿ двоичных
			наборов длины п
2	Логический автомат	Б	Источник имеет одну начальную
			вершину, не содержит пустых
			ребер и удовлетворяет условиям
			автоматности
3	Комбинационный	В	Если выходной символ не
	автомат		зависит от состояния и
			определяется текущим входным
			символом

20. Соотнести термин и его определение

1	Декомпозиция	A	Правильно построенная
			логическая сеть
2	СЛС	Б	Синхронная логическая сеть
3	ППЛС	В	Построение сети по заданному
			автомату

Задания на установление правильной последовательности

- 1. Установите правильный приоритет логических операций
- 1) Конъюнкция
- 2) Дизъюнкция
- 3) Инверсия
- 4) Действия в скобках
- 5) Сложение по модулю
- б) Эквивалентность
- 7) Импликация
- 2. Установить правильную последовательность реализации пунктов, соответствующую алгоритму метода нахождения максимального потока в графе:
- 1) Найти максимальный поток в сети. Определить оптимальный поток в дугах. Определить максимальный поток в сети.
- 2) Найти цепь, соединяющую источник S и сток t, по которой поток принимает положительное значение в направлении от источника к стоку (S→t). Если такой цепи не существует, то перейти к шагу 3, иначе выполнить шаг 2.
- 3) Ввести обозначения для пропускных способностей дуг цепи в направлении от $S \rightarrow t$ и для пропускных способностей дуг цепи в направлении от $t \rightarrow S$. Преобразовать матрицу пропускных способностей. Заменить текущую матрицу пропускных способностей на вновь полученную и перейти к шагу 1.

- 3. Установите правильную последовательность условия окончания итерационного процесса алгоритма метода нахождения максимального потока в графе.
- 1) если все элементы столбца t матрицы пропускных способностей или строки S принимают значения равные нулю;
- 2) если не существует цепи, преобразующей матрицу пропускных способностей;
 - 3) если перебраны все возможные пути из источника к стоку $(S \rightarrow t)$.
 - 4) Bce;
- 4. Установите правильный порядок Выберите последовательность пунктов, соответствующую алгоритму нахождения кратчайшего пути в сети, содержащей циклы:
- 1) Проверить условия оптимальности. Если условия не выполняются, то вычислить новые значения v_j , u_i , v_j . Процесс итераций повторить до тех пор, пока условия оптимальности не будут выполняться для всех.
- 2) Ввести обозначения для суммы длин дуг, образующих цепь из узла 1 в узел j (vj). Определить начальные условия. При соблюдении условия, что узлы i и j соединены дугой, определить величину vj.
- 3) Определить величину кратчайшего пути (vj на последней итерации), и последовательность дуг, образующих кратчайший путь.
- 5. Установите правильную последовательность (алгоритм) оценки эффективности проектных мероприятий
- 1) сумма платежей за доставку единицы груза не больше тарифа в свободных клетках транспортной таблицы;
- 2) сумма платежей за доставку единицы груза не меньше тарифа, в занятых клетках транспортной таблицы;
- 3) сумма платежей за доставку единицы груза равна тарифу в занятых и не больше в свободных клетках транспортной таблицы;
- 4) сумма платежей за доставку единицы груза меньше тарифа в свободных и больше в занятых.
- 6. Установите правильный порядок требований к параметрам модели задачи линейного программирования
 - 1) определенность, линейность, пропорциональность, аддитивность
 - 2) нелинейность, пропорциональность аддитивность
 - 3) линейность, пропорциональность, неопределенность
 - 4) случайность, транзитивность, обратная пропорциональность
- 7. Установите правильную последовательность обеспечения управляемости системы
- 1) систему S, которая с течением времени меняет свое состояние, и имеется способ управлять этим процессом;
- 2) систему S, которая может изменять свое состояние, независимо от воздействий;
- 3) систему S, которая одинаково изменяет свое состояние, в зависимости от воздействий
 - 8. Установите правильную последовательность общей постановки

транспортной задачи:

- 1) в определении оптимального плана перевозок однородного груза из m пунктов отправления в n пунктов назначения. Критерием оптимальности является минимальная стоимость перевозки;
- 2) в нахождении резервов для перевозок любого груза из m пунктов отправления в n пунктов назначения. Критерием оптимальности является оптимальное время перевозки;
- 3) в установлении резервов оптимального пути из m пунктов отправления в n пунктов назначения. Критерием оптимальности является оптимальное время.
- 9. Укажите правильную последовательность процесса заполнения транспортной таблицы после нахождения значения промежуточной ренты:
- 1) значение ренты прибавляют к тарифам, стоящим в отрицательных строках, остальные тарифы не изменяют;
- 2) значение ренты прибавляют к тарифам, стоящим в положительных строках, остальные тарифы не изменяют;
- 3) значение ренты прибавляют ко всем тарифам транспортной таблицы
- 10. Установите правильную последовательность нахождения решений в задаче линейного программирования:
 - 1) значение целевой функции;
 - 2) значения переменных, удовлетворяющих системе ограничений;
- 3) значения переменных, обеспечивающих max(min) целевой функции;
- 4) неотрицательные значения переменных, которые обеспечивают экстремум целевой функции, удовлетворяя системе ограничений.
- 11. Установите правильный порядок установления критерия прекращения итерационного процесса в симплекс-методе задачи минимизации задаче линейного программирования в индексной строке все элементы
 - 1) неотрицательны;
 - 2) отрицательны;
 - 3) не положительны;
 - 4) положительны.
- 12. Укажите правильный порядок оценки целевой функции, имеющей нижнюю границу на множестве решений, то:
 - 1) существует оптимальное базисное решение;
 - 2) не существует оптимального базисного решения;
 - 3) задача имеет бесконечное множество решений.
- 13. Установите правильную последовательность реализации основной идеи симплекс метода:
 - 1) перебор всех вершин многогранника планов;
- 2) переход от одной вершины к другой так, что значение целевой функции не меньше в задаче максимизации и не больше в задаче минимизации;

- 3) перебор всех опорных планов;
- 4) кратчайший переход от одной угловой точки к другой;
- 14. Установите правильный порядок выявления разрешающего столбца задачи максимизации задачи линейного программирования:
 - 1) наименьшему из отрицательных элементов в индексной строке;
 - 2) наибольшему из неотрицательных элементов индексной строки;
- 3) наибольшему модулю отрицательных элементов индексной строки;
 - 4) перебор всех опорных планов.
- 15. Установите правильный порядок выявления оптимального плана исходной и двойственной задачи линейного программирования. Для того чтобы X и Y были оптимальными планами исходной и двойственной задачи ЛП, необходимо и достаточно, чтобы:
 - 1) все ресурсы были использованы
 - $2) \qquad \max F(X) = \min F(Y);$
 - 3) существование допустимого плана;
 - 4) $\max F(X) = \min Z(Y).$
- 16. Установите правильный порядок подготовки реализации транспортной задачи:
 - 1) анализ модели транспортной задачи на закрытость
 - 2) модель транспортной задачи была открытой;
 - 3) модель транспортной задачи была выпуклой
 - 4) анализ модели транспортной задачи на устойчивость
- 17. Установите правильную последовательность нахождения множества всех допустимых решений задачи линейного программирования:
 - 1) выпуклое замкнутое множество в п-мерном пространстве;
 - 2) любое множество в п-мерном пространстве
 - 3) выпуклое множество в п-мерном пространстве.
- 18. Установите правильный порядок процесса реализации метода Фогеля перевозками груза заполняется:
- 1)) клетка транспортной таблицы, соответствующая максимальной разности между минимальными тарифами в строке или столбце;
- 2) клетка транспортной таблицы, соответствующая минимальной разности между максимальными тарифами в строке или столбце;
- 3) клетка транспортной таблицы, соответствующая минимальной разности между минимальными тарифами в строке или столбце.
- 19. Установите правильную последовательность в определении критерия оптимизации транспортной задачи
 - 1) минимум затрат на продукцию;
 - 2) удовлетворение всех затрат потребителей;
 - 3) максимум прибыли;
 - 4) минимум затрат на доставку продукции.
- 20. Установите правильную последовательность (алгоритм) расчета эффективности метода дифференциальных рент для решения транспортной задачи (Т3):

- 1) в каждом столбце ТЗ находят минимальные тарифы и заполняют соответствующие клетки перевозками. После выявления положительных и отрицательных строк устанавливают дифференциальную ренту, которую прибавляют к тарифам, стоящим в отрицательных строках и заполняют их перевозками;
- 2) в каждом столбце ТЗ находят максимальные тарифы и заполняют соответствующие клетки перевозками. После выявления положительных и отрицательных строк устанавливают дифференциальную ренту, которую прибавляют к тарифам, стоящим в отрицательных строках и заполняют их перевозками;
- 3) в каждом столбце ТЗ находят минимальные тарифы и заполняют соответствующие клетки перевозками. После выявления положительных и отрицательных строк устанавливают дифференциальную ренту, которую прибавляют к тарифам, стоящим в положительных строках и заполняют их перевозками.
- 21. Установите правильную последовательность алгоритма построения полинома Жегалкина для булевой функции методом неопределенных коэффициентов:
 - 1) построить таблицу истинности для заданной функции
- 2) для каждой строки таблицы составить соответствующее линейное уравнение
 - 3) решая систему уравнений, вычислить коэффициенты полинома
- 4) записать для заданной функции общий вид полинома с неопределенными коэффициентами
 - 5) коэффициенты подставить в общий вид полинома
- 22. Установите правильную последовательность. Теорема Поста: Система булевых функций...
 - 1) полной
 - не
 - 3) является
 - 4) она полностью
 - 5) тогда и только тогда, когда
 - б) содержится
 - 23. Установите правильную последовательность. Биномом называют:
 - 1) суммой
 - 2) многочлен
 - 3) двух
 - 4) являющийся
 - 5) слагаемых
- 24. Установите правильную последовательность алгоритма построения СДНФ для булевой функции методом эквивалентных преобразований:
 - 1) избавиться от повторяющихся членов
- 2) преобразовать формулу к нормальной форме, используя законы дистрибутивности

- 3) в конъюнкции добавить недостающие переменные, используя формулу $x \wedge (y \vee \bar{y}) = x$
 - 4) преобразовать формулу к приведенному виду
- 25. Установите правильную последовательность алгоритма построения полинома Жегалкина для булевой функции методом эквивалентных преобразований:
 - 1) упростить ДНФ
 - 2) избавиться от отрицаний по формуле $x \oplus 1 = \bar{x}$
 - 3) для заданной функции построить ДНФ
 - 4) раскрыть скобки
 - 5) привести подобные слагаемые
 - 6) заменить все дизъюнкции по формуле $x \lor y = \overline{\overline{x} \land \overline{y}}$
- 26. Установите правильную последовательность. Теорема Поста: Система булевых функций...
 - полной
 - 2) не
 - 3) является
 - 4) она полностью
 - 5) тогда и только тогда, когда
 - б) содержится
 - 7) ни
 - 8) классов
 - 9) в одном из
 - 10) замкнутых
- 27. Установите правильную последовательность. Мощность множеств по возрастанию:
 - 1) множество натуральных чисел
 - 2) множество действительных чисел
 - 3) $A=\{1, 3, 6, 7\}$
 - 4) $B=\{1, 3, 6, 7, 9\}$
 - 5) множество десятичных цифр
 - 6) множество двоичных цифр
- 28. Установите правильную последовательность. Теорема о Декартовом произведении множеств: Пусть A_1 , A_2 , ..., A_n конечные множества, а $|A_1|$, $|A_2|$, ..., $|A_n|$ их мощности соответственно. Тогда:
 - 1) множества
 - 2) равна
 - 3) мощность
 - 4) $A_1 \times A_2 \times ... \times A_n$
 - 5) мощностей
 - 6) $A_1, A_2, ..., A_n$
 - 7) произведению
 - 8) множеств

- 29. Установите правильную последовательность. Теорема Кантора: Множество...
 - 1) всех рациональных чисел
 - 2) несчетно
 - 3) множество
 - 4) всех действительных чисел
 - 5) счетно
 - 30. Установите правильную последовательность. Биномом называют:
 - 1) суммой
 - 2) многочлен
 - 3) двух
 - 4) являющийся
 - 5) слагаемых

Шкала оценивания результатов тестирования: в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 баллов (установлено положением П 02.016).

Максимальный балл за тестирование представляет собой разность двух чисел: максимального балла по промежуточной аттестации для данной формы обучения (36 или 60) и максимального балла за решение компетентностноориентированной задачи (6).

Балл, полученный обучающимся за тестирование, суммируется с баллом, выставленным ему за решение компетентностно-ориентированной задачи. Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом.

Соответствие 100-балльной и 5-балльной шкал

Сумма баллов по 100 – бальной	Оценка по 5 – бальной шкале
шкале	
100-85	Отлично
84-70	Хорошо
69-50	Удовлетворительно
49 и менее	Неудовлетворительно

2.2 Компетентностно – ориентированные задачи

	2.2 Компетентностно – ориентированные задачи
1	Дана система команд автомата: $q_00 \rightarrow q_10L$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01L$; $q_11 \rightarrow q_11L$. Для конфигурации $1q_01$ какое из слов будет на выходе из автомата.
2	Дана система команд автомата: $q_00 \rightarrow q_10L$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01L$; $q_11 \rightarrow q_11L$. Для конфигурации $1q_00$ какое из слов будет на выходе из автомата.
3	Дана система команд автомата: $q_00 \rightarrow q_10R$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01R$; $q_11 \rightarrow q_11R$. . Для конфигурации $1q_00$ какое из слов будет на выходе из автомата.
4	Дана система команд автомата: $q_00 \rightarrow q_10R$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01R$; $q_11 \rightarrow q_11R$. . Для конфигурации $1q_01$ какое из слов будет на выходе из автомата.
5	Дана система команд автомата: $q_00 \rightarrow q_10R$; $q_10 \rightarrow q_21R$; $q_01 \rightarrow q_11R$; $q_11 \rightarrow q_21R$; $q_20 \rightarrow q_f1$. Для конфигурации $1q_01$ какое из слов будет на выходе из автомата.
6	Дана система команд автомата: $q_00 \rightarrow q_10L$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01L$; $q_11 \rightarrow q_11L$. Для конфигурации $0q_01$ какое из слов будет на выходе из автомата.
7	Дана система команд автомата: $q_00 \rightarrow q_11L$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_00L$; $q_11 \rightarrow q_10L$. Для конфигурации $1q_00$ какое из слов будет на выходе из автомата.
8	Дана система команд автомата: $q_00 \rightarrow q_10R$; $q_11 \rightarrow q_f1$; $q_01 \rightarrow q_01R$; $q_10 \rightarrow q_11R$. . Для конфигурации $1q_00$ какое из слов будет на выходе из автомата.
9	Дана система команд автомата: $q_00 \rightarrow q_11R$; $q_10 \rightarrow q_f1$; $q_01 \rightarrow q_01R$; $q_11 \rightarrow q_11R$. . Для конфигурации $0q_01$ какое из слов будет на выходе из автомата.
10	Дана система команд автомата: $q_00 \rightarrow q_10R$; $q_10 \rightarrow q_21R$; $q_01 \rightarrow q_11R$; $q_11 \rightarrow q_21R$; $q_20 \rightarrow q_f1$. Для конфигурации $1q_00$ какое из слов будет на выходе из автомата.

11. Построить граф по таблице смежности:

	A	В	C	Д
A	0	1	1	1
В	0	0	1	1
С	0	1	0	1
Д	1	0	0	1

Выписать соответствующие ему таблицы соответствий и инцидентности.

12. Построить граф по таблице смежности:

	A	В	С	Д
A	0	1	1	1
В	1	1	1	1
С	0	1	0	0
Д	1	0	0	0

Выписать соответствующие ему таблицы соответствий и инцидентности.

13. Построить граф по таблице смежности:

1 1				
	A	В	C	Д
A	0	1	1	1
В	0	0	1	1
С	0	0	0	1
Д	0	0	0	1

Выписать соответствующие ему таблицы соответствий и инцидентности.

14. Построить граф по таблице смежности:

a read the recent of the series of the serie							
	A	В	C	Д			
A	1	1	1	1			
В	1	1	1	0			
С	0	1	0	0			
Д	1	0	0	1			

Выписать соответствующие ему таблицы соответствий и инцидентности.

15. Задайте другими способами граф, определяемый таблицей:

	, ,	' 1 2			1 1/	1 ' '		1			
Е	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8	e_9	e_{10}	e_{11}
					T,E						

Выписать соответствующие ему таблицы соответствий и инцидентности.

16. Построить граф по таблице смежности:

	A	В	С	Д
A	1	0	1	1
В	0	1	0	1
С	1	0	0	0
Д	1	0	0	0

Выписать соответствующие ему таблицы соответствий и инцидентности.

17. Построить граф по таблице смежности:

	A	В	С	Д
A	1	0	0	1
В	0	1	0	1
С	0	0	0	0
Д	1	1	0	1

Выписать соответствующие ему таблицы соответствий и инцидентности.

18. Построить граф по таблице смежности:

	A	В	С	Д
A	1	0	0	1
В	1	0	1	0
С	1	1	0	0
Д	1	0	0	0

Выписать соответствующие ему таблицы соответствий и инцидентности.

19. Построить граф по таблице смежности:

	A	В	С	Д
A	0	0	1	1
В	0	1	1	1
С	1	1	1	0
Д	1	0	0	0

Выписать соответствующие ему таблицы соответствий и инцидентности.

20. Построить граф по таблице смежности:

I I				
	A	В	C	Д
A	0	0	0	1
В	0	0	1	1
С	1	1	0	0
Д	1	0	0	0

Выписать соответствующие ему таблицы соответствий и инцидентности.

Шкала оценивания решения компетентностно-ориентированной задачи:

в соответствии с действующей в университете балльно-рейтинговой системой оценивание результатов промежуточной аттестации обучающихся осуществляется в рамках 100-балльной шкалы, при этом максимальный балл по промежуточной аттестации обучающихся по очной форме обучения составляет 36 баллов, по очно-заочной и заочной формам обучения — 60 (установлено положением П 02.016).

Максимальное количество баллов за решение компетентностноориентированной задачи -6 баллов.

Балл, полученный обучающимся за решение компетентностноориентированной задачи, суммируется с баллом, выставленным ему по результатам тестирования. Общий балл по промежуточной аттестации суммируется с баллами, полученными обучающимся по результатам текущего контроля успеваемости в течение семестра; сумма баллов переводится в оценку по 5-балльной шкале следующим образом.

Сумма баллов по 100 – бальной	Оценка по 5 – бальной шкале	
шкале		
100-85	Отлично	
84-70	Хорошо	
69-50	Удовлетворительно	
49 и менее	Неудовлетворительно	

Критерии оценивания решения компетентностно-ориентированной задачи

- 6-5 баллов выставляется обучающемуся, если решение задачи демонстрирует глубокое понимание обучающимся предложенной проблемы разностороннее ee рассмотрение; свободно конструируемая представляет собой логичное, ясное и при этом краткое, точное описание хода решения задачи (последовательности (или выполнения) необходимых трудовых действий) и формулировку доказанного, правильного вывода (ответа); при этом обучающимся предложено несколько вариантов решения или оригинальное, нестандартное решение (или наиболее эффективное, или наиболее рациональное, или оптимальное, или единственно правильное решение); задача решена в установленное преподавателем время или с опережением времени.
- **4-3 балла** выставляется обучающемуся, если решение задачи демонстрирует понимание обучающимся предложенной проблемы; задача решена типовым способом в установленное преподавателем время; имеют место общие фразы и (или) несущественные недочеты в описании хода решения и (или) вывода (ответа).
- **2-1 балла** выставляется обучающемуся, если решение задачи демонстрирует поверхностное понимание обучающимся предложенной проблемы; осуществлена попытка шаблонного решения задачи, но при ее решении допущены ошибки и (или) превышено установленное преподавателем время. **0 баллов** выставляется обучающемуся, если решение задачи демонстрирует непонимание обучающимся предложенной проблемы, и (или) значительное место занимают общие фразы и голословные рассуждения, и (или) задача не решена.