Документ подписан простой электронной подписью

Информация о владельце:

ФИО: Емельянов Сергей Геннадьевич

Должность: ректор

Дата подписания: 06.04.2023 15:41:41

Уникальный программный ключ:

минобрнауки россии

9ba7d3e34c012eba476ffd2d064cf2781953be730df2374d16f3c0ce536f0fc6

Федеральное государственное бюджетное образовательное учреждение высшего образования «Юго-Западный государственный университет» (ЮЗГУ)

Кафедра уникальных зданий и сооружений

ЭНЕРГОСБЕРЕГАЮЩИЕ ТЕХНОЛОГИИ И МАТЕРИАЛЫ

Методические указания к практическим занятиям по дисциплине "Энергосберегающие технологии и материалы" для студентов специальности 08.05.01

Составитель: В.И. Колчунов

Рецензент

Кандидат технических наук, доцент А.Г.Колесников

Энергосберегающие технологии и материалы: методические указания к практическим занятиям / Юго-Зап. гос. ун-т; сост.: В.И. Колчунов. Курск, 2022. - 12 с. -Библиогр.: 4 с.

Методические указания содержат примеры теплотехнического расчета ограждающих конструкций, выполненных с использованием энергосберегающих технологий и материалов.

Методические указания к практическим занятиям по дисциплине "Энергосберегающие технологии и материалы" предназначены для студентов специальности 08.05.01 "Строительство уникальных зданий и сооружений".

Текст печатается в авторской редакции

Подписано в печать . Формат 60х84 1/16. Усл. печ. л. 0,7 . Уч.-изд.л. 0,63 . Тираж 100 экз. Заказ. Бесплатно. Юго-Западный государственный университет. 305040, г. Курск, ул. 50лет Октября, 94.

Оглавление

ВВЕДЕНИЕ	4
ЗАДАЧИ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	5
Литература	12

ВВЕДЕНИЕ

Целью преподавания дисциплины «Энергосберегающие технологии и материалы» является формирование у студентов компетенций, позволяющих ориентироваться и принимать самостоятельные решения в сфере формирования экономических и инженерно-технических механизмов энергосбережения в строительстве.

Полученные знания студенты используют в практической деятельности на стадиях разработки и внедрения результатов инновационной деятельности в строительстве: энергосберегающих технологий и материалов.

ЗАДАЧИ ДЛЯ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Задача 1. Кубический образец каменного материала размером a=10 см имеет в воздушно-сухом состоянии массу m=2,2 кг.

Вычислить ориентировочно коэффициент теплопроводностиу и возможное наименование материала.

Решение. Известна формула В.П. Некрасова, связывающая теплопроводностьγ[Вт/(м • °C)] с величиной относительной плотностиd однородного каменного материала:

$$\gamma = 1{,}16\sqrt{0{,}0196 + 0{,}22d^2} - 0{,}16$$

где d - относительная плотность, выражает отношение плотности материала $\rho_0^{\text{мат}} \kappa$ плотности стандартного вещества ρ_0 при определенных физических условиях (безразмерная величина).

В качестве стандартного вещества удобно принять воду при 4 °C (точнее при t= 3,98 °C), имеющую при этой температуре плотность

$$\rho_0^{H2O} = 1000 \; \text{кг/m}^3 \;$$
 или $\rho_0^{H2O} = \! 1 \; \text{г/cm}^3$.

Средняя плотность данного кубического образца материала

$$\rho_0 = \frac{m}{V} = \frac{2200}{1000} = 2,2 \text{ г/cm}^3$$

Относительная плотность

$$d = \frac{\rho_0^{MaT}}{\rho_0^{H2O}} = \frac{2,2}{1,0} = 2,2$$

Ориентировочно коэффициент теплопроводности материала

$$\gamma = 1.16\sqrt{0.0196 + 0.22(2.2)^2} - 0.16 = 1.048 \text{ BT/(M} \cdot {}^{\circ}\text{C})$$

По справочным данным устанавливаем, что возможный вид материала - тяжелый бетон $\gamma = 0.9$ -1,6 Вт/(м • °C) (Л.Г. Комар. Строительные материалы и изделия. М., 1988 г.).

Задача 2. Определить среднюю плотность ρ_0 и коэффициент теплопроводности γ , установить примерное название материала, если образец из него имеет форму куба с ребром 3 см и массу 32,4 г.

Решение. Объем куба $V = 0.03x0,03x0,03 = 0.000027 \text{ м}^3$ Средняя плотность кубического образца материала

$$\rho_0^{\text{MAT}} = \frac{0,0324}{0,000027} = 1200 \text{ kg/m}^3$$

$$\gamma = 1,16\sqrt{0,0196 + 0,22d^2} - 0,16$$

$$d = \frac{\rho_0^{\text{MAT}}}{\rho_0^{\text{H2O}}} = \frac{1200}{1000} = 1,2$$

$$\gamma = 1.16\sqrt{0.0196 + 0.22(1.2)^2} - 0.16 = 0.513 \text{ BT/(M} \cdot ^{\circ}\text{C})$$

Ответ: 1200 кг/м^3 ; $0,513 \text{ Bт/(м} \cdot ^{\circ}\text{C})$; легкий бетон.

Задача 3. Образец каменного материала в форме куба со стороной 10 см имеет массу в сухом состоянии 1,7 кг. Вычислить ориентировочно коэффициент теплопроводностиу и возможное наименование этого материала.

Решение. Объем образца материала

 $V_{\text{мат}} = 0,001 \text{ м}^3$ или $V_{\text{мат}} = 1000 \text{ см}^3$.

Средняя плотность образца материала

$$ho_0^{\text{mat}} = \frac{m}{V} = \frac{1.7}{0.001} = 1700 \text{kg/m}^3$$

Относительная плотность

$$d = \frac{\rho_0^{MAT}}{\rho_0^{H20}} = \frac{1700}{1000} = 1,7$$

Коэффициент теплопроводности материала

$$\gamma = 1.16\sqrt{0.0196 + 0.22d^2} - 0.16 =$$
 $1.16\sqrt{0.0196 + 0.22(1.7)^2} - 0.16 = 0.779098 \text{ BT/(M} \cdot ^{\circ}\text{C)}$

Ответ: 0,779098 Bт/(м • °С); цементно-песчаный раствор.

Задача 4. Через наружную стену из кирпича площадью A = 25,5 м" проходит за $\tau = 24$ ч,Q = 76000 кДж теплоты. Толщина стены $\delta = 51$ см. Температура внутренней (теплой) поверхности стены $t_1 = +15$ °C, наружной (холодной) $t_2 = -12$ °C.

Рассчитать теплопроводность укирпичной кладки.

Решение. Теплопроводность кирпичной стены (кладки) γ Вт/(м • °C)

$$\gamma = \frac{Q\delta}{A(t_1 - t_2)\tau}$$

гдеQ- количество теплоты. кДж;

δ- толщина стены, м;

A - площадь сечения, перпендикулярная направлению теплового потока, M^2 ;

 t_1, t_2 - температура поверхности соответственно теплой и холодной сторон стены. $^{\circ}C;$

т - время прохождения потока тепла, ч.

$$\gamma = \frac{76000 \cdot 0,51}{25.5 \cdot 27 \cdot 24} = 2,346 \text{ кДж/(м·ч·°C)}$$

или 2,346:3,6=0,65157Bт/(м • °C)

Ответ: $0,65157 \text{ BT/(M} \cdot ^{\circ}\text{C})$.

Задача 5. Теплопроводность фибролита со средней плотностью $\rho_0 = 400~\text{кг/m}^3$ в сухом состоянии при $t=25~^\circ\text{C}~\gamma_t^{\text{сух}} = 0,1~\text{Вт/(м} \bullet ^\circ\text{C})$. Вычислить расчетное значение теплопроводности γ :

а)при
$$t = 0$$
 °C;

б)при t=25 °C и атажности по массе $W_m=20$ %.

Решение.Для пересчета теплопроводности к нулевой температуре используем формулу

$$\gamma_t = \gamma_0 (1 + 0.0025t)$$

где γ_0 - коэффициент теплопроводности при 0 °C.

Эта формула справедлива только при температурах не выше $100~^{\circ}\mathrm{C}.$

$$\gamma_0 = \frac{\gamma_t}{(1+0.0025t)} = \frac{0.1}{1+0.0025 \cdot 25} = 0.094 \text{ BT/(M} \cdot {}^{\circ}\text{C})$$

Для учета влияния влажности на теплопроводность у можно использовать упрощенную формулу

$$\gamma_{\rm w} = \gamma_{\rm t}^{\rm cyx} + \Delta \gamma W_{\rm of},$$

где $\gamma_t^{\text{сух}}$ - коэффициент теплопроводности при температуре г,

у_w- коэффициент теплопроводности влажного материала;

 $\Delta \gamma$ - приращение коэффициента теплопроводности на 1 % увеличения объемной влажности W_0 , которое составляет:

-для неорганических материалов при положительной температуре - $0.0025 \, \mathrm{Bt/(m \cdot {}^{\circ}C)};$

-при отрицательной - 0.0047 Bт/(м • °C);

-для органических - соответственно 0,0035 Bt/(м • °C) и 0.0047 Bt/(м • °C);

 W_{06} - объемная влажность (влажность материала по объему).

Влажность по объему фибролита

$$W_0 = W_m \cdot \frac{m}{\rho_B} = W_m \frac{\rho_0}{\rho_B}$$

 $W_0 = W_m \cdot d = 20 \cdot 0.4 = 8.0\%$

Эффективная теплопроводность влажного фибролита

$$\gamma_{\rm w} = 0.1 + 0.0035 \cdot 8.0 = 0.128 {
m BT/(M \cdot ^{\circ}C)}$$

Ответ: $0.094 \text{ BT/(M} \cdot {}^{\circ}\text{C}); 0.128 \text{ BT/(M} \cdot {}^{\circ}\text{C})$

Задача 6. Необходимо заменить существующую теплоизоляцию из пенобетонных плит со средней плотностью ρ_0 = 500 кг/м 3 и толщиной $\delta_{\text{пб}}$ = 100 мм на теплоизоляцию из каменной ваты марки D 100.

Температура изолируемой поверхности t_1 = 300 °C, а температура поверхности изоляции t_2 = 25°C. Вычислить толщину нового теплоизоляционного слоя из каменной ваты.

Решение.Определяем среднюю температуру теплоизоляционного слоя

$$t_{cp} = (t_1 + t_2)/2 = (300 + 25)/2 = 162,5$$
 °C.

По справочным данным вычисляем коэффициент теплопроводности изоляционного слоя из пенобетона при ρ_0 = 500 кг/м³ по следующей расчетной формуле:

$$\gamma_{\pi6}^{500} = 0.13 + 0.0003~t_{cp} = 0.13 + 0.0003 \bullet 162.5 = 0.179~BT/(M \bullet ^{\circ}C).$$

Вычисляем коэффициент теплопроводности минераловатного утеплителя марки D 100 по расчетной формуле

 $\gamma_{\rm MB} = 0.047 + 0.00023t_{\rm cp} = 0.047 + 0.00023\cdot162.5 = 0.0844$ BT/(M·°C).

При замене теплоизоляционного материала, предусмотренного проектом на другой, необходимо обеспечить сохраниение термического сопротивления запроектированного изоляционного слоя

$$R = \frac{\delta}{\gamma}$$

где R — термическое сопротивление изоляционного слоя $\mathbf{M}^2 \cdot {}^{\circ}\mathbf{C}/\mathbf{B}\mathbf{T};$

 δ - толщина слоя, м;

 γ - коэффициент теплопроводности изоляционного слоя Bt/(м·°C).

Термическое сопротивление существующей теплоизоляции из пенобетона

$$R_{\rm T} = \frac{\delta_{\rm \pi 6}}{\gamma_{\rm \pi 6}^{500}} = \frac{0.1}{0.179} = 0.559 \ ({\rm M}^2 \cdot {\rm ^{\circ}C})/{\rm BT}$$

Толщина слоя из минеральной ваты при требуемом проектном термическом сопротивлении $R_T = 0.56~\mathrm{Bt/(m} \cdot ^{\circ}\mathrm{C})$.

$$\delta_{\text{mb}} = R_{\text{t}} \gamma_{\text{mb}} = 0.559 \cdot 0.0844 = 0.047$$
 м.

Принимаем $\delta_{\text{мв}}$ = 5,0 см

Ответ: 5,0 см

Литература

- 1. Змачинский. Л.Э. Основы энергосбережения в строительстве. Курс лекций: учебно-методическое пособие / Л.Э. Змачинский. О.Г. Галузо. - Минск: БНТУ, 2007. - 227 с.
- 2. Пластмассы ячеистые и резины губчатые. Метод определения кажущейся плотности: ГОСТ 409-77.
- 3. Трубы стальные предварительно термоизолированhS&пенополиуретаном. Технические условия: CTБ 1295-2001.
- 4. Пластмассы ячеистые жесткие. Метод испытания на сжатие: ГОСТ 23206-78.